With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes ...With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.展开更多
Benefit from the enhanced onboard processing capacities and high-speed satellite-terrestrial links,satellite edge computing has been regarded as a promising technique to facilitate the execution of the computation-int...Benefit from the enhanced onboard processing capacities and high-speed satellite-terrestrial links,satellite edge computing has been regarded as a promising technique to facilitate the execution of the computation-intensive applications for satellite communication networks(SCNs).By deploying edge computing servers in satellite and gateway stations,SCNs can achieve significant performance gains of the computing capacities at the expense of extending the dimensions and complexity of resource management.Therefore,in this paper,we investigate the joint computing and communication resource management problem for SCNs to minimize the execution latency of the computation-intensive applications,while two different satellite edge computing scenarios and local execution are considered.Furthermore,the joint computing and communication resource allocation problem for the computation-intensive services is formulated as a mixed-integer programming problem.A game-theoretic and many-to-one matching theorybased scheme(JCCRA-GM)is proposed to achieve an approximate optimal solution.Numerical results show that the proposed method with low complexity can achieve almost the same weight-sum latency as the Brute-force method.展开更多
Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks ...Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.展开更多
In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route...In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.展开更多
As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerou...As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerous advantages,resource management among various domains in large-scale UAV communication networks is the key challenge to be solved urgently.Specifically,due to the inherent requirements and future development trend,distributed resource management is suitable.In this article,we investigate the resource management problem for large-scale UAV communication networks from game-theoretic perspective which are exactly coincident with the distributed and autonomous manner.By exploring the inherent features,the distinctive challenges are discussed.Then,we explore several gametheoretic models that not only combat the challenges but also have broad application prospects.We provide the basics of each game-theoretic model and discuss the potential applications for resource management in large-scale UAV communication networks.Specifically,mean-field game,graphical game,Stackelberg game,coalition game and potential game are included.After that,we propose two innovative case studies to highlight the feasibility of such novel game-theoretic models.Finally,we give some future research directions to shed light on future opportunities and applications.展开更多
This paper summarizes the state of art in quantum communication networks and trust management in recent years.As in the classical networks,trust management is the premise and foundation of quantum secure communication...This paper summarizes the state of art in quantum communication networks and trust management in recent years.As in the classical networks,trust management is the premise and foundation of quantum secure communication and cannot simply be attributed to security issues,therefore the basic and importance of trust management in quantum communication networks should be taken more seriously.Compared with other theories and techniques in quantum communication,the trust of quantum communication and trust management model in quantum communication network environment is still in its initial stage.In this paper,the core technologies of establishing secure and reliable quantum communication networks are categorized and summarized,and the trends of each direction in trust management of quantum communication network are discussed in depth.展开更多
In the 5th generation(5G)wireless communication networks,network slicing emerges where network operators(NPs)form isolated logical slices by the same cellular network infrastructure and spectrum resource.In coverage r...In the 5th generation(5G)wireless communication networks,network slicing emerges where network operators(NPs)form isolated logical slices by the same cellular network infrastructure and spectrum resource.In coverage regions of access points(APs)shared by slices,device to device(D2D)communication can occur among different slices,i.e.,one device acts as D2D relay for another device serving by a different slice,which is defined as slice cooperation in this paper.Since selfish slices will not help other slices by cooperation voluntarily and unconditionally,this paper designs a novel resource allocation scheme to stimulate slice cooperation.The main idea is to encourage slice to perform cooperation for other slices by rewarding it with higher throughput.The proposed incentive scheme for slice cooperation is formulated by an optimal problem,where cooperative activities are introduced to the objective function.Since optimal solutions of the formulated problem are long term statistics,though can be obtained,a practical online slice scheduling algorithm is designed,which can obtain optimal solutions of the formulated maximal problem.Lastly,the throughput isolation indexes are defined to evaluate isolation performance of slice.According to simulation results,the proposed incentive scheme for slice cooperation can stimulate slice cooperation effectively,and the isolation of slice is also simulated and discussed.展开更多
In this study, we investigate the optimal location of access points (APs) to connect end nodes with a service provider through power-line communication in smartgrid communication networks. APs are the gateways of po...In this study, we investigate the optimal location of access points (APs) to connect end nodes with a service provider through power-line communication in smartgrid communication networks. APs are the gateways of power-distribution communication networks, connecting users to control centers. Hence, they are vital for the reliable, safe, and economical operation of a power system. This paper proposes a planning method for AP allocation that takes into consideration economics, reliability, network delay, and (n-l) resilience. First, an optimization model for the AP location is established, which minimizes the cost of installing APs, while satisfying the reliability, network delay, and (n-1) resilience constraints. Then, an improved genetic algorithm is proposed to solve the optimization problem. The simulation results indicate that the proposed planning method can deal with diverse network conditions satisfactorily. Furthermore, it can be applied effectively with high flexibility and scalability.展开更多
The research of complex networks facilitates the progress of various disciplines,including biology,chemistry,social science,computer,and communication engineering.Recently,it is popular to utilize complex networks to ...The research of complex networks facilitates the progress of various disciplines,including biology,chemistry,social science,computer,and communication engineering.Recently,it is popular to utilize complex networks to study the communication networks,such as designing efficient routing strategies and robust communication networks.However,exploiting the advantages of communication networks to investigate networks in various disciplines beyond telecommunications is still in infancy.Because of this situation,this paper proposes an information-defined network(IDN)framework by which a complex network can be abstracted as a communication network associated with multiple intelligent agents.Specifically,each component and dynamic process in this framework can be defined by information.We show that the IDN framework promotes the research of unsolved problems in the current complex network field,especially for detecting new interaction types in realworld networks.展开更多
Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D...Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.展开更多
Swarm intelligence inspired by the social behavior of ants boasts a number of attractive features, including adaptation, robustness and distributed, decentralized nature, which are well suited for routing in modern co...Swarm intelligence inspired by the social behavior of ants boasts a number of attractive features, including adaptation, robustness and distributed, decentralized nature, which are well suited for routing in modern communication networks. This paper describes an adaptive swarm-based routing algorithm that increases convergence speed, reduces routing instabilities and oscillations by using a novel variation of reinforcement learning and a technique called momentum.Experiment on the dynamic network showed that adaptive swarm-based routing learns the optimum routing in terms of convergence speed and average packet latency.展开更多
With the popularization of wireless multimedia communications,the wireless traffic is predicated to be increased more than 1000time in the next decade.Some new technologies,e.g.,massive multi.input multi.output antenn...With the popularization of wireless multimedia communications,the wireless traffic is predicated to be increased more than 1000time in the next decade.Some new technologies,e.g.,massive multi.input multi.output antennas,millimeter wave and small展开更多
To facilitate the demand for a higher spectrum and power efficiency arising from the next generation mobile communication system, the introduction of relay-aided cooperative communication into the existing cellular in...To facilitate the demand for a higher spectrum and power efficiency arising from the next generation mobile communication system, the introduction of relay-aided cooperative communication into the existing cellular infrastructure is considered as the most practical improvement under high rate and coverage. In comparison with the legacy cellular network, relay-aided cooperative communication network enjoys relative advantages over coverage efficiency, operation cost and transmission capacity. Transmission in relay-aided cooperative system falls into three types: the three-terminal transmission model, two-hop multi-relay parallel transmission model, and multi-hop multi-relay transmission model. For the extensive perspective of relay-aided cooperative communication in application, a profound research has been carried out in communication standards such as Worldwide Interoperability for Microwave Access (WiMAX) and Wireless World Initiative New Radio (WINNER).展开更多
The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a syste...The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum tele- portation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entan- glement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay.展开更多
We propose a novel approach called adaptive fuzzy ant-based routing (AFAR), where a group of intelligent agents (or ants) builds paths between a pair of nodes, exploring the network concurrently and exchanging obtaine...We propose a novel approach called adaptive fuzzy ant-based routing (AFAR), where a group of intelligent agents (or ants) builds paths between a pair of nodes, exploring the network concurrently and exchanging obtained information to up-date the routing tables. Routing decisions can be made by the fuzzy logic technique based on local information about the current network state and the knowledge constructed by a previous set of behaviors of other agents. The fuzzy logic technique allows multiple constraints such as path delay and path utilization to be considered in a simple and intuitive way. Simulation tests show that AFAR outperforms OSPF, AntNet and ASR, three of the currently most important state-of-the-art algorithms, in terms of end-to-end delay, packet delivery, and packet drop ratio. AFAR is a promising alternative for routing of data in next generation networks.展开更多
To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communic...To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.展开更多
Traditional underwater acoustic communication networks(UACNs)generally use omnidirectional transmission technology that causes a large number of data-packet collisions,thus resulting in low network throughput and high...Traditional underwater acoustic communication networks(UACNs)generally use omnidirectional transmission technology that causes a large number of data-packet collisions,thus resulting in low network throughput and high end-to-end delays.Compared with omnidirectional transmission technology,directional technology only sends and receives data packets in a specified direction.This can significantly reduce the probability of collisions and improve network performance.However,it also causes a deafness problem,which occurs when the sending node sends a data packet to the receiving node but the receiving node is unable to reply to the sender,because its antenna beam is closed.To resolve this issue,this study proposes a collision classification media access control(CC-MAC)protocol for UACNs.With this protocol,the underwater acoustic channel is divided into two subchannels,and the nodes transmit corresponding data types on them.The sending node can estimate the current status of the receiving node(i.e.,no collision,normal collision,deafness)according to the type of the data packet received and the sub-channel it arrived on,and it can choose correct options to improve network efficiency.Finally,we verify the performance of CC-MAC via simulations,showing that the protocol achieved higher network throughput and lower end-toend delays.展开更多
Recent advances in wireless sensor networks and GPS have made constantly-evolving data a new type of data which bring a new challenge to traditional data processing methods. Data broadcasting is an effective means for...Recent advances in wireless sensor networks and GPS have made constantly-evolving data a new type of data which bring a new challenge to traditional data processing methods. Data broadcasting is an effective means for data dissemination in asymmetric communication networks, such as wireless networks. In this paper, definition of the mean uncertainty ratio of data is presented and a broadcasting scheme is proposed for constantly-evolving data dissemination. Simulation results show that the scheme can reduce the uncertainty of the broadcasted constantly-evolving data effectively at the cost of minor increase in data access time, in the case of no transmission error, transmission errors present, and multiple broadcast channels. As a result it benefits the qualities of the query results based on the data.展开更多
A finite random graph generated by continuous time birth and death processes with exponentially distributed waiting times was investigated, which is similar to a communication network in daily life. The vertices are t...A finite random graph generated by continuous time birth and death processes with exponentially distributed waiting times was investigated, which is similar to a communication network in daily life. The vertices are the living particles, and directed edges go from mothers to daughters. The size of the communication network was studied. Furthermore, the probability of successfully connecting senders with receivers and the transmitting speed of information were obtained.展开更多
The human brain is built to process complex visual impressions within milliseconds. In comparison with sequentially coded spoken language and written texts, we are capable of consuming graphical information at a high ...The human brain is built to process complex visual impressions within milliseconds. In comparison with sequentially coded spoken language and written texts, we are capable of consuming graphical information at a high bandwidth in a parallel fashion, producing a picture worth more than a thousand words. Effective information visualization can be a powerful tool to capture people's attention and quickly communicate large amounts of data and complex information. This is particularly important in the context of communication data, which often describes entities (people, organizations) and their connections through communication. Visual analytics approaches can optimize the user-computer interaction to gain insights into communication networks and learn about their structures. Network visualization is a perfect instrument to better communicate the results of analysis. The precondition for effective information visualization and successful visual reasoning is the capability to draw "good" pictures. Even though communication networks are often large, including thousands or even millions of people, underlying visualization principles are identical to those used for visualizing smaller networks. In this article, you will learn about these principles, giving you the ability to assess the quality of network visualizations and to draw better network pictures by yourself.展开更多
基金Prospective Research Project on Future Networks of Jiangsu Province,China(No.BY2013095-1-18)
文摘With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.
基金This work was supported by the National Natural Science Foundation of China(Grants 61971054 and 61601045)Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory Foundation(HHX21641X002 and HHX20641X003).
文摘Benefit from the enhanced onboard processing capacities and high-speed satellite-terrestrial links,satellite edge computing has been regarded as a promising technique to facilitate the execution of the computation-intensive applications for satellite communication networks(SCNs).By deploying edge computing servers in satellite and gateway stations,SCNs can achieve significant performance gains of the computing capacities at the expense of extending the dimensions and complexity of resource management.Therefore,in this paper,we investigate the joint computing and communication resource management problem for SCNs to minimize the execution latency of the computation-intensive applications,while two different satellite edge computing scenarios and local execution are considered.Furthermore,the joint computing and communication resource allocation problem for the computation-intensive services is formulated as a mixed-integer programming problem.A game-theoretic and many-to-one matching theorybased scheme(JCCRA-GM)is proposed to achieve an approximate optimal solution.Numerical results show that the proposed method with low complexity can achieve almost the same weight-sum latency as the Brute-force method.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063) and the National High Technology Research and Development Program of China (Grant No. 2013AA013601).
文摘Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.
基金supported by the State Grid project which names the simulation and service quality evaluation technology research of power communication network(No.XX71-14-046)
文摘In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.
基金This work was supported by National Key R&D Program of China under Grant 2018YFB1800802in part by the National Natural Science Foundation of China under Grant No.61771488,No.61631020 and No.61827801+1 种基金in part by State Key Laboratory of Air Traffic Management System and Technology under Grant No.SKLATM201808in part by Postgraduate Research and Practice Innovation Program of Jiangsu Province under No.KYCX190188.
文摘As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerous advantages,resource management among various domains in large-scale UAV communication networks is the key challenge to be solved urgently.Specifically,due to the inherent requirements and future development trend,distributed resource management is suitable.In this article,we investigate the resource management problem for large-scale UAV communication networks from game-theoretic perspective which are exactly coincident with the distributed and autonomous manner.By exploring the inherent features,the distinctive challenges are discussed.Then,we explore several gametheoretic models that not only combat the challenges but also have broad application prospects.We provide the basics of each game-theoretic model and discuss the potential applications for resource management in large-scale UAV communication networks.Specifically,mean-field game,graphical game,Stackelberg game,coalition game and potential game are included.After that,we propose two innovative case studies to highlight the feasibility of such novel game-theoretic models.Finally,we give some future research directions to shed light on future opportunities and applications.
基金This work is supported by the National Natural Science Foundation of China(No.61572086)the Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)+1 种基金the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643)the Application Foundation Project of Sichuan Province(No.2017JY0168).
文摘This paper summarizes the state of art in quantum communication networks and trust management in recent years.As in the classical networks,trust management is the premise and foundation of quantum secure communication and cannot simply be attributed to security issues,therefore the basic and importance of trust management in quantum communication networks should be taken more seriously.Compared with other theories and techniques in quantum communication,the trust of quantum communication and trust management model in quantum communication network environment is still in its initial stage.In this paper,the core technologies of establishing secure and reliable quantum communication networks are categorized and summarized,and the trends of each direction in trust management of quantum communication network are discussed in depth.
基金supported by Beijing Natural Science Foundation under Grant number L172049the National Science and CAS Engineering Laboratory for Intelligent Agricultural Machinery Equipment GC201907-02
文摘In the 5th generation(5G)wireless communication networks,network slicing emerges where network operators(NPs)form isolated logical slices by the same cellular network infrastructure and spectrum resource.In coverage regions of access points(APs)shared by slices,device to device(D2D)communication can occur among different slices,i.e.,one device acts as D2D relay for another device serving by a different slice,which is defined as slice cooperation in this paper.Since selfish slices will not help other slices by cooperation voluntarily and unconditionally,this paper designs a novel resource allocation scheme to stimulate slice cooperation.The main idea is to encourage slice to perform cooperation for other slices by rewarding it with higher throughput.The proposed incentive scheme for slice cooperation is formulated by an optimal problem,where cooperative activities are introduced to the objective function.Since optimal solutions of the formulated problem are long term statistics,though can be obtained,a practical online slice scheduling algorithm is designed,which can obtain optimal solutions of the formulated maximal problem.Lastly,the throughput isolation indexes are defined to evaluate isolation performance of slice.According to simulation results,the proposed incentive scheme for slice cooperation can stimulate slice cooperation effectively,and the isolation of slice is also simulated and discussed.
基金supported by the National High Technology Research and Development Program of China(2012AA050801)
文摘In this study, we investigate the optimal location of access points (APs) to connect end nodes with a service provider through power-line communication in smartgrid communication networks. APs are the gateways of power-distribution communication networks, connecting users to control centers. Hence, they are vital for the reliable, safe, and economical operation of a power system. This paper proposes a planning method for AP allocation that takes into consideration economics, reliability, network delay, and (n-l) resilience. First, an optimization model for the AP location is established, which minimizes the cost of installing APs, while satisfying the reliability, network delay, and (n-1) resilience constraints. Then, an improved genetic algorithm is proposed to solve the optimization problem. The simulation results indicate that the proposed planning method can deal with diverse network conditions satisfactorily. Furthermore, it can be applied effectively with high flexibility and scalability.
基金supported in part by Young Elite Scientists Sponsorship Program by CAST under Grant number 2018QNRC001National Science Foundation of China with Grant number 91738202, 62071194
文摘The research of complex networks facilitates the progress of various disciplines,including biology,chemistry,social science,computer,and communication engineering.Recently,it is popular to utilize complex networks to study the communication networks,such as designing efficient routing strategies and robust communication networks.However,exploiting the advantages of communication networks to investigate networks in various disciplines beyond telecommunications is still in infancy.Because of this situation,this paper proposes an information-defined network(IDN)framework by which a complex network can be abstracted as a communication network associated with multiple intelligent agents.Specifically,each component and dynamic process in this framework can be defined by information.We show that the IDN framework promotes the research of unsolved problems in the current complex network field,especially for detecting new interaction types in realworld networks.
基金supported by National Key R&D Program of China under Grant 2021YFB3901302 and 2021YFB2900301the National Natural Science Foundation of China under Grant 62271037,62001519,62221001,and U21A20445+1 种基金the State Key Laboratory of Advanced Rail Autonomous Operation under Grant RCS2022ZZ004the Fundamental Research Funds for the Central Universities under Grant 2022JBQY004.
文摘Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.
文摘Swarm intelligence inspired by the social behavior of ants boasts a number of attractive features, including adaptation, robustness and distributed, decentralized nature, which are well suited for routing in modern communication networks. This paper describes an adaptive swarm-based routing algorithm that increases convergence speed, reduces routing instabilities and oscillations by using a novel variation of reinforcement learning and a technique called momentum.Experiment on the dynamic network showed that adaptive swarm-based routing learns the optimum routing in terms of convergence speed and average packet latency.
文摘With the popularization of wireless multimedia communications,the wireless traffic is predicated to be increased more than 1000time in the next decade.Some new technologies,e.g.,massive multi.input multi.output antennas,millimeter wave and small
基金the National High-Tech Research and Development Plan of China("863"Program)under Grant No.2007AA01Z262National Natural Science Foundation of China under Grant Nos.60672093and60496310National Basic Research Program of China("973"Program)under Grant No.2007CB310603
文摘To facilitate the demand for a higher spectrum and power efficiency arising from the next generation mobile communication system, the introduction of relay-aided cooperative communication into the existing cellular infrastructure is considered as the most practical improvement under high rate and coverage. In comparison with the legacy cellular network, relay-aided cooperative communication network enjoys relative advantages over coverage efficiency, operation cost and transmission capacity. Transmission in relay-aided cooperative system falls into three types: the three-terminal transmission model, two-hop multi-relay parallel transmission model, and multi-hop multi-relay transmission model. For the extensive perspective of relay-aided cooperative communication in application, a profound research has been carried out in communication standards such as Worldwide Interoperability for Microwave Access (WiMAX) and Wireless World Initiative New Radio (WINNER).
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063)the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60902010)
文摘The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum tele- portation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entan- glement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay.
基金Project supported by the Iranian Telecommunication Research Center
文摘We propose a novel approach called adaptive fuzzy ant-based routing (AFAR), where a group of intelligent agents (or ants) builds paths between a pair of nodes, exploring the network concurrently and exchanging obtained information to up-date the routing tables. Routing decisions can be made by the fuzzy logic technique based on local information about the current network state and the knowledge constructed by a previous set of behaviors of other agents. The fuzzy logic technique allows multiple constraints such as path delay and path utilization to be considered in a simple and intuitive way. Simulation tests show that AFAR outperforms OSPF, AntNet and ASR, three of the currently most important state-of-the-art algorithms, in terms of end-to-end delay, packet delivery, and packet drop ratio. AFAR is a promising alternative for routing of data in next generation networks.
基金supported by the National Natural Science Foundation of China(Grant Nos.61072067 and 61372076)the 111 Project(Grant No.B08038)+1 种基金the Fund from the State Key Laboratory of Integrated Services Networks(Grant No.ISN 1001004)the Fundamental Research Funds for the Central Universities(Grant Nos.K5051301059 and K5051201021)
文摘To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.
基金This work was supported by the National Key Research and Development Program of China(No.2018YFC0308500)National Natural Science Foundation of China(Nos.61901273,11774074,61771152,U1806201 and 11974090)+1 种基金Natural Science Foundation of Heilongjiang Province of China(No.YQ2019F002)Acoustic Science and Technology Laboratory,Science and Technology on Underwater Information and Control Laboratory,and by the Young Elite Scientists Sponsorship by CAST.
文摘Traditional underwater acoustic communication networks(UACNs)generally use omnidirectional transmission technology that causes a large number of data-packet collisions,thus resulting in low network throughput and high end-to-end delays.Compared with omnidirectional transmission technology,directional technology only sends and receives data packets in a specified direction.This can significantly reduce the probability of collisions and improve network performance.However,it also causes a deafness problem,which occurs when the sending node sends a data packet to the receiving node but the receiving node is unable to reply to the sender,because its antenna beam is closed.To resolve this issue,this study proposes a collision classification media access control(CC-MAC)protocol for UACNs.With this protocol,the underwater acoustic channel is divided into two subchannels,and the nodes transmit corresponding data types on them.The sending node can estimate the current status of the receiving node(i.e.,no collision,normal collision,deafness)according to the type of the data packet received and the sub-channel it arrived on,and it can choose correct options to improve network efficiency.Finally,we verify the performance of CC-MAC via simulations,showing that the protocol achieved higher network throughput and lower end-toend delays.
基金supported by the National High-Technology Research and Development Program of China (Grant No.2007AA01Z309)the National Natural Science Foundation of China (Grant No.60203017)
文摘Recent advances in wireless sensor networks and GPS have made constantly-evolving data a new type of data which bring a new challenge to traditional data processing methods. Data broadcasting is an effective means for data dissemination in asymmetric communication networks, such as wireless networks. In this paper, definition of the mean uncertainty ratio of data is presented and a broadcasting scheme is proposed for constantly-evolving data dissemination. Simulation results show that the scheme can reduce the uncertainty of the broadcasted constantly-evolving data effectively at the cost of minor increase in data access time, in the case of no transmission error, transmission errors present, and multiple broadcast channels. As a result it benefits the qualities of the query results based on the data.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10471088, 60572126)
文摘A finite random graph generated by continuous time birth and death processes with exponentially distributed waiting times was investigated, which is similar to a communication network in daily life. The vertices are the living particles, and directed edges go from mothers to daughters. The size of the communication network was studied. Furthermore, the probability of successfully connecting senders with receivers and the transmitting speed of information were obtained.
文摘The human brain is built to process complex visual impressions within milliseconds. In comparison with sequentially coded spoken language and written texts, we are capable of consuming graphical information at a high bandwidth in a parallel fashion, producing a picture worth more than a thousand words. Effective information visualization can be a powerful tool to capture people's attention and quickly communicate large amounts of data and complex information. This is particularly important in the context of communication data, which often describes entities (people, organizations) and their connections through communication. Visual analytics approaches can optimize the user-computer interaction to gain insights into communication networks and learn about their structures. Network visualization is a perfect instrument to better communicate the results of analysis. The precondition for effective information visualization and successful visual reasoning is the capability to draw "good" pictures. Even though communication networks are often large, including thousands or even millions of people, underlying visualization principles are identical to those used for visualizing smaller networks. In this article, you will learn about these principles, giving you the ability to assess the quality of network visualizations and to draw better network pictures by yourself.