The applicable condition of single-frequency laser beam quality factor M^2 is studied. Any real single-frequency laser beam can be classified as Gaussian mode and non-Gaussian mode according to the transverse field di...The applicable condition of single-frequency laser beam quality factor M^2 is studied. Any real single-frequency laser beam can be classified as Gaussian mode and non-Gaussian mode according to the transverse field distribution. Non-Gaussian transverse field distribution can be analytically expressed as the sum of Hermite-Gaussian functions. The propagation function and M^2 factor expression for non-Gaussian mode can be obtained by the second moment definition of laser beam spot. The analytical results show, the same as that of Gaussian mode, that the propagation function follows the hyperbolic law and the value of M^2 factor is a constant for non-Gaussian mode. But, different non-Gaussian field distributions may have the same M^2 value. That means M^2 factor cannot reflect the quality of non-Gaussian laser beams correctly. We conclude that the M^2 factor is applicable only to ideal Gaussian laser beam generated by stable resonators.展开更多
Different methods of measuring a propagating laser beam quality are summarized.The disadvantages in traditional way in measuring a laser beam quality is analyzed and the insufficiencies of the Shack-Hartmannin method ...Different methods of measuring a propagating laser beam quality are summarized.The disadvantages in traditional way in measuring a laser beam quality is analyzed and the insufficiencies of the Shack-Hartmannin method which is commonly using wave front technique at present is pointed out.Finally,the transmission intensity equation based(TIE-based)measuring way in a laser beam quality evaluation and the corresponding advantages are discussed,which is believed to be a deve-l oping trend in laser beam evaluation.展开更多
Based on space-charge wave theory, the formulae of the beam-wave coupling coefficient and the beam-loaded conductance are given for the beam-wave interaction in an N-gap Hughes-type coupled cavity chain. The ratio of ...Based on space-charge wave theory, the formulae of the beam-wave coupling coefficient and the beam-loaded conductance are given for the beam-wave interaction in an N-gap Hughes-type coupled cavity chain. The ratio of the nonbeam-loaded quality factor of the coupled cavity chain to the beam quality factor is used to determine the stability of the beam-wave interaction. As an example, the stabilities of the beam-wave interaction in a three-gap Hughes-type coupled cavity chain are discussed with the formulae and the CST code for the operations of the 2π, π, and π/2 modes, respectively. The results show that stable operation of the 2π, π, and π/2 modes may all be realized in an extended-interaction klystron with the three-gap Hughes-type coupled cavity chain.展开更多
We found the beam quality factor M^(2)of the fundamental mode as a function of wavelength is U-shaped in the working photonic bandgap(PBG) of an all-solid PBG fiber(AS-PBGF) for the first time,to the best of our knowl...We found the beam quality factor M^(2)of the fundamental mode as a function of wavelength is U-shaped in the working photonic bandgap(PBG) of an all-solid PBG fiber(AS-PBGF) for the first time,to the best of our knowledge,and our simulation results also match well with the phenomenon.The normal band that is near the high-frequency edge of the third PBG integrates the lowest M^(2)and single-mode operation simultaneously,while the other two edge regions suffer from anomalous variation of M^(2)versus wavelength.The general applicability of this finding can be further extended to other PBGs and also other representative structures in the AS-PBGF field.展开更多
文摘The applicable condition of single-frequency laser beam quality factor M^2 is studied. Any real single-frequency laser beam can be classified as Gaussian mode and non-Gaussian mode according to the transverse field distribution. Non-Gaussian transverse field distribution can be analytically expressed as the sum of Hermite-Gaussian functions. The propagation function and M^2 factor expression for non-Gaussian mode can be obtained by the second moment definition of laser beam spot. The analytical results show, the same as that of Gaussian mode, that the propagation function follows the hyperbolic law and the value of M^2 factor is a constant for non-Gaussian mode. But, different non-Gaussian field distributions may have the same M^2 value. That means M^2 factor cannot reflect the quality of non-Gaussian laser beams correctly. We conclude that the M^2 factor is applicable only to ideal Gaussian laser beam generated by stable resonators.
基金National Basic Research Program of China(973Plan) (No.2010CB327806)National Natural Science Foundation of China(No. 61070165)
文摘Different methods of measuring a propagating laser beam quality are summarized.The disadvantages in traditional way in measuring a laser beam quality is analyzed and the insufficiencies of the Shack-Hartmannin method which is commonly using wave front technique at present is pointed out.Finally,the transmission intensity equation based(TIE-based)measuring way in a laser beam quality evaluation and the corresponding advantages are discussed,which is believed to be a deve-l oping trend in laser beam evaluation.
基金supported by the National Natural Science Foundation of China (Grant No. 11205162)
文摘Based on space-charge wave theory, the formulae of the beam-wave coupling coefficient and the beam-loaded conductance are given for the beam-wave interaction in an N-gap Hughes-type coupled cavity chain. The ratio of the nonbeam-loaded quality factor of the coupled cavity chain to the beam quality factor is used to determine the stability of the beam-wave interaction. As an example, the stabilities of the beam-wave interaction in a three-gap Hughes-type coupled cavity chain are discussed with the formulae and the CST code for the operations of the 2π, π, and π/2 modes, respectively. The results show that stable operation of the 2π, π, and π/2 modes may all be realized in an extended-interaction klystron with the three-gap Hughes-type coupled cavity chain.
基金financially supported by the National Natural Science Foundation of China (Nos. 62035015 and 61805280)the Innovation Group of Hunan Province, China (No. 2019JJ10005)+1 种基金the Research Plan of National University of Defense Technology (No. ZK19-07)the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology (No. SKL2020ZR07)
文摘We found the beam quality factor M^(2)of the fundamental mode as a function of wavelength is U-shaped in the working photonic bandgap(PBG) of an all-solid PBG fiber(AS-PBGF) for the first time,to the best of our knowledge,and our simulation results also match well with the phenomenon.The normal band that is near the high-frequency edge of the third PBG integrates the lowest M^(2)and single-mode operation simultaneously,while the other two edge regions suffer from anomalous variation of M^(2)versus wavelength.The general applicability of this finding can be further extended to other PBGs and also other representative structures in the AS-PBGF field.