A multi-proxy quantum group signature scheme with threshold shared verification is proposed. An original signer may authorize a proxy group as his proxy agent. Then only the cooperation of all the signers in the proxy...A multi-proxy quantum group signature scheme with threshold shared verification is proposed. An original signer may authorize a proxy group as his proxy agent. Then only the cooperation of all the signers in the proxy group can generate the proxy signature on behalf of the original signer. In the scheme, any t or more of n receivers can verify the message and any t - 1 or fewer receivers cannot verify the validity of the proxy signature.展开更多
Let A be a bornological quantum group and R a bornological algebra. If R is an essential A-module, then there is a unique extension to M(A)-module with 1x = x. There is a one-to-one corresponding relationship betwee...Let A be a bornological quantum group and R a bornological algebra. If R is an essential A-module, then there is a unique extension to M(A)-module with 1x = x. There is a one-to-one corresponding relationship between the actions of A and the coactions of . If R is a Galois object for A, then there exists a faithful δ-invariant functional on R. Moreover,the Galois objects also have modular properties such as algebraic quantum groups. By constructing the comultiplication Δ,counit ε, antipode S and invariant functional φ onR×R, R×R can be considered as a bornological quantum group.展开更多
We use the Ringel-Hall algebra approach to study the canonical basis elements for the quantum group of type B2 which are characterized in Xi [12]. However, our approach simplifies several computations there.
In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine qua...In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine quantum group Uq(A3). As a conclusion, for every exchange relation of cluster algebra, there exists an exact sequence of the full subcategory corresponding to it.展开更多
We show that there is a quantum Sl_q(2) group symmetry in Hofstadter problem on square lattice.The cyclic representation of the quantum group is discussed and its application for computing the degeneracy density of th...We show that there is a quantum Sl_q(2) group symmetry in Hofstadter problem on square lattice.The cyclic representation of the quantum group is discussed and its application for computing the degeneracy density of the model is shown.展开更多
We investigate the controllable group velocity of a microwave probe field in a superconductive quantum circuit(SQC) pumped by microwave fields,and the use of such a SQC function as an artificial Λ-type three-level ...We investigate the controllable group velocity of a microwave probe field in a superconductive quantum circuit(SQC) pumped by microwave fields,and the use of such a SQC function as an artificial Λ-type three-level atom.The exchange between the subluminal and the superluminal states of the probe field can be realized simply by sweeping the pumping intensity,and the superluminal state is usually realized with a lower absorption.This work is one of the efforts to extend the study of electromagnetically induced transparency and its related properties from the lightwave band to the microwave band.展开更多
A novel quantum group signature scheme is proposed based on Chinese Remainder Theorem (CRT), in order to improve the security of quantum signature. The generation and verification of the signature can be successfully ...A novel quantum group signature scheme is proposed based on Chinese Remainder Theorem (CRT), in order to improve the security of quantum signature. The generation and verification of the signature can be successfully conducted only if all the participants cooperate with each other and with the message owner's and the arbitrator's help. The quantum parallel algorithm is applied to efficiently compare the restored quantum message to the original quantum message. All the operations in signing and verifying phase can be executed in quantum circuits. It has a wide application to E-payment system, Online contract, Online notarization and etc.展开更多
A quantum group signature(QGS) scheme is proposed on the basis of an improved quantum chaotic encryption algorithm using the quantum one-time pad with a chaotic operation string. It involves a small-scale quantum comp...A quantum group signature(QGS) scheme is proposed on the basis of an improved quantum chaotic encryption algorithm using the quantum one-time pad with a chaotic operation string. It involves a small-scale quantum computation network in three phases, i.e. initializing phase, signing phase and verifying phase. In the scheme, a member of the group signs the message on behalf of the group while the receiver verifies the signature's validity with the aid of the trusty group manager who plays a crucial role when a possible dispute arises. Analysis result shows that the signature can neither be forged nor disavowed by any malicious attackers.展开更多
We use the quantum renormalization-group(QRG) method to study the entanglement and quantum phase transition(QPT) in the one-dimensional spin-1/2 Heisenberg-Ising model [Lieb E,Schultz T and Mattis D 1961 Ann.Phys....We use the quantum renormalization-group(QRG) method to study the entanglement and quantum phase transition(QPT) in the one-dimensional spin-1/2 Heisenberg-Ising model [Lieb E,Schultz T and Mattis D 1961 Ann.Phys.(N.Y.) 16 407].We find the quantum phase boundary of this model by investigating the evolution of concurrence in terms of QRG iterations.We also investigate the scaling behavior of the system close to the quantum critical point,which shows that the minimum value of the first derivative of concurrence and the position of the minimum scale with an exponent of the system size.Also,the first derivative of concurrence between two blocks diverges at the quantum critical point,which is directly associated with the divergence of the correlation length.展开更多
We have calculated the transport properties of electron through an artificial quantum dot by using the numerical renormalization group technique in this paper. We obtain the conductance for the system of a quantum dot...We have calculated the transport properties of electron through an artificial quantum dot by using the numerical renormalization group technique in this paper. We obtain the conductance for the system of a quantum dot which is embedded in a one-dimensional chain in zero and finite temperature cases. The external magnetic field gives rise to a negative magnetoconductance in the zero temperature case. It increases as the external magnetic field increases, We obtain the relation between the coupling coefficient and conductance. If the interaction is big enough to prevent conduction electrons from tunnelling through the dot, the dispersion effect is dominant in this case. In the Kondo temperature regime, we obtain the conductivity of a quantum dot system with Kondo correlation.展开更多
We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya(DM)interaction by using the quantum renormalization-g...We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya(DM)interaction by using the quantum renormalization-group method and the definition of negativity.Two types of quench protocols(i)adding the DM interaction suddenly and(ii)rotating the spins around x axis are considered to drive the dynamics of the system,respectively.By comparing the behaviors of entanglement in both types of quench protocols,the effects of quench on dynamics of entanglement are studied.It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors.Especially,the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system.In addition,the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time.展开更多
Color tunable quantum dots(QDs) based on the Cu, Mn, Ag co-doped Zn In S core and Zn S outer-shell were synthesized by using an eco-friendly method. Core-shell doped QDs with the average size of 3.85 nm were obtaine...Color tunable quantum dots(QDs) based on the Cu, Mn, Ag co-doped Zn In S core and Zn S outer-shell were synthesized by using an eco-friendly method. Core-shell doped QDs with the average size of 3.85 nm were obtained by using a one-pot synthesis followed by a hot injection with n-dodecanethiol(DDT) and oleylamine(OLA) as stabilizers in oil phase. Cu, Mn and Ag ions were introduced as single-dopant or co-dopants during the synthesis, providing an effective means to control the emission color of the QDs. The as-synthesized QDs showed photoluminescence emission ranging from green(530 nm) to near-red(613 nm), adjusted by doping components, dopant concentration, and Zn/In ratio. Importantly, quasi-white emission has been achieved by controlling the concentration of co-doped metal ions(Mn, Cu and Ag). The primary results demonstrated the promising potential of co-doped QDs as alternative materials for future high quality white LED applications.展开更多
This paper investigates the nonlinear evolution of the pulse probe field in an asymmetric coupled-quantum well driven coherently by a pulse probe field and two controlled fields. This study shows that, by choosing app...This paper investigates the nonlinear evolution of the pulse probe field in an asymmetric coupled-quantum well driven coherently by a pulse probe field and two controlled fields. This study shows that, by choosing appropriate physical parameters, self-modulation can precisely balance group velocity dispersion in the investigated system, leading to the formation of ultraslow optical solitons of the probe field. The proposed scheme may lead to the development of the controlled technique of optical buffers and optical delay lines.展开更多
Under the condition of two different cases, the absorption of a pulsed probe field and its slow propagation in a triple semiconductor quantum well are investigated. The result shows that semiconductor medium becomes t...Under the condition of two different cases, the absorption of a pulsed probe field and its slow propagation in a triple semiconductor quantum well are investigated. The result shows that semiconductor medium becomes transparent due to the action of control field. Another result shows that by choosing appropriate physical parameters, the slow propagation of the input field can be achieved. The proposed scheme has some potential applications and may lead to the development of the controlled technique of optical buffers and optical delay lines.展开更多
The anion kaolinite surface interactions and AuS - adsorption onto the surfaces of kaolinite were studied using the self consistent field discrete variation (SCF-X α-DV) method.Electronic structure and energies ...The anion kaolinite surface interactions and AuS - adsorption onto the surfaces of kaolinite were studied using the self consistent field discrete variation (SCF-X α-DV) method.Electronic structure and energies of the system of anion AuS - adsorbed on an atomic cluster of kaolinite were calculated.The results show that the systems with lower total energy are those AuS - adsorbed on the edge surfaces,which indicates that the systems of adsorption of AuS - on the edges are more stable relative to those adsorbed on the basal plane.On the other hand,bond order data suggest that significant shifting of atomic charge and the overlapping of electronic cloud between Au (Ⅰ) of the AuS - and the surface ions of kaolinite would take place in the systems with AuS - being adsorbed on the edges,especially at the site near Al octahedra.Therefore,it can be concluded that edge sites will dominate the complexation reactions of the surfaces of kaolinite,with negligible contributions from other functional groups on the basal plane,which are dominated by either siloxane sites in silica layers or aluminol sites in gibbsite layers.展开更多
In this paper, I have studied the properties of atomic and molecular world along with general and special theories of relativity. This is an attempt to merge Gravity into the standard model in order to complete the Gr...In this paper, I have studied the properties of atomic and molecular world along with general and special theories of relativity. This is an attempt to merge Gravity into the standard model in order to complete the Grand Unification Theory. The merger of gravity into the other forces i.e. electromagnetic, strong and weak nuclear forces should be well defined and in the boundaries of Gauge Group theory. The Lorentz transformations used in the theory too are invariant under SU(2) type of space. The relative force exerted on two separate quantum systems is also discussed along with Dark matter and Dark energy at a quantum level. I have also tried to solve the Banach-Tarski theorem by applications of Heisenbergs Uncertainty principle in the later part of the paper. Detailed particle Chirality in standard model is redefined to fit in the criterion of operators used in the same process. Possible existence of a new quasi particle is also included in the paper along with its properties.展开更多
We consider a quantum particle as a wave packet in the coordinate space. When the conjugate wave packet in the momentum space is considered, we find that the group velocities of these two wave packets, which describe ...We consider a quantum particle as a wave packet in the coordinate space. When the conjugate wave packet in the momentum space is considered, we find that the group velocities of these two wave packets, which describe the particle dynamics, are in agreement with the Hamilton equations only if in the time dependent phases one considers the Lagrangian instead of the Hamiltonian which leads to the conventional Schr?dinger equation. We define a relativistic quantum principle asserting that a quantum particle has a finite frequency spectrum, with a cutoff propagation velocity c as a universal constant not depending on the coordinate system, and that any time dependent phase variation is the same in any system of coordinates. From the time dependent phase invariance,the relativistic kinematics is obtained. We consider two types of possible interactions: 1) An interaction with an external field, by a modification of the time dependent phase differential with the terms proportional to the differentials of the space-time coordinates multiplied with the components of this field four-potential, and 2)an interaction by a deformation of the space-time coordinates, due to a gravitational field. From the invariance of the time dependent phase with field components, we obtain a mechanical force of the form of Lorentz’s force, and three Maxwell equations: The Gauss-Maxwell equations for the electric and magnetic fluxes, and the Faraday-Maxwell equation for the electromagnetic induction. When the fourth equation,Ampère-Maxwell, is considered, the interaction field takes the form of the electromagnetic field. For a low propagation velocity of the particle waves, we get a packet of waves with the time dependent phases proportional to the relativistic Hamiltonian, as in Dirac’s famous theory of spin, and a slowly-varying amplitude with a phase proportional to the momentum and this velocity. In the framework of our theory, the spin is obtained as an all quantum effect, without any additional assumption to the quantum theory. When a space-time deformation is considered in the time dependent phase of a quantum particle, from the group velocity we get the particle dynamics according to the general theory of relativity. In this way, the relativistic dynamics, the electromagnetic field, and the spin of a quantum particle are obtained only from the invariance of the time dependent phases of the particle wave functions.展开更多
基金Project supported by the National Basic Research Program of China (973 Program) (Grant No 2007CB311100)the National High Technology Research and Development Program of China (Grant Nos 2006AA01Z419 and 20060101Z4015)+4 种基金the Major Research plan of the National Natural Science Foundation of China (Grant No 90604023)2008 Scientific Research Common Program of Beijing Municipal Commission of Education The Scientific Research Foundation for the Youth of Beijing University of Technology (Grant No 97007016200701)the National Research Foundation for the Doctoral Program of Higher Educationof China (Grant No 20040013007)the National Laboratory for Modern Communications Science Foundation of China (GrantNo 9140C1101010601)the Doctor Scientific Research Activation Foundation of Beijing University of Technology (Grant No 52007016200702)
文摘A multi-proxy quantum group signature scheme with threshold shared verification is proposed. An original signer may authorize a proxy group as his proxy agent. Then only the cooperation of all the signers in the proxy group can generate the proxy signature on behalf of the original signer. In the scheme, any t or more of n receivers can verify the message and any t - 1 or fewer receivers cannot verify the validity of the proxy signature.
文摘Let A be a bornological quantum group and R a bornological algebra. If R is an essential A-module, then there is a unique extension to M(A)-module with 1x = x. There is a one-to-one corresponding relationship between the actions of A and the coactions of . If R is a Galois object for A, then there exists a faithful δ-invariant functional on R. Moreover,the Galois objects also have modular properties such as algebraic quantum groups. By constructing the comultiplication Δ,counit ε, antipode S and invariant functional φ onR×R, R×R can be considered as a bornological quantum group.
文摘We use the Ringel-Hall algebra approach to study the canonical basis elements for the quantum group of type B2 which are characterized in Xi [12]. However, our approach simplifies several computations there.
基金Project supported by the National Natural Science Foundation of China(Grant No.11475178)
文摘In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine quantum group Uq(A3). As a conclusion, for every exchange relation of cluster algebra, there exists an exact sequence of the full subcategory corresponding to it.
文摘We show that there is a quantum Sl_q(2) group symmetry in Hofstadter problem on square lattice.The cyclic representation of the quantum group is discussed and its application for computing the degeneracy density of the model is shown.
基金Project supported by the National Natural Science Foundation of China (Grant No. 111174040)the Fundamental Research Funds for the Central Universities
文摘We investigate the controllable group velocity of a microwave probe field in a superconductive quantum circuit(SQC) pumped by microwave fields,and the use of such a SQC function as an artificial Λ-type three-level atom.The exchange between the subluminal and the superluminal states of the probe field can be realized simply by sweeping the pumping intensity,and the superluminal state is usually realized with a lower absorption.This work is one of the efforts to extend the study of electromagnetically induced transparency and its related properties from the lightwave band to the microwave band.
文摘A novel quantum group signature scheme is proposed based on Chinese Remainder Theorem (CRT), in order to improve the security of quantum signature. The generation and verification of the signature can be successfully conducted only if all the participants cooperate with each other and with the message owner's and the arbitrator's help. The quantum parallel algorithm is applied to efficiently compare the restored quantum message to the original quantum message. All the operations in signing and verifying phase can be executed in quantum circuits. It has a wide application to E-payment system, Online contract, Online notarization and etc.
基金Project(61379057)supported by the National Natural Science Foundation of ChinaProject supported by the Construct Program of the Key Discipline in Hunan University of Arts and Science,China+1 种基金Project(2012BS01)supported by Science Technology Research and Development Projects of Changde,ChinaProject supported by Science and the MEST2012-002521,NRF,Korea
文摘A quantum group signature(QGS) scheme is proposed on the basis of an improved quantum chaotic encryption algorithm using the quantum one-time pad with a chaotic operation string. It involves a small-scale quantum computation network in three phases, i.e. initializing phase, signing phase and verifying phase. In the scheme, a member of the group signs the message on behalf of the group while the receiver verifies the signature's validity with the aid of the trusty group manager who plays a crucial role when a possible dispute arises. Analysis result shows that the signature can neither be forged nor disavowed by any malicious attackers.
文摘We use the quantum renormalization-group(QRG) method to study the entanglement and quantum phase transition(QPT) in the one-dimensional spin-1/2 Heisenberg-Ising model [Lieb E,Schultz T and Mattis D 1961 Ann.Phys.(N.Y.) 16 407].We find the quantum phase boundary of this model by investigating the evolution of concurrence in terms of QRG iterations.We also investigate the scaling behavior of the system close to the quantum critical point,which shows that the minimum value of the first derivative of concurrence and the position of the minimum scale with an exponent of the system size.Also,the first derivative of concurrence between two blocks diverges at the quantum critical point,which is directly associated with the divergence of the correlation length.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10074029 and 60276005), and by the State Key Development Program for Basic Research of China (Grant No G1999064509).
文摘We have calculated the transport properties of electron through an artificial quantum dot by using the numerical renormalization group technique in this paper. We obtain the conductance for the system of a quantum dot which is embedded in a one-dimensional chain in zero and finite temperature cases. The external magnetic field gives rise to a negative magnetoconductance in the zero temperature case. It increases as the external magnetic field increases, We obtain the relation between the coupling coefficient and conductance. If the interaction is big enough to prevent conduction electrons from tunnelling through the dot, the dispersion effect is dominant in this case. In the Kondo temperature regime, we obtain the conductivity of a quantum dot system with Kondo correlation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11675090)the Natural Science Foundation of Shandong Provincie,China(Grant No.ZR2022MA041)。
文摘We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya(DM)interaction by using the quantum renormalization-group method and the definition of negativity.Two types of quench protocols(i)adding the DM interaction suddenly and(ii)rotating the spins around x axis are considered to drive the dynamics of the system,respectively.By comparing the behaviors of entanglement in both types of quench protocols,the effects of quench on dynamics of entanglement are studied.It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors.Especially,the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system.In addition,the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time.
基金Projects(61675049,61377046,61144010,61177021) supported by the National Natural Science Foundation of China
文摘Color tunable quantum dots(QDs) based on the Cu, Mn, Ag co-doped Zn In S core and Zn S outer-shell were synthesized by using an eco-friendly method. Core-shell doped QDs with the average size of 3.85 nm were obtained by using a one-pot synthesis followed by a hot injection with n-dodecanethiol(DDT) and oleylamine(OLA) as stabilizers in oil phase. Cu, Mn and Ag ions were introduced as single-dopant or co-dopants during the synthesis, providing an effective means to control the emission color of the QDs. The as-synthesized QDs showed photoluminescence emission ranging from green(530 nm) to near-red(613 nm), adjusted by doping components, dopant concentration, and Zn/In ratio. Importantly, quasi-white emission has been achieved by controlling the concentration of co-doped metal ions(Mn, Cu and Ag). The primary results demonstrated the promising potential of co-doped QDs as alternative materials for future high quality white LED applications.
基金Project supported by the National Fundamental Research Program of China (Grant No 2005CB724508)Natural Science Foundation of Jiangxi, China (Grant Nos 2007GZW0819 and 2008GQW0017)+1 种基金the Scientific Research Foundation of Jiangxi Provincial Department of Education (Grant No GJJ09504)the Foundation of Talent of Jinggang of Jiangxi Province (Grant No 2008DQ00400)
文摘This paper investigates the nonlinear evolution of the pulse probe field in an asymmetric coupled-quantum well driven coherently by a pulse probe field and two controlled fields. This study shows that, by choosing appropriate physical parameters, self-modulation can precisely balance group velocity dispersion in the investigated system, leading to the formation of ultraslow optical solitons of the probe field. The proposed scheme may lead to the development of the controlled technique of optical buffers and optical delay lines.
基金Project supported by the National Basic Research Program of China (Grant No. 2005CB724508)the National Natural Science Foundation of China (Grant No. 11065007)+1 种基金the Scientific Research Foundation of Jiangxi Provincial Department of Education,China (Grant No. GJJ10133)the Foundation of Talent of Jinggang of Jiangxi Province,China (Grant No. 2008DQ00400)
文摘Under the condition of two different cases, the absorption of a pulsed probe field and its slow propagation in a triple semiconductor quantum well are investigated. The result shows that semiconductor medium becomes transparent due to the action of control field. Another result shows that by choosing appropriate physical parameters, the slow propagation of the input field can be achieved. The proposed scheme has some potential applications and may lead to the development of the controlled technique of optical buffers and optical delay lines.
文摘The anion kaolinite surface interactions and AuS - adsorption onto the surfaces of kaolinite were studied using the self consistent field discrete variation (SCF-X α-DV) method.Electronic structure and energies of the system of anion AuS - adsorbed on an atomic cluster of kaolinite were calculated.The results show that the systems with lower total energy are those AuS - adsorbed on the edge surfaces,which indicates that the systems of adsorption of AuS - on the edges are more stable relative to those adsorbed on the basal plane.On the other hand,bond order data suggest that significant shifting of atomic charge and the overlapping of electronic cloud between Au (Ⅰ) of the AuS - and the surface ions of kaolinite would take place in the systems with AuS - being adsorbed on the edges,especially at the site near Al octahedra.Therefore,it can be concluded that edge sites will dominate the complexation reactions of the surfaces of kaolinite,with negligible contributions from other functional groups on the basal plane,which are dominated by either siloxane sites in silica layers or aluminol sites in gibbsite layers.
文摘In this paper, I have studied the properties of atomic and molecular world along with general and special theories of relativity. This is an attempt to merge Gravity into the standard model in order to complete the Grand Unification Theory. The merger of gravity into the other forces i.e. electromagnetic, strong and weak nuclear forces should be well defined and in the boundaries of Gauge Group theory. The Lorentz transformations used in the theory too are invariant under SU(2) type of space. The relative force exerted on two separate quantum systems is also discussed along with Dark matter and Dark energy at a quantum level. I have also tried to solve the Banach-Tarski theorem by applications of Heisenbergs Uncertainty principle in the later part of the paper. Detailed particle Chirality in standard model is redefined to fit in the criterion of operators used in the same process. Possible existence of a new quasi particle is also included in the paper along with its properties.
文摘We consider a quantum particle as a wave packet in the coordinate space. When the conjugate wave packet in the momentum space is considered, we find that the group velocities of these two wave packets, which describe the particle dynamics, are in agreement with the Hamilton equations only if in the time dependent phases one considers the Lagrangian instead of the Hamiltonian which leads to the conventional Schr?dinger equation. We define a relativistic quantum principle asserting that a quantum particle has a finite frequency spectrum, with a cutoff propagation velocity c as a universal constant not depending on the coordinate system, and that any time dependent phase variation is the same in any system of coordinates. From the time dependent phase invariance,the relativistic kinematics is obtained. We consider two types of possible interactions: 1) An interaction with an external field, by a modification of the time dependent phase differential with the terms proportional to the differentials of the space-time coordinates multiplied with the components of this field four-potential, and 2)an interaction by a deformation of the space-time coordinates, due to a gravitational field. From the invariance of the time dependent phase with field components, we obtain a mechanical force of the form of Lorentz’s force, and three Maxwell equations: The Gauss-Maxwell equations for the electric and magnetic fluxes, and the Faraday-Maxwell equation for the electromagnetic induction. When the fourth equation,Ampère-Maxwell, is considered, the interaction field takes the form of the electromagnetic field. For a low propagation velocity of the particle waves, we get a packet of waves with the time dependent phases proportional to the relativistic Hamiltonian, as in Dirac’s famous theory of spin, and a slowly-varying amplitude with a phase proportional to the momentum and this velocity. In the framework of our theory, the spin is obtained as an all quantum effect, without any additional assumption to the quantum theory. When a space-time deformation is considered in the time dependent phase of a quantum particle, from the group velocity we get the particle dynamics according to the general theory of relativity. In this way, the relativistic dynamics, the electromagnetic field, and the spin of a quantum particle are obtained only from the invariance of the time dependent phases of the particle wave functions.