For studying the carbon thermal reduction rules of titanium in hot metal and providing a theoretical basis for the blast furnace(BF) hearth protection, the distribution behavior of titanium between low-titanium slag...For studying the carbon thermal reduction rules of titanium in hot metal and providing a theoretical basis for the blast furnace(BF) hearth protection, the distribution behavior of titanium between low-titanium slag system of CaO-SiO2-MgO-Al2O3-TiO2 and hot metal was studied using analytical reagents in a temperature range from 1350 °C to 1600 °C. Through high temperature melting, rapid quenching, chemical analysis and thermodynamic model calculating, the results showed that the increase of reaction temperature, which improved the titanium distribution L(Ti) and lowered the system activity coefficient γsys, leads to the rise of equilibrium constant. Combined with Wagner and congregated electron phase models, the data obtained in distribution experiments were used to fit out the Gibbs free energy formula of titanium carbothermic reduction. Finally, the relations between the contents of Si and Ti in hot metal and the titanium load to reach the minimum w(Ti) for the formation of Ti C were given.展开更多
温控负荷(thermostatically controlled loads,TCLs)集群作为一种灵活的可调度资源,已成为促进电网经济运行和帮助电网恢复稳定的有力手段之一。然而,由于温控负荷单体功率小、位置分散且参数各异,给调度带来了困难。为了灵活利用数量...温控负荷(thermostatically controlled loads,TCLs)集群作为一种灵活的可调度资源,已成为促进电网经济运行和帮助电网恢复稳定的有力手段之一。然而,由于温控负荷单体功率小、位置分散且参数各异,给调度带来了困难。为了灵活利用数量庞大的负荷侧资源进行负荷跟随控制,该文建立温控负荷的虚拟电池模型和负荷集群的聚合模型,并提出基于双层分布式通信网络的控制策略。上层利用分布式交替方向乘子法(alternating direction method of multipliers,ADMM)来解决不同负荷聚合器的最佳跟随功率问题,以确保跟随效益最优;下层提出基于快速分布式平均一致性算法的深度神经网络(deep neural networks,DNN)的方法,使得聚合器内部的所有温控负荷以相等的虚拟电池荷电状态(state of charge,SoC)快速共享上层得到的跟随功率,并有效减少了通信数据量。不同时间尺度的算例验证提出的控制策略能够实现快速的负荷跟随,并保证用户侧的效益。展开更多
基金Project(2012CB720401)supported by the National Basic Research Program of ChinaProject(2011BAC01B02)supported by the National Key Technology R&D Program of China
文摘For studying the carbon thermal reduction rules of titanium in hot metal and providing a theoretical basis for the blast furnace(BF) hearth protection, the distribution behavior of titanium between low-titanium slag system of CaO-SiO2-MgO-Al2O3-TiO2 and hot metal was studied using analytical reagents in a temperature range from 1350 °C to 1600 °C. Through high temperature melting, rapid quenching, chemical analysis and thermodynamic model calculating, the results showed that the increase of reaction temperature, which improved the titanium distribution L(Ti) and lowered the system activity coefficient γsys, leads to the rise of equilibrium constant. Combined with Wagner and congregated electron phase models, the data obtained in distribution experiments were used to fit out the Gibbs free energy formula of titanium carbothermic reduction. Finally, the relations between the contents of Si and Ti in hot metal and the titanium load to reach the minimum w(Ti) for the formation of Ti C were given.
文摘温控负荷(thermostatically controlled loads,TCLs)集群作为一种灵活的可调度资源,已成为促进电网经济运行和帮助电网恢复稳定的有力手段之一。然而,由于温控负荷单体功率小、位置分散且参数各异,给调度带来了困难。为了灵活利用数量庞大的负荷侧资源进行负荷跟随控制,该文建立温控负荷的虚拟电池模型和负荷集群的聚合模型,并提出基于双层分布式通信网络的控制策略。上层利用分布式交替方向乘子法(alternating direction method of multipliers,ADMM)来解决不同负荷聚合器的最佳跟随功率问题,以确保跟随效益最优;下层提出基于快速分布式平均一致性算法的深度神经网络(deep neural networks,DNN)的方法,使得聚合器内部的所有温控负荷以相等的虚拟电池荷电状态(state of charge,SoC)快速共享上层得到的跟随功率,并有效减少了通信数据量。不同时间尺度的算例验证提出的控制策略能够实现快速的负荷跟随,并保证用户侧的效益。