In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ...In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.展开更多
Oil cleaning agents generated from nuclear power plants(NPPs)are radioactive organic liquid wastes.To date,because there are no satisfactory industrial treatment measures,these wastes can only be stored for a long tim...Oil cleaning agents generated from nuclear power plants(NPPs)are radioactive organic liquid wastes.To date,because there are no satisfactory industrial treatment measures,these wastes can only be stored for a long time.In this work,the optimization for the supercritical water oxidation(SCWO)of the spent organic solvent was investigated.The main process parameters of DURSET(oil cleaning agent)SCWO,such as temperature,reaction time,and excess oxygen coefficient,were optimized using response surface methodology,and a quadratic polynomial model was obtained.The determination coefficient(R^(2))of the model is 0.9812,indicating that the model is reliable.The optimized process conditions were at 515 C,66 s,and an excess oxygen coefficient of 211%.Under these conditions,the chemical oxygen demand removal of organic matter could reach 99.5%.The temperature was found to be the main factor affecting the SCWO process.Ketones and benzene-based compounds may be the main intermediates in DURSET SCWO.This work provides basic data for the industrialization of the degradation of spent organic solvents from NPP using SCWO technology.展开更多
Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydroge...Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydrogen removal with Passive Autocatalytic Recombiners (PARs) being a commonly accepted approach. However, an examination of PAR operation specificity reveals potential inefficiencies and reliability issues in certain severe accident scenarios. Moreover, during the in-vessel stage of severe accident development, in some severe accident scenarios PARs can unexpectedly become a source of hydrogen detonation. The effectiveness of hydrogen removal systems depends on various factors, including the chosen strategies, severe accident scenarios, reactor building design, and other influencing factors. Consequently, a comprehensive hydrogen mitigation strategy must effectively incorporate a combination of strategies rather than be based on one strategy, taking into consideration the probabilistic risks and uncertainties associated with the implementation of PARs or other traditional methods. In response to these considerations, within the framework of this research it has been suggested a conceptual strategy to mitigate the hydrogen challenge during the in-vessel stage of severe accident development.展开更多
New research developments suggest that nuclear reactors using fusion may enter the market sooner than imagined even for mobile applications, like merchant ship propulsion and remote power generation. This article aims...New research developments suggest that nuclear reactors using fusion may enter the market sooner than imagined even for mobile applications, like merchant ship propulsion and remote power generation. This article aims at pointing such developments and how they could affect nuclear fusion. The method is enumerating the main nuclear reactors concepts, identifying new technological or theoretical developments useful to nuclear field, and analysing how new recombination could affect feasibility of nuclear fusion. New technologies or experimental results do not always work the way people imagine, being better or worse for intended effects or even bringing completely unforeseen effects. Results point the following designs could be successful, in descending order of potential: aneutronic nuclear reactions using lattice confinement, aneutronic nuclear reactions using inertial along magnetic confinement, hybrid fission-lattice confinement fusion, and fission reactions.展开更多
The permeability and sorptivity properties of the two prestressed concrete containment buildings (PCCBs) of a nuclear power plant in South China, which had been under operation for 5 years, were measured by using th...The permeability and sorptivity properties of the two prestressed concrete containment buildings (PCCBs) of a nuclear power plant in South China, which had been under operation for 5 years, were measured by using the autoclam permeability system. The air permeability, sorptivity and water permeability indexes of No.1 PCCB are smaller than or equal to 0.11 ln(102 Pa)/min, 0.98×10 ^7 m3/minl/2 and 1.93×10 ^7 m3/min1/2, respectively, and the air permeability, sorptivity and water permeability indexes of No.2 PCCB are smaller than or equal to 0.17 In(102 Pa)/min, 1.6×10 ^7 m3/min1/2 and 4.43 ×10 ^7 m3/min1/2, respectively. Based on the criteria for evaluating the protective quality of concrete structures in terms of their permeability and sorptivity properties, proposed by the research organization of the autoclam permeability system, the protective quality of No. 1 PCCB is still in very good grade and that of No.2 PCCB is not in very good grade but in good grade, and the in-service inspection of the protective quality of No.2 PCCB should be strengthened in the future.展开更多
Visual inspection of the key components of nuclear power plants(NPPs)is important for NPP operation and maintenance. However,the underwater environment and existing radiation will lead to image degradation,thus making...Visual inspection of the key components of nuclear power plants(NPPs)is important for NPP operation and maintenance. However,the underwater environment and existing radiation will lead to image degradation,thus making it difficult to identify surface defects. In this study,a method for improving the quality of underwater images is proposed.By analyzing the degradation characteristics of underwater detection image,the image enhancement technology is used to improve the color richness of the image,and then the improved dark channel prior(DCP)algorithm is used to restore it. By modifying the estimation formula of transmittance and background light,the correction of insufficient brightness in DCP restored image is realized. The proposed method is compared with other state-of-the-art methods. The results show that the proposed method can achieve higher scores and improve the image quality by correcting the color and restoring local details,thus effectively enhancing the reliability of visual inspection of NPPs.展开更多
Taking the project of introducing reliability-centered maintenance( RCM) into maintenance decision in an AP1000 nuclear power plant( NPP) under construction as the research object,an improved RCM methodology was propo...Taking the project of introducing reliability-centered maintenance( RCM) into maintenance decision in an AP1000 nuclear power plant( NPP) under construction as the research object,an improved RCM methodology was proposed, and the application software and an RCM-based maintenance strategies management system were designed. In the pilot project,the RCMbased maintenance decision methodology had been applied to determining the maintenance strategies for two systems. Both the decision process and the results were described in this paper. The achievements of this project promoted the introduction and routinization of an advanced and effective maintenance decision mode in nuclear power field,which could provide valuable reference for new NPPs in China.展开更多
This paper analyzes the meaning, structure, function and assessment methods of a nuclear power plant evaluation system, and the similarities and differences among various assessment methods. Based on this research an ...This paper analyzes the meaning, structure, function and assessment methods of a nuclear power plant evaluation system, and the similarities and differences among various assessment methods. Based on this research an integrated and detailed suggestion is proposed on how to establish and improve internal and external evaluation systems for Chinese NPPs. It includes: to prepare and implement the nuclear power plant operational management program, to build an integrated performance indicator system, to improve the present audit system and conduct the comprehensive evaluation system, to set up and implement the integrated corrective action system, to position precisely the status of operation assessment of nuclear power plants, to conduct the assessment aetivilies on constructing NPP, to initiate the specific assessment in some important areas, to establish industrv performance indicator system, to improve the assessment methods, to share the assessment results, to select, cultivate and certify the reviewers, and to enhance interuational communication and cooperation.展开更多
This paper aims to study the architectural design and components of Nuclear Power Plants (NPPs). It is also focusing on the simulation system. Its main objective is to set general guidelines for architects. They sho...This paper aims to study the architectural design and components of Nuclear Power Plants (NPPs). It is also focusing on the simulation system. Its main objective is to set general guidelines for architects. They should be aware of the basics of nuclear facilities designs and components. A traditional nuclear power plant consists of a nuclear reactor, a control building, a turbines building, cooling towers, service buildings (an office building & a medical research center) and a nuclear & radiation waste storage building. Bushehr nuclear power plant in Iran and Angra nuclear power plant in Brazil have been chosen as examples. Furthermore, this paper presents design analyses for Bushehr nuclear power plant and Angra nuclear power plant that include design theory (linear design and radial design) and positive & negative aspects of these designs. At the end of this paper, results and recommendations on the architectural and urban aspects of nuclear power plants are revealed.展开更多
Selecting a site for a nuclear power plant requires extensive studies to ensure its safety and stability during its operation until its decommissioning. The 4,500-year old Egyptian pyramids at Giza are buildings to le...Selecting a site for a nuclear power plant requires extensive studies to ensure its safety and stability during its operation until its decommissioning. The 4,500-year old Egyptian pyramids at Giza are buildings to learn from. This paper tries to pin down the reasons for the survival of the Giza pyramids in order to reach a criterion for choosing sites for important buildings. It argues that the site selection and the geological properties of the area, being away from seismic effects,, floods and groundwater levels, the stability of the geometric form of the pyramid, the solidity of the structural engineering and precision of execution arguably are the reasons why the Great Pyramids of Giza are the only survivors of the seven wonders of the ancient world.展开更多
An monitoring and earlywarning system is proposed for marine organisms and the cause of water intake blockage is analyzed. Based onthe intelligent sensing technology, computer software and hardware technology and digi...An monitoring and earlywarning system is proposed for marine organisms and the cause of water intake blockage is analyzed. Based onthe intelligent sensing technology, computer software and hardware technology and digital signal processing technology, the buoy monitoring platformsystem is developed by internet of things technology, cloud computing and the application of large data. Remote realtime monitoring of aquatic organisms and foreign bodies is realized based on underwater acoustic detection and low light imaging technology. Data processing center is established to store, analyze and process monitoring information and display it in real time, and provide emergency decision support. Through development and test of relevant key equipments, the reliability of cold source system of nuclear power plants is improved, which effectively reduces theinfluence of marine biological invasion on security and economic operation of the units.展开更多
The main technical backgrounds and requirements are introduced with regard to earthquake ground motion design parameters in several domestic and American standards,codes and guides involved in the seismic analysis and...The main technical backgrounds and requirements are introduced with regard to earthquake ground motion design parameters in several domestic and American standards,codes and guides involved in the seismic analysis and design activities of nuclear power plants in China.Based on the research results from site seismic safety evaluation of domestic nuclear power plant projects in the last years,characteristics and differences of site specific design spectra are analyzed in comparison with standard response spectra,and the suitability of standard response spectra for domestic nuclear power plant projects is discussed.展开更多
The State Nuclear Power Technology Corporation (SNPTC), which is responsible for the development of third-generation nuclear power technology in China, has completed the preliminary designs
New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and w...New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and which correspond to the evolutionary development of such installations. While developing these solutions, the available experience in creating and operating So</span><span>viet pilot and commercial power plants cooled with lead-bismuth coolants</span><span> was used, including investigations, primarily experimental ones, carried out by team of authors in justification of a capacity range (50</span></span><span> </span><span>-</span><span> </span><span>250 MW) of low and medium-powered reactor plants with horizontal steam generators (BRS-</span><span> </span><span>GPG) proposed and elaborated at the NNSTU.展开更多
New researches on serious public health problems such as respiratory disease, heart attacks, and premature deaths, show the threat of air and environmental pollution on human's health. Exhausting greenhouse gases for...New researches on serious public health problems such as respiratory disease, heart attacks, and premature deaths, show the threat of air and environmental pollution on human's health. Exhausting greenhouse gases for electrical energy production in fossil fueled power plants is one of the major reasons of environmental pollutions. Increasing energy demand has made global concerns about the environmental pollutions of fossil power plants. In this article, fossil power plant productive pollutants such as Sulfur Dioxide, Mercury, and Carbon Dioxide, are investigated. On the other hand, nuclear power plant and its produced waste are discussed as the future power generation source. In this article, fossil and nuclear power plants are compared as power sources, pollutants, and their environmental effects. First, investigations are made on fossil power plants and their effects on environment and climate changes. On the other hand, nuclear power plants are discussed as a possible replacement for fossil power plants. In this part, effects of radiation on human health and environment like important nuclear accidents are investigated. This paper summarizes several types of power plants and it is deduced that the nuclear power plant is more clean energy producer in comparison to other power plants.展开更多
Nuclear industries have faced the unfavorable circumstance such as components obsolescence and aging of instrumentation and control system, therefore, nuclear society is striving to resolve this issue fundamentally. V...Nuclear industries have faced the unfavorable circumstance such as components obsolescence and aging of instrumentation and control system, therefore, nuclear society is striving to resolve this issue fundamentally. Various studies have been conducted to address components obsolescence of instrumentation and control system. Intuitively FPGA (field programmable gate arrays) technology is replacing the high level of micro-processor type equipped with various software and hardware which causes acceleration of the aging and obsolescence in I & C (instrumentation and control) system in nuclear power plants. FPGAs are highlighted as an alternative means for obsolete control systems. When engineers design the control system of NPPs (nuclear power plants) with FPGAs, it is important to meet the system development life cycles and conduct the verification and validation activities regarding to FPGA-based applications for use in NPPs. Because the verification and validation process is more important than the design process, engineer should consider the characteristics of FPGA, HDL (hardware description language) programming, faults mode, and optimization technique. And also these characteristics should be reflected in verification and validation activities. As a minimum requirement, system designers require that HDL-programmed applications should be developed in accordance with system development life cycle and HPD design process. In the verification and validation processes, a review, test, and analysis activities should be properly conducted.展开更多
The paper presents a computer code system 'SRDAAR- QNPP' for the real-time dose as-sessment of an accident release for Qinshan Nuclear Power Plant. It includes three parts:thereal-time data acquisition system,...The paper presents a computer code system 'SRDAAR- QNPP' for the real-time dose as-sessment of an accident release for Qinshan Nuclear Power Plant. It includes three parts:thereal-time data acquisition system, assessment computer. and the assessment operating code system. InSRDAAR-QNPP, the wind field of the surface and the lower levels are determined hourly by using amass consistent three-dimension diasnosis model with the topographic following coordinate system.A Lagrangin Puff model under changing meteorological condition is adopted for atmosphericdispersion, the correction for dry and wet depositions. physical decay and partial plume penetrationof the top inversion and the deviation of plume axis caused by complex terrain have been taken in-to account. The calculation domain areas include three square grid areas with the sideline 10 km, 40krn and 160 km and a grid interval 0.5 km, 2.0 km, 8.0 km respectively. Three exposure pathwaysare taken into account:the external exposure from immersion cloud and passing puff, the internalexposure from inhalation and the external exposure from contaminated ground. This system is ableto provide the results of concentration and dose distributions within 10 minutes after the data havebeen inputed.展开更多
Flow accelerated corrosion(FAC) is the main failure cause of the secondary circuit carbon steel piping in nuclear power plants.The piping failures caused by FAC have resulted in numerous unplanned outages and tragic...Flow accelerated corrosion(FAC) is the main failure cause of the secondary circuit carbon steel piping in nuclear power plants.The piping failures caused by FAC have resulted in numerous unplanned outages and tragic fatalities.The existing researches focus on the main factors contributing to FAC,which include metallurgical factors,environmental factors and hydrodynamic factors. Some effective FAC management methods and programs with long term monitoring and inspection data analysis are recommended.But a comprehensive FAC management system should be developed in order to mitigate and manage FAC systematically.In this paper,the FAC influencing factors are analyzed in combination with the operating conditions of the secondary circuit piping in the Third Qinshan Nuclear Power Plant(TQNPP),China(Third Qinshan Nuclear Power Company Limited,China).A comprehensive FAC mitigation and management system is developed for TQNPP secondary circuit piping.The system is composed of five processes,viz.materials substitution,water chemical optimization,long-term monitor strategy for the susceptible piping,integrity evaluation of the local thinning defects,and repair or replacement.With the implementation of the five processes,the material of FAC sensitive pipe fittings are modified from carbon steel to stainless steel,N_2H_4 and NH_3 are finally selected as the water chemical regulator of secondary circuit,the secondary circuit pips are classified according to FAC susceptibility in order to conduct long term monitoring strategy,and an integrity evaluation flow for local thinning caused by FAC in carbon steel piping is developed.If the component with local thinning defects is not fit-for-service,corresponding repair or replacement should be conducted.The comprehensive FAC mitigation and management system with five interrelated processes would be a cost-effective method of increasing personnel safety,plant safety and availability.展开更多
DCS (distributed control system) plays a decisive role in the overall operation of a nuclear power plant. If DCS fails, it will seriously affect the normal production of nuclear power plant, causing great losses. So...DCS (distributed control system) plays a decisive role in the overall operation of a nuclear power plant. If DCS fails, it will seriously affect the normal production of nuclear power plant, causing great losses. So it is very important to take perfect lightning protection measures on DCS of the nuclear power plant. In this paper, according to the actual situation of DCS in a nuclear power plant, by controlling lightning point, securely booting lightning into the ground network, improving low-resistance ground network, eliminating ground loops, determining the safety space, surge protection of power and signal, a set of complete lightning protection design scheme was systematically put forward. Some specific lightning protection measures were highlighted, such as the DCS grounding, equipotential bonds and shields, and some specific considerations were put forward. All of these could offer reference in the practical application.展开更多
Aiming to meet the demand of the country' s nuclear demonstration project on the CAP1400 nuclear power plant, Baosteel uses the roll-bonding technology and develops the SA-533 Type B CL. 1 + SA-240 Type 304L high-st...Aiming to meet the demand of the country' s nuclear demonstration project on the CAP1400 nuclear power plant, Baosteel uses the roll-bonding technology and develops the SA-533 Type B CL. 1 + SA-240 Type 304L high-strength and high-toughness clad steel plate with a shear strength of over 310 MPa for the nuclear power plant' s safety injection tank. The properties of the quenched and tempered and the simulated post-weld heat treatment states are systematically studied herein through a comprehensive inspection and evaluation of the composition,microstructure,and properties of the clad steel plate. The results show that the bonding interface has high shear strength and that the base metal has high strength and good toughness at low temperatures. Hence, the performance fully meets the technical requirements of the CAP1400 nuclear power plant' s safety injection tank in the country' s nuclear demonstration project. The roll-bonded clad steel plate can be used to manufacture the safety injection tank of the CAP1400 nuclear power plant.展开更多
文摘In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.
基金supported by Shanghai Sail Program(No.19YF1458000).
文摘Oil cleaning agents generated from nuclear power plants(NPPs)are radioactive organic liquid wastes.To date,because there are no satisfactory industrial treatment measures,these wastes can only be stored for a long time.In this work,the optimization for the supercritical water oxidation(SCWO)of the spent organic solvent was investigated.The main process parameters of DURSET(oil cleaning agent)SCWO,such as temperature,reaction time,and excess oxygen coefficient,were optimized using response surface methodology,and a quadratic polynomial model was obtained.The determination coefficient(R^(2))of the model is 0.9812,indicating that the model is reliable.The optimized process conditions were at 515 C,66 s,and an excess oxygen coefficient of 211%.Under these conditions,the chemical oxygen demand removal of organic matter could reach 99.5%.The temperature was found to be the main factor affecting the SCWO process.Ketones and benzene-based compounds may be the main intermediates in DURSET SCWO.This work provides basic data for the industrialization of the degradation of spent organic solvents from NPP using SCWO technology.
文摘Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydrogen removal with Passive Autocatalytic Recombiners (PARs) being a commonly accepted approach. However, an examination of PAR operation specificity reveals potential inefficiencies and reliability issues in certain severe accident scenarios. Moreover, during the in-vessel stage of severe accident development, in some severe accident scenarios PARs can unexpectedly become a source of hydrogen detonation. The effectiveness of hydrogen removal systems depends on various factors, including the chosen strategies, severe accident scenarios, reactor building design, and other influencing factors. Consequently, a comprehensive hydrogen mitigation strategy must effectively incorporate a combination of strategies rather than be based on one strategy, taking into consideration the probabilistic risks and uncertainties associated with the implementation of PARs or other traditional methods. In response to these considerations, within the framework of this research it has been suggested a conceptual strategy to mitigate the hydrogen challenge during the in-vessel stage of severe accident development.
文摘New research developments suggest that nuclear reactors using fusion may enter the market sooner than imagined even for mobile applications, like merchant ship propulsion and remote power generation. This article aims at pointing such developments and how they could affect nuclear fusion. The method is enumerating the main nuclear reactors concepts, identifying new technological or theoretical developments useful to nuclear field, and analysing how new recombination could affect feasibility of nuclear fusion. New technologies or experimental results do not always work the way people imagine, being better or worse for intended effects or even bringing completely unforeseen effects. Results point the following designs could be successful, in descending order of potential: aneutronic nuclear reactions using lattice confinement, aneutronic nuclear reactions using inertial along magnetic confinement, hybrid fission-lattice confinement fusion, and fission reactions.
基金Project(20050487017) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject (2009567) supported by China National Nuclear Corporation
文摘The permeability and sorptivity properties of the two prestressed concrete containment buildings (PCCBs) of a nuclear power plant in South China, which had been under operation for 5 years, were measured by using the autoclam permeability system. The air permeability, sorptivity and water permeability indexes of No.1 PCCB are smaller than or equal to 0.11 ln(102 Pa)/min, 0.98×10 ^7 m3/minl/2 and 1.93×10 ^7 m3/min1/2, respectively, and the air permeability, sorptivity and water permeability indexes of No.2 PCCB are smaller than or equal to 0.17 In(102 Pa)/min, 1.6×10 ^7 m3/min1/2 and 4.43 ×10 ^7 m3/min1/2, respectively. Based on the criteria for evaluating the protective quality of concrete structures in terms of their permeability and sorptivity properties, proposed by the research organization of the autoclam permeability system, the protective quality of No. 1 PCCB is still in very good grade and that of No.2 PCCB is not in very good grade but in good grade, and the in-service inspection of the protective quality of No.2 PCCB should be strengthened in the future.
基金supported by the National Natural Science Foundations of China (Nos. 51674031,51874022)。
文摘Visual inspection of the key components of nuclear power plants(NPPs)is important for NPP operation and maintenance. However,the underwater environment and existing radiation will lead to image degradation,thus making it difficult to identify surface defects. In this study,a method for improving the quality of underwater images is proposed.By analyzing the degradation characteristics of underwater detection image,the image enhancement technology is used to improve the color richness of the image,and then the improved dark channel prior(DCP)algorithm is used to restore it. By modifying the estimation formula of transmittance and background light,the correction of insufficient brightness in DCP restored image is realized. The proposed method is compared with other state-of-the-art methods. The results show that the proposed method can achieve higher scores and improve the image quality by correcting the color and restoring local details,thus effectively enhancing the reliability of visual inspection of NPPs.
文摘Taking the project of introducing reliability-centered maintenance( RCM) into maintenance decision in an AP1000 nuclear power plant( NPP) under construction as the research object,an improved RCM methodology was proposed, and the application software and an RCM-based maintenance strategies management system were designed. In the pilot project,the RCMbased maintenance decision methodology had been applied to determining the maintenance strategies for two systems. Both the decision process and the results were described in this paper. The achievements of this project promoted the introduction and routinization of an advanced and effective maintenance decision mode in nuclear power field,which could provide valuable reference for new NPPs in China.
文摘This paper analyzes the meaning, structure, function and assessment methods of a nuclear power plant evaluation system, and the similarities and differences among various assessment methods. Based on this research an integrated and detailed suggestion is proposed on how to establish and improve internal and external evaluation systems for Chinese NPPs. It includes: to prepare and implement the nuclear power plant operational management program, to build an integrated performance indicator system, to improve the present audit system and conduct the comprehensive evaluation system, to set up and implement the integrated corrective action system, to position precisely the status of operation assessment of nuclear power plants, to conduct the assessment aetivilies on constructing NPP, to initiate the specific assessment in some important areas, to establish industrv performance indicator system, to improve the assessment methods, to share the assessment results, to select, cultivate and certify the reviewers, and to enhance interuational communication and cooperation.
文摘This paper aims to study the architectural design and components of Nuclear Power Plants (NPPs). It is also focusing on the simulation system. Its main objective is to set general guidelines for architects. They should be aware of the basics of nuclear facilities designs and components. A traditional nuclear power plant consists of a nuclear reactor, a control building, a turbines building, cooling towers, service buildings (an office building & a medical research center) and a nuclear & radiation waste storage building. Bushehr nuclear power plant in Iran and Angra nuclear power plant in Brazil have been chosen as examples. Furthermore, this paper presents design analyses for Bushehr nuclear power plant and Angra nuclear power plant that include design theory (linear design and radial design) and positive & negative aspects of these designs. At the end of this paper, results and recommendations on the architectural and urban aspects of nuclear power plants are revealed.
文摘Selecting a site for a nuclear power plant requires extensive studies to ensure its safety and stability during its operation until its decommissioning. The 4,500-year old Egyptian pyramids at Giza are buildings to learn from. This paper tries to pin down the reasons for the survival of the Giza pyramids in order to reach a criterion for choosing sites for important buildings. It argues that the site selection and the geological properties of the area, being away from seismic effects,, floods and groundwater levels, the stability of the geometric form of the pyramid, the solidity of the structural engineering and precision of execution arguably are the reasons why the Great Pyramids of Giza are the only survivors of the seven wonders of the ancient world.
文摘An monitoring and earlywarning system is proposed for marine organisms and the cause of water intake blockage is analyzed. Based onthe intelligent sensing technology, computer software and hardware technology and digital signal processing technology, the buoy monitoring platformsystem is developed by internet of things technology, cloud computing and the application of large data. Remote realtime monitoring of aquatic organisms and foreign bodies is realized based on underwater acoustic detection and low light imaging technology. Data processing center is established to store, analyze and process monitoring information and display it in real time, and provide emergency decision support. Through development and test of relevant key equipments, the reliability of cold source system of nuclear power plants is improved, which effectively reduces theinfluence of marine biological invasion on security and economic operation of the units.
基金funded by the Basic Science Research Foundation of IEM(Grant No.2006A02)the National Natural Sciences Foundation of China (90715038)
文摘The main technical backgrounds and requirements are introduced with regard to earthquake ground motion design parameters in several domestic and American standards,codes and guides involved in the seismic analysis and design activities of nuclear power plants in China.Based on the research results from site seismic safety evaluation of domestic nuclear power plant projects in the last years,characteristics and differences of site specific design spectra are analyzed in comparison with standard response spectra,and the suitability of standard response spectra for domestic nuclear power plant projects is discussed.
文摘The State Nuclear Power Technology Corporation (SNPTC), which is responsible for the development of third-generation nuclear power technology in China, has completed the preliminary designs
文摘New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and which correspond to the evolutionary development of such installations. While developing these solutions, the available experience in creating and operating So</span><span>viet pilot and commercial power plants cooled with lead-bismuth coolants</span><span> was used, including investigations, primarily experimental ones, carried out by team of authors in justification of a capacity range (50</span></span><span> </span><span>-</span><span> </span><span>250 MW) of low and medium-powered reactor plants with horizontal steam generators (BRS-</span><span> </span><span>GPG) proposed and elaborated at the NNSTU.
文摘New researches on serious public health problems such as respiratory disease, heart attacks, and premature deaths, show the threat of air and environmental pollution on human's health. Exhausting greenhouse gases for electrical energy production in fossil fueled power plants is one of the major reasons of environmental pollutions. Increasing energy demand has made global concerns about the environmental pollutions of fossil power plants. In this article, fossil power plant productive pollutants such as Sulfur Dioxide, Mercury, and Carbon Dioxide, are investigated. On the other hand, nuclear power plant and its produced waste are discussed as the future power generation source. In this article, fossil and nuclear power plants are compared as power sources, pollutants, and their environmental effects. First, investigations are made on fossil power plants and their effects on environment and climate changes. On the other hand, nuclear power plants are discussed as a possible replacement for fossil power plants. In this part, effects of radiation on human health and environment like important nuclear accidents are investigated. This paper summarizes several types of power plants and it is deduced that the nuclear power plant is more clean energy producer in comparison to other power plants.
文摘Nuclear industries have faced the unfavorable circumstance such as components obsolescence and aging of instrumentation and control system, therefore, nuclear society is striving to resolve this issue fundamentally. Various studies have been conducted to address components obsolescence of instrumentation and control system. Intuitively FPGA (field programmable gate arrays) technology is replacing the high level of micro-processor type equipped with various software and hardware which causes acceleration of the aging and obsolescence in I & C (instrumentation and control) system in nuclear power plants. FPGAs are highlighted as an alternative means for obsolete control systems. When engineers design the control system of NPPs (nuclear power plants) with FPGAs, it is important to meet the system development life cycles and conduct the verification and validation activities regarding to FPGA-based applications for use in NPPs. Because the verification and validation process is more important than the design process, engineer should consider the characteristics of FPGA, HDL (hardware description language) programming, faults mode, and optimization technique. And also these characteristics should be reflected in verification and validation activities. As a minimum requirement, system designers require that HDL-programmed applications should be developed in accordance with system development life cycle and HPD design process. In the verification and validation processes, a review, test, and analysis activities should be properly conducted.
文摘The paper presents a computer code system 'SRDAAR- QNPP' for the real-time dose as-sessment of an accident release for Qinshan Nuclear Power Plant. It includes three parts:thereal-time data acquisition system, assessment computer. and the assessment operating code system. InSRDAAR-QNPP, the wind field of the surface and the lower levels are determined hourly by using amass consistent three-dimension diasnosis model with the topographic following coordinate system.A Lagrangin Puff model under changing meteorological condition is adopted for atmosphericdispersion, the correction for dry and wet depositions. physical decay and partial plume penetrationof the top inversion and the deviation of plume axis caused by complex terrain have been taken in-to account. The calculation domain areas include three square grid areas with the sideline 10 km, 40krn and 160 km and a grid interval 0.5 km, 2.0 km, 8.0 km respectively. Three exposure pathwaysare taken into account:the external exposure from immersion cloud and passing puff, the internalexposure from inhalation and the external exposure from contaminated ground. This system is ableto provide the results of concentration and dose distributions within 10 minutes after the data havebeen inputed.
文摘Flow accelerated corrosion(FAC) is the main failure cause of the secondary circuit carbon steel piping in nuclear power plants.The piping failures caused by FAC have resulted in numerous unplanned outages and tragic fatalities.The existing researches focus on the main factors contributing to FAC,which include metallurgical factors,environmental factors and hydrodynamic factors. Some effective FAC management methods and programs with long term monitoring and inspection data analysis are recommended.But a comprehensive FAC management system should be developed in order to mitigate and manage FAC systematically.In this paper,the FAC influencing factors are analyzed in combination with the operating conditions of the secondary circuit piping in the Third Qinshan Nuclear Power Plant(TQNPP),China(Third Qinshan Nuclear Power Company Limited,China).A comprehensive FAC mitigation and management system is developed for TQNPP secondary circuit piping.The system is composed of five processes,viz.materials substitution,water chemical optimization,long-term monitor strategy for the susceptible piping,integrity evaluation of the local thinning defects,and repair or replacement.With the implementation of the five processes,the material of FAC sensitive pipe fittings are modified from carbon steel to stainless steel,N_2H_4 and NH_3 are finally selected as the water chemical regulator of secondary circuit,the secondary circuit pips are classified according to FAC susceptibility in order to conduct long term monitoring strategy,and an integrity evaluation flow for local thinning caused by FAC in carbon steel piping is developed.If the component with local thinning defects is not fit-for-service,corresponding repair or replacement should be conducted.The comprehensive FAC mitigation and management system with five interrelated processes would be a cost-effective method of increasing personnel safety,plant safety and availability.
基金Research Fund for Youth in Jiangsu Provincial Meteorological Bureau,China(Q201007)
文摘DCS (distributed control system) plays a decisive role in the overall operation of a nuclear power plant. If DCS fails, it will seriously affect the normal production of nuclear power plant, causing great losses. So it is very important to take perfect lightning protection measures on DCS of the nuclear power plant. In this paper, according to the actual situation of DCS in a nuclear power plant, by controlling lightning point, securely booting lightning into the ground network, improving low-resistance ground network, eliminating ground loops, determining the safety space, surge protection of power and signal, a set of complete lightning protection design scheme was systematically put forward. Some specific lightning protection measures were highlighted, such as the DCS grounding, equipotential bonds and shields, and some specific considerations were put forward. All of these could offer reference in the practical application.
文摘Aiming to meet the demand of the country' s nuclear demonstration project on the CAP1400 nuclear power plant, Baosteel uses the roll-bonding technology and develops the SA-533 Type B CL. 1 + SA-240 Type 304L high-strength and high-toughness clad steel plate with a shear strength of over 310 MPa for the nuclear power plant' s safety injection tank. The properties of the quenched and tempered and the simulated post-weld heat treatment states are systematically studied herein through a comprehensive inspection and evaluation of the composition,microstructure,and properties of the clad steel plate. The results show that the bonding interface has high shear strength and that the base metal has high strength and good toughness at low temperatures. Hence, the performance fully meets the technical requirements of the CAP1400 nuclear power plant' s safety injection tank in the country' s nuclear demonstration project. The roll-bonded clad steel plate can be used to manufacture the safety injection tank of the CAP1400 nuclear power plant.