Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Ma...The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.展开更多
The purpose of this paper is to introduce the notions of <em>m</em>-asymmetric semiopen sets and <em>M</em>-asymmetric semicontinuous multifunctions defined between asymmetric sets satisfying c...The purpose of this paper is to introduce the notions of <em>m</em>-asymmetric semiopen sets and <em>M</em>-asymmetric semicontinuous multifunctions defined between asymmetric sets satisfying certain minimal conditions in the framework of bitopological spaces. Some new characterizations of <em>m</em>-asymmetric semiopen sets and <em>M</em>-asymmetric semicontinuous multifunctions will be investigated and several fundamental properties will be obtained.展开更多
In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining ...In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party.展开更多
Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling man...Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling manufacturers to improve operational efficiency,reduce costs,and enhance product quality.These platforms provide manufacturers with real-time visibility into their production processes and supply chains,allowing them to optimize operations and make informed decisions.In addition,IIoT service providers can help manufacturers create new revenue streams through the development of innovative products and services and enable them to leverage the benefits of emerging technologies such as Artificial Intelligence(AI)and machine learning.Overall,the implementation of IIoT platforms in the manufacturing industry is crucial for companies seeking to remain competitive and meet the ever-increasing demands of customers in the digital age.In this study,the evaluation criteria to be considered in the selection of IIoT service provider in small andmedium-sized(SME)manufacturing enterprises will be determined and IIoT service providers alternatives will be evaluated using the technique for order preference by similarity to an ideal solution(TOPSIS)method based on circular intuitionistic fuzzy sets.Based on the assessments conducted in accordance with the literature review and expert consultations,a set of 8 selection criteria has been established.These criteria encompass industry expertise,customer support,flexibility and scalability,security,cost-effectiveness,reliability,data analytics,as well as compatibility and usability.Upon evaluating these criteria,it was observed that the security criterion holds the highest significance,succeeded by cost-effectiveness,data analytics,flexibility and scalability,reliability,and customer support criteria,in descending order of importance.Following the evaluation of seven distinct alternatives against these criteria,it was deduced that the A6 alternative,a German service provider,emerged as the most favorable option.The identical issue was addressed utilizing sensitivity analysis alongside various multi-criteria decision-making(MCDM)methods,and after comprehensive evaluation,the outcomes were assessed.Spearman’s correlation coefficient was computed to ascertain the association between the rankings derived from solving the problem using diverse MCDM methods.展开更多
This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment met...This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment methods for each age group,particularly for urban people who are interested in this.Some anti-aging therapies are used to address the alterations brought on by aging in human life without the need for surgery or negative effects.Five anti-aging therapies such as microdermabrasion or dermabrasion,laser resurfacing anti-aging skin treatments,chemical peels,dermal fillers for aged skin,and botox injections are considered in this study.Based on the criteria of safety risk,investment cost,customer happiness,and side effects,the optimal alternative is picked.As a result,a NormalWiggly Hesitant Pythagorean Fuzzy Set(NWHPFS)is constructed and used in Multi-Criteria Decision-Making(MCDM)using traditional wavy mathematical approaches.The entropy approach is utilized to determine weight values,and the Normal Wiggly Hesitant Pythagorean-VlseKriterijumska Optimizacija I Kompromisno Resenje(NWHPF-VIKOR)method is utilized to rank alternatives using MCDM methodologies.Sensitivity analysis and comparative analysis were performed to ensure the robustness and reliability of the proposed method.The smart final choice will undoubtedly assist Decision Makers(DM)in making the right judgments,and the MCDM approach will undoubtedly assist individuals in understanding the medicine.展开更多
Using quantum algorithms to solve various problems has attracted widespread attention with the development of quantum computing.Researchers are particularly interested in using the acceleration properties of quantum a...Using quantum algorithms to solve various problems has attracted widespread attention with the development of quantum computing.Researchers are particularly interested in using the acceleration properties of quantum algorithms to solve NP-complete problems.This paper focuses on the well-known NP-complete problem of finding the minimum dominating set in undirected graphs.To expedite the search process,a quantum algorithm employing Grover’s search is proposed.However,a challenge arises from the unknown number of solutions for the minimum dominating set,rendering direct usage of original Grover’s search impossible.Thus,a swap test method is introduced to ascertain the number of iterations required.The oracle,diffusion operators,and swap test are designed with achievable quantum gates.The query complexity is O(1.414^(n))and the space complexity is O(n).To validate the proposed approach,qiskit software package is employed to simulate the quantum circuit,yielding the anticipated results.展开更多
Introduction: Hypertension, a non-communicable disease, is a major public health threat worldwide, accounting for a high level of morbidity and mortality. Although it has been extensively published among the general p...Introduction: Hypertension, a non-communicable disease, is a major public health threat worldwide, accounting for a high level of morbidity and mortality. Although it has been extensively published among the general population, further research is needed to understand the reality of hypertension within the custodial setting. This study aimed to investigate the factors associated with arterial hypertension in custodial settings in southern Benin in 2023. Methods: This was a cross-sectional, descriptive, analytical study held in prisons in southern Benin from March to April 2023, involving inmates selected by two-stage random sampling. In the first stage, four prisons out of the six in the southern region of Benin were selected by simple random sampling. In the second stage, the prisoners were selected by systematic random sampling, with the sampling frame being the numbered list of eligible prisoners in each prison selected. Data collected by observation and questionnaire survey were analyzed using Stata 11 software. Hypertension was defined as systolic blood pressure ≥ 140 mmHg and diastolic blood pressure ≥ 90 mmHg. Overweight was defined by a body mass index (weight/height<sup>2</sup> (kg/m<sup>2</sup>) ≥ 25. Factors associated with hypertension were identified by multiple logistic regression, at a 5% threshold of significance. Results: Altogether 336 inmates aged 37.55 ± 1.72 years were surveyed. The prevalence of hypertension in custodial settings in southern Benin in 2023 was 31.32% (95% CI [17.06;52.57]). Associated factors were inmate age (ORa = 3.36 95% CI: [1.94;5.85]) and abnormal waist circumference (ORa = 2.61 95% CI [1.27;5.40]). Conclusion: The prevalence of arterial hypertension in prisons of southern Benin (31.32%) is high when compared with the national average (25.9% (22.5-29.3)). The ministries of the Interior and Health need to collaborate to involve inmates in preventive strategies for non-communicable diseases, including hypertension.展开更多
The main goal of this research is to assess the impact of race, age at diagnosis, sex, and phenotype on the incidence and survivability of acute lymphocytic leukemia (ALL) among patients in the United States. By takin...The main goal of this research is to assess the impact of race, age at diagnosis, sex, and phenotype on the incidence and survivability of acute lymphocytic leukemia (ALL) among patients in the United States. By taking these factors into account, the study aims to explore how existing cancer registry data can aid in the early detection and effective treatment of ALL in patients. Our hypothesis was that statistically significant correlations exist between race, age at which patients were diagnosed, sex, and phenotype of the ALL patients, and their rate of incidence and survivability data were evaluated using SEER*Stat statistical software from National Cancer Institute. Analysis of the incidence data revealed that a higher prevalence of ALL was among the Caucasian population. The majority of ALL cases (59%) occurred in patients aged between 0 to 19 years at the time of diagnosis, and 56% of the affected individuals were male. The B-cell phenotype was predominantly associated with ALL cases (73%). When analyzing survivability data, it was observed that the 5-year survival rates slightly exceeded the 10-year survival rates for the respective demographics. Survivability rates of African Americans patients were the lowest compared to Caucasian, Asian, Pacific Islanders, Alaskan Native, Native Americans and others. Survivability rates progressively decreased for older patients. Moreover, this study investigated the typical treatment methods applied to ALL patients, mainly comprising chemotherapy, with occasional supplementation of radiation therapy as required. The study demonstrated the considerable efficacy of chemotherapy in enhancing patients’ chances of survival, while those who remained untreated faced a less favorable prognosis from the disease. Although a significant amount of data and information exists, this study can help doctors in the future by diagnosing patients with certain characteristics. It will further assist the health care professionals in screening potential patients and early detection of cases. This could also save the lives of elderly patients who have a higher mortality rate from this disease.展开更多
To solve the problems of high rebound rate and strength reversion of shotcrete,a non-fluorine and non-alkaline liquid flash setting admixture(FSN)with low rebound and high early strength was synthesized under 60-65℃w...To solve the problems of high rebound rate and strength reversion of shotcrete,a non-fluorine and non-alkaline liquid flash setting admixture(FSN)with low rebound and high early strength was synthesized under 60-65℃water bath environment through orthogonal test design and taking setting time and compressive strength as indicators.The experimental results show that the optimum mass ratio of FSN is aluminum sulfate:diethanolamine:triethanolamine:pseudo-boehmite:lithium carbonate:water=57%:8%:0.05%:2%:2%:31%.When FSN is added with 7%of the mass of portland cement,the cement paste can be initially set in 3 min and finally set in 5 min.The compressive strength of mortar is 1.2 MPa at 6 h,18.0 MPa at 1 d,and more than 100%at 28 days;The microscopic analysis shows that the rapid release of Li^(+),NH^(4+),and CO_(3)^(2-)ions by FSN in the paste solution effectively shortens the induction period of high C_(3)S content in Portland cement,directly forms early coagulation AFt crystals in FSN and CH dominated by Al_(2)(SO_(4))_(3),and forms a large number of C-S-H gels in the later stage,so that the cement can quickly coagulate and harden,and the strength in the later stage is not retracted.展开更多
In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung n...In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed.展开更多
This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distri...This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors.The designed hybrid loss function considers both intra-class distance and inter-class distance,thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training.Consequently,this method allows unknown classes to occupy a larger space in the feature space.This reduces the possibility of overlap with known class samples and makes the boundaries between known and unknown samples more distinct.Additionally,the feature comparator threshold can be used to reject unknown samples.For signal open set recognition,seven methods,including the proposed method,are applied to two kinds of electromagnetic signal data:modulation signal and real-world emitter.The experimental results demonstrate that the proposed method outperforms the other six methods overall in a simulated open environment.Specifically,compared to the state-of-the-art Openmax method,the novel method achieves up to 8.87%and 5.25%higher micro-F-measures,respectively.展开更多
This study aimed to investigate the effects of treatments of rice pollen with different solvents on the seed setting rate.Rice pollen was treated with ultrapure water,0.5%dimethyl sulfoxide,ethanol(1%,5%,and 8%),and 0...This study aimed to investigate the effects of treatments of rice pollen with different solvents on the seed setting rate.Rice pollen was treated with ultrapure water,0.5%dimethyl sulfoxide,ethanol(1%,5%,and 8%),and 0.5%dimethyl sulfoxide+8%ethanol,and the pollen without treatment was taken as the control.Then,crossing was conducted with the treated rice plants as the male parents and plants subjected to emasculation by warm water as the female parents.The seed setting rates of the male and female parents were then recorded.The results showed that the treatments with different solvents significantly decreased the seed setting rates of both male and female parents.The treatment with 1%ethanol resulted in the highest seed setting rates for both male and female parents,while the treatment with 0.5%dimethyl sulfoxide resulted in the lowest seed setting rates for both parents.Although these solvents affected the seed setting rate of rice,they served as intermediate solvents to dissolve chemicals used in the induction of rice haploids.This study layed a technical foundation for subsequent chemical induction of rice haploids.展开更多
Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.
文摘The purpose of this paper is to introduce the notions of <em>m</em>-asymmetric semiopen sets and <em>M</em>-asymmetric semicontinuous multifunctions defined between asymmetric sets satisfying certain minimal conditions in the framework of bitopological spaces. Some new characterizations of <em>m</em>-asymmetric semiopen sets and <em>M</em>-asymmetric semicontinuous multifunctions will be investigated and several fundamental properties will be obtained.
基金This research was funded by the National Natural Science Foundation of China(No.62272124)the National Key Research and Development Program of China(No.2022YFB2701401)+3 种基金Guizhou Province Science and Technology Plan Project(Grant Nos.Qiankehe Paltform Talent[2020]5017)The Research Project of Guizhou University for Talent Introduction(No.[2020]61)the Cultivation Project of Guizhou University(No.[2019]56)the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education(GZUAMT2021KF[01]).
文摘In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party.
文摘Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling manufacturers to improve operational efficiency,reduce costs,and enhance product quality.These platforms provide manufacturers with real-time visibility into their production processes and supply chains,allowing them to optimize operations and make informed decisions.In addition,IIoT service providers can help manufacturers create new revenue streams through the development of innovative products and services and enable them to leverage the benefits of emerging technologies such as Artificial Intelligence(AI)and machine learning.Overall,the implementation of IIoT platforms in the manufacturing industry is crucial for companies seeking to remain competitive and meet the ever-increasing demands of customers in the digital age.In this study,the evaluation criteria to be considered in the selection of IIoT service provider in small andmedium-sized(SME)manufacturing enterprises will be determined and IIoT service providers alternatives will be evaluated using the technique for order preference by similarity to an ideal solution(TOPSIS)method based on circular intuitionistic fuzzy sets.Based on the assessments conducted in accordance with the literature review and expert consultations,a set of 8 selection criteria has been established.These criteria encompass industry expertise,customer support,flexibility and scalability,security,cost-effectiveness,reliability,data analytics,as well as compatibility and usability.Upon evaluating these criteria,it was observed that the security criterion holds the highest significance,succeeded by cost-effectiveness,data analytics,flexibility and scalability,reliability,and customer support criteria,in descending order of importance.Following the evaluation of seven distinct alternatives against these criteria,it was deduced that the A6 alternative,a German service provider,emerged as the most favorable option.The identical issue was addressed utilizing sensitivity analysis alongside various multi-criteria decision-making(MCDM)methods,and after comprehensive evaluation,the outcomes were assessed.Spearman’s correlation coefficient was computed to ascertain the association between the rankings derived from solving the problem using diverse MCDM methods.
基金funded by the Korean Government(MSIT)Grant NRF-2022R1C1C1006671.
文摘This socialized environment among educated and developed people causes themto focusmore on their appearance and health,which turns them towards medical-related treatments,leading us to discuss anti-aging treatment methods for each age group,particularly for urban people who are interested in this.Some anti-aging therapies are used to address the alterations brought on by aging in human life without the need for surgery or negative effects.Five anti-aging therapies such as microdermabrasion or dermabrasion,laser resurfacing anti-aging skin treatments,chemical peels,dermal fillers for aged skin,and botox injections are considered in this study.Based on the criteria of safety risk,investment cost,customer happiness,and side effects,the optimal alternative is picked.As a result,a NormalWiggly Hesitant Pythagorean Fuzzy Set(NWHPFS)is constructed and used in Multi-Criteria Decision-Making(MCDM)using traditional wavy mathematical approaches.The entropy approach is utilized to determine weight values,and the Normal Wiggly Hesitant Pythagorean-VlseKriterijumska Optimizacija I Kompromisno Resenje(NWHPF-VIKOR)method is utilized to rank alternatives using MCDM methodologies.Sensitivity analysis and comparative analysis were performed to ensure the robustness and reliability of the proposed method.The smart final choice will undoubtedly assist Decision Makers(DM)in making the right judgments,and the MCDM approach will undoubtedly assist individuals in understanding the medicine.
基金Project supported by the National Natural Science Foundation of China(Grant No.62101600)the Science Foundation of China University of Petroleum,Beijing(Grant No.2462021YJRC008)the State Key Laboratory of Cryptology(Grant No.MMKFKT202109).
文摘Using quantum algorithms to solve various problems has attracted widespread attention with the development of quantum computing.Researchers are particularly interested in using the acceleration properties of quantum algorithms to solve NP-complete problems.This paper focuses on the well-known NP-complete problem of finding the minimum dominating set in undirected graphs.To expedite the search process,a quantum algorithm employing Grover’s search is proposed.However,a challenge arises from the unknown number of solutions for the minimum dominating set,rendering direct usage of original Grover’s search impossible.Thus,a swap test method is introduced to ascertain the number of iterations required.The oracle,diffusion operators,and swap test are designed with achievable quantum gates.The query complexity is O(1.414^(n))and the space complexity is O(n).To validate the proposed approach,qiskit software package is employed to simulate the quantum circuit,yielding the anticipated results.
文摘Introduction: Hypertension, a non-communicable disease, is a major public health threat worldwide, accounting for a high level of morbidity and mortality. Although it has been extensively published among the general population, further research is needed to understand the reality of hypertension within the custodial setting. This study aimed to investigate the factors associated with arterial hypertension in custodial settings in southern Benin in 2023. Methods: This was a cross-sectional, descriptive, analytical study held in prisons in southern Benin from March to April 2023, involving inmates selected by two-stage random sampling. In the first stage, four prisons out of the six in the southern region of Benin were selected by simple random sampling. In the second stage, the prisoners were selected by systematic random sampling, with the sampling frame being the numbered list of eligible prisoners in each prison selected. Data collected by observation and questionnaire survey were analyzed using Stata 11 software. Hypertension was defined as systolic blood pressure ≥ 140 mmHg and diastolic blood pressure ≥ 90 mmHg. Overweight was defined by a body mass index (weight/height<sup>2</sup> (kg/m<sup>2</sup>) ≥ 25. Factors associated with hypertension were identified by multiple logistic regression, at a 5% threshold of significance. Results: Altogether 336 inmates aged 37.55 ± 1.72 years were surveyed. The prevalence of hypertension in custodial settings in southern Benin in 2023 was 31.32% (95% CI [17.06;52.57]). Associated factors were inmate age (ORa = 3.36 95% CI: [1.94;5.85]) and abnormal waist circumference (ORa = 2.61 95% CI [1.27;5.40]). Conclusion: The prevalence of arterial hypertension in prisons of southern Benin (31.32%) is high when compared with the national average (25.9% (22.5-29.3)). The ministries of the Interior and Health need to collaborate to involve inmates in preventive strategies for non-communicable diseases, including hypertension.
文摘The main goal of this research is to assess the impact of race, age at diagnosis, sex, and phenotype on the incidence and survivability of acute lymphocytic leukemia (ALL) among patients in the United States. By taking these factors into account, the study aims to explore how existing cancer registry data can aid in the early detection and effective treatment of ALL in patients. Our hypothesis was that statistically significant correlations exist between race, age at which patients were diagnosed, sex, and phenotype of the ALL patients, and their rate of incidence and survivability data were evaluated using SEER*Stat statistical software from National Cancer Institute. Analysis of the incidence data revealed that a higher prevalence of ALL was among the Caucasian population. The majority of ALL cases (59%) occurred in patients aged between 0 to 19 years at the time of diagnosis, and 56% of the affected individuals were male. The B-cell phenotype was predominantly associated with ALL cases (73%). When analyzing survivability data, it was observed that the 5-year survival rates slightly exceeded the 10-year survival rates for the respective demographics. Survivability rates of African Americans patients were the lowest compared to Caucasian, Asian, Pacific Islanders, Alaskan Native, Native Americans and others. Survivability rates progressively decreased for older patients. Moreover, this study investigated the typical treatment methods applied to ALL patients, mainly comprising chemotherapy, with occasional supplementation of radiation therapy as required. The study demonstrated the considerable efficacy of chemotherapy in enhancing patients’ chances of survival, while those who remained untreated faced a less favorable prognosis from the disease. Although a significant amount of data and information exists, this study can help doctors in the future by diagnosing patients with certain characteristics. It will further assist the health care professionals in screening potential patients and early detection of cases. This could also save the lives of elderly patients who have a higher mortality rate from this disease.
基金Funded by the National Key Research and Development Program of China(No.2021YFB2601200)the Natural Science Foundations of Hebei Province(No.E2022210103)。
文摘To solve the problems of high rebound rate and strength reversion of shotcrete,a non-fluorine and non-alkaline liquid flash setting admixture(FSN)with low rebound and high early strength was synthesized under 60-65℃water bath environment through orthogonal test design and taking setting time and compressive strength as indicators.The experimental results show that the optimum mass ratio of FSN is aluminum sulfate:diethanolamine:triethanolamine:pseudo-boehmite:lithium carbonate:water=57%:8%:0.05%:2%:2%:31%.When FSN is added with 7%of the mass of portland cement,the cement paste can be initially set in 3 min and finally set in 5 min.The compressive strength of mortar is 1.2 MPa at 6 h,18.0 MPa at 1 d,and more than 100%at 28 days;The microscopic analysis shows that the rapid release of Li^(+),NH^(4+),and CO_(3)^(2-)ions by FSN in the paste solution effectively shortens the induction period of high C_(3)S content in Portland cement,directly forms early coagulation AFt crystals in FSN and CH dominated by Al_(2)(SO_(4))_(3),and forms a large number of C-S-H gels in the later stage,so that the cement can quickly coagulate and harden,and the strength in the later stage is not retracted.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(No.RS-2023-00218176)Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea government(MOTIE)(P0012724)The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed.
文摘This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors.The designed hybrid loss function considers both intra-class distance and inter-class distance,thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training.Consequently,this method allows unknown classes to occupy a larger space in the feature space.This reduces the possibility of overlap with known class samples and makes the boundaries between known and unknown samples more distinct.Additionally,the feature comparator threshold can be used to reject unknown samples.For signal open set recognition,seven methods,including the proposed method,are applied to two kinds of electromagnetic signal data:modulation signal and real-world emitter.The experimental results demonstrate that the proposed method outperforms the other six methods overall in a simulated open environment.Specifically,compared to the state-of-the-art Openmax method,the novel method achieves up to 8.87%and 5.25%higher micro-F-measures,respectively.
基金Supported by Agricultural Science and Technology Innovation Fund Project of Hunan Province(2023-CX17)Yuelushan Seed Industry Innovation Project of Hunan Innovation Province Construction Special Project(2021NK1012)。
文摘This study aimed to investigate the effects of treatments of rice pollen with different solvents on the seed setting rate.Rice pollen was treated with ultrapure water,0.5%dimethyl sulfoxide,ethanol(1%,5%,and 8%),and 0.5%dimethyl sulfoxide+8%ethanol,and the pollen without treatment was taken as the control.Then,crossing was conducted with the treated rice plants as the male parents and plants subjected to emasculation by warm water as the female parents.The seed setting rates of the male and female parents were then recorded.The results showed that the treatments with different solvents significantly decreased the seed setting rates of both male and female parents.The treatment with 1%ethanol resulted in the highest seed setting rates for both male and female parents,while the treatment with 0.5%dimethyl sulfoxide resulted in the lowest seed setting rates for both parents.Although these solvents affected the seed setting rate of rice,they served as intermediate solvents to dissolve chemicals used in the induction of rice haploids.This study layed a technical foundation for subsequent chemical induction of rice haploids.
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.