In the research, trees along 42 roads in Chongqing were explored and es- timated in terms of aesthetics, and aesthetic tendency and major influential factors of aesthetic value of street greenbelts in Chongqing arteri...In the research, trees along 42 roads in Chongqing were explored and es- timated in terms of aesthetics, and aesthetic tendency and major influential factors of aesthetic value of street greenbelts in Chongqing arterial roads were estimated with phychophysical method to establish SBE model of arterial road greenbelts land- scape.展开更多
To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed c...To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.展开更多
Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-disp...Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.展开更多
The numerical method for computing the live load distribution coefficients in bridge decks is presented. The grillage analogy for representation of bridge decks is adopted in determining the general behavior under tra...The numerical method for computing the live load distribution coefficients in bridge decks is presented. The grillage analogy for representation of bridge decks is adopted in determining the general behavior under traffic loads. The principles of Maxwell's reciprocal theorem are developed in computing live load distribution coefficients and their influence lines. The presented method uses the approach developed in traditional methods of transversal live load distribution but bridge decks are modeled more realistic with the help of well-established grillage analogy. Simple numerical programs for grillage analysis can be used and no special software is needed. While computing the distribution coefficients for a bridge deck the rest of the analysis can be performed with habitual procedures of structural mechanics.展开更多
Although either absolute speed or speed difference can be considered as a measure for speed consistency, few researches consider both in practice. The factor analysis method was introduced to extract an optimal number...Although either absolute speed or speed difference can be considered as a measure for speed consistency, few researches consider both in practice. The factor analysis method was introduced to extract an optimal number of factors from numerous original measures. The freeway diverging zone was divided into four elements, namely the upstream, the diverge area, the downstream and the exit ramp. Operating speeds together with individual vehicle speeds were collected at each element with radar guns. Following the factor analysis procedure, two factors, which explain 96.722% of the variance in the original data, were retained from the initial seven speed measures. According to the loadings after Varimax rotation, the two factors are clearly classified into two categories. The first category is named "speed scale" reflecting the absolute speed, and the other one is named "speed dispersion" interpreting speed discreteness. Then, the weighted score of speed consistency for each diverge area is given in terms of linear combination of the two retained factors. To facilitate the level classification of speed consistency, the weighted scores are normalized in the range of (0, 1.0). The criterion for speed consistency classification is given as 0≤F N <0.30, good consistency; 0.30≤F N <0.60, fair consistency; 0.60≤ F N ≤1.00, poor consistency. The validation by comparing with previously developed measures shows that the proposed measure is acceptable in evaluating speed consistency.展开更多
Soils with strain-softening behavior — manifesting as a reduction of strength with increasing plastic strain — are commonly found in the natural environment. For slopes in these soils,a progressive failure mechanism...Soils with strain-softening behavior — manifesting as a reduction of strength with increasing plastic strain — are commonly found in the natural environment. For slopes in these soils,a progressive failure mechanism can occur due to a reduction of strength with increasing strain. Finite element method based numerical approaches have been widely performed for simulating such failure mechanism,owning to their ability for tracing the formation and development of the localized shear strain. However,the reliability of the currently used approaches are often affected by poor convergence or significant mesh-dependency,and their applicability is limited by the use of complicated soil models. This paper aims to overcome these limitations by developing a finite element approach using a local arc-length controlled iterative algorithm as the solution strategy. In the proposed finite element approach,the soils are simulated with an elastoplastic constitutive model in conjunction with the Mohr-Coulomb yield function. The strain-softening behavior is represented by a piece-wise linearrelationship between the Mohr-Coulomb strength parameters and the deviatoric plastic strain. To assess the reliability of the proposed finite element approach,comparisons of the numerical solutions obtained by different finite element methods and meshes with various qualities are presented. Moreover,a landslide triggered by excavation in a real expressway construction project is analyzed by the presented finite element approach to demonstrate its applicability for practical engineering problems.展开更多
Identifying and classifying intersections according to severity is very important problem for implementation of safety related counter measures and effective models are needed to compare and assess the severity. Highw...Identifying and classifying intersections according to severity is very important problem for implementation of safety related counter measures and effective models are needed to compare and assess the severity. Highway safety organizations have considered intersection safety among their priorities. In spite of significant advances in highways safety, the large numbers of crashes with high severities still occur in the highways. Investigation of influential factors on crashes enables engineers to carry out calculations in order to reduce crash severity. In the previous studies, there are no perfect models which are capable to illustrate the influence of human factors, road, vehicle, weather conditions and traffic features including traffic volume and flow speed on the crash severity. Therefore, this paper is aimed to develop the models for illustration of the simultaneous influence of these variables on the crash severity in urban highways. The models represented in this study have been developed using binary Logit Models. SPSS software has been used to calibrate the models. It must be mentioned that backward regression method in SPSS was used to identify the significant variables in the model. Consider to obtained results it can be concluded that the main factor in increasing of crash severity in urban highways are driver age, movement with reverse gear, technical defect of the vehicle, vehicle collision with motorcycle and bicycle, bridge, frontal impact collisions, frontal-lateral collisions and multi-vehicle crashes in urban highways which always increase the crash severity in urban highways. Obtained results show the effectiveness and capability of the developed models.展开更多
A scientific and rational evaluation on road-region ecosystem stability is the premise to properly deal with the relationship between highway constructing and ecological environment protecting to a sustainable develop...A scientific and rational evaluation on road-region ecosystem stability is the premise to properly deal with the relationship between highway constructing and ecological environment protecting to a sustainable development. Based on the connotative meaning and the procedure of evaluation on road-region ecosystem stability, this paper studied the principles and the method on determining the evaluation index system on road-region ecosystem stability. It put forward an index system for assessing road-region ecosystem stability as a reference. On the basis of detailed analyze of the multidimensional space of road-region ecosystem, a new multi-objective comprehensive evaluation method for road-region ecosystem stability is presented and a calculation tormula for multi-objective comprehensive level of road-region ecosystem stability. This method was used to evaluate road-region ecosystem stability of Lin-Chang highway. This method possessed definite theoretical value and reliability in practice.展开更多
The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mecha...The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face.展开更多
The increasing imbalance between road and maritime transport has led to saturation of the terrestrial infrastructures. For this reason, the development and analysis of an intermodal freight transport which is safe, re...The increasing imbalance between road and maritime transport has led to saturation of the terrestrial infrastructures. For this reason, the development and analysis of an intermodal freight transport which is safe, reliable and sustainable is the first step to a more balanced growth of other transport options. In this sense, SSS (Short Sea Shipping) rises like a real and efficient alternative to the land road-based transport as well as integrated to a multimodal system door to door for the freight distribution. This paper aims to evaluate and identify all those parameters required to determine the characteristics ofa SSS service under a theoretical approach. The increasing growth of the transport market demands to the maritime transport an adaptation effort to the redistribution space processes of production centers and consumption and, as a result of it, of the logistic flows and transport. For this reason, a specific methodology has been developed to model all those phases integrated in the logistic chain of SSS. The final purpose is to determine costs and time of each one of them, for its later implementation in a heuristic algorithm of routing analysis. The main driving factors that determine under which conditions the SSS represents an effective and a feasible solution to road freight are also identified. Information regarding European Union programs to promote the SSS is also presented for a better understanding of the ways of funding sustainable freight transport projects. This investigation states an initial basis for evaluating the competitiveness of SSS concepts, and shows where market and environmental circumstances could be handled in order to enhance the competitiveness of SSS.展开更多
Lidar (light detection and ranging) is a relatively new technology that is being used in many aspects of geology and engineering, including researching the potential for rock falls on highway rock cuts. At Missouri ...Lidar (light detection and ranging) is a relatively new technology that is being used in many aspects of geology and engineering, including researching the potential for rock falls on highway rock cuts. At Missouri University of Science and Technology, we are developing methods for measuring joint orientations remotely and quantifying the raveling process. Measuring joint orientations remotely along highways is safer, more accurate and can result in larger and more accurate data sets, including measurements from otherwise inaccessible areas. Measuring the nature of rock raveling will provide the data needed to begin the process of modeling the rock raveling process. In both cases, terrestrial lidar scanning is used to generate large point clouds of coordinate triplets representing the surface of the rock cut. Automated algorithms have been developed to organize the lidar data, register successive images without survey control, and removal of vegetation and non-rock artifacts. In the first case, we look for planar elements, identify the plane and calculate the orientations. In the second case, we take a series of scans over time and use sophisticated change detection algorithms to calculate the numbers and volumes of rock that has fallen off the rock face.展开更多
The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus...The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus passengers consider is the convenience and comfort of the bus ride,which reduces the transfer time of bus passengers."Transfer time" is considered to be the first factor by the majority of bus passengers who select the routes.In this paper,according to the needs of passengers,optimization algorithm,with the minimal distance being the first goal,namely,the improved Dijkstra algorithm based on the minimal distance,is put forward on the basis of the optimization algorithm with the minimal transfer time being the first goal.展开更多
The theoretical design method of enhanced sensitivity fiber grating (FBG) strain sensors was given, and moreover high qualified strain sensors were developed and fabricated, whose sensing properties were good for pr...The theoretical design method of enhanced sensitivity fiber grating (FBG) strain sensors was given, and moreover high qualified strain sensors were developed and fabricated, whose sensing properties were good for practical applications. The strain sensor with cylindrical shell encapsulation contained three tubular structures, due to the uneven surface structure, in the area of the strain concentration, improving the sensitivity. It could achieve the embedment strain measurement and surface measurement and had the advantages of the easy installation. The good agreement was obtained between the measurements and theoretical simulation results. After each calibration test, twenty-four FBG strain sensors and six FBG temperature compensation sensors have been installed on the undersurface of the box girder of Diaoshuiyan bridge in Yongtaiwen highway. Finally, we built up a long-term structure health system for the highway bridge.展开更多
The lateral control for lane changing of intelligent vehicle on curved road in automatic highway systems was studied. Based on trapezoidal acceleration profile, considering the curvature difference between starting la...The lateral control for lane changing of intelligent vehicle on curved road in automatic highway systems was studied. Based on trapezoidal acceleration profile, considering the curvature difference between starting lane and target lane, a new virtual trajectory planning method for lane changing on curved road was presented, and the calculating formulas for ideal states of vehicle in the inertial coordinate system during a lane changing maneuver were established. Applying the predetermined trajectory, the reference yaw angle and yaw rate for lane changing were generated. On the assumption that the information on yaw rate of vehicle can be measured with on-board sensors and based on the lateral dynamical model of vehicle, the yaw-rate-tracking control law was designed by applying nonsingular terminal sliding mode technology. Based on Lyapunov function method, the finite-time convergence property of the system was obtained from the phase-plane analysis. Simulation results showed that if the curvature difference between starting lane and target lane was not considered, then at the finishing time of lane changing, it was impossible to avoid the deviation of the virtual trajectory panned from the target lane, which increased with the decrease of curvature radius. With the trajectory planning method and yaw rate-tracking control law proposed in this paper and considering the curvature difference between the starting lane and target lane, the desired virtual trajectory for lane changing without deviation was obtained and the expected tracking performance was also verified by the simulation.展开更多
The accurate estimation of expressway traffic state can provide decision-making for both travelers and traffic managers. The speed is one of the most representative parameter of the traffic state. So the expressway sp...The accurate estimation of expressway traffic state can provide decision-making for both travelers and traffic managers. The speed is one of the most representative parameter of the traffic state. So the expressway speed spatial distribution can be taken as the expressway traffic state equivalent. In this paper, an algorithm based on virtual speed sensors (VSS) is presented to estimate the expressway traffic state (the speed spatial distribution). To gain the spatial distribution of expressway traffic state, virtual speed sensors are defined between adjacent traffic flow sensors. Then, the speed data extracted from traffic flow sensors in time series are mapped to space series to design virtual speed sensors. Then the speed of virtual speed sensors can be calculated with the weight matrix which is related with the speed of virtual speed sensors and the speed data extracted from traffic flow sensors and the speed data extracted from traffic flow sensors in time series. Finally, the expressway traffic state (the speed spatial distribution) can be gained. The acquisition of average travel speed of the expressway is taken for application of this traffic state estimation algorithm. One typical expressway in Beijing is adopted for the experiment analysis. The results prove that this traffic state estimation approach based on VSS is feasible and can achieve a high accuracy.展开更多
文摘In the research, trees along 42 roads in Chongqing were explored and es- timated in terms of aesthetics, and aesthetic tendency and major influential factors of aesthetic value of street greenbelts in Chongqing arterial roads were estimated with phychophysical method to establish SBE model of arterial road greenbelts land- scape.
基金the Hi-Tech Research and Development Pro-gram (863) of China (No. 2006AA04Z233)the National NaturalScience Foundation of China (No. 50575205)the Natural ScienceFoundation of Zhejiang Province (Nos. Y104243 and Y105686),China
文摘To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.
基金Project(200612) supported by Hunan Province Transportation Department of China
文摘Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.
文摘The numerical method for computing the live load distribution coefficients in bridge decks is presented. The grillage analogy for representation of bridge decks is adopted in determining the general behavior under traffic loads. The principles of Maxwell's reciprocal theorem are developed in computing live load distribution coefficients and their influence lines. The presented method uses the approach developed in traditional methods of transversal live load distribution but bridge decks are modeled more realistic with the help of well-established grillage analogy. Simple numerical programs for grillage analysis can be used and no special software is needed. While computing the distribution coefficients for a bridge deck the rest of the analysis can be performed with habitual procedures of structural mechanics.
基金Project(2012CB725400) supported by the National Key Basic Research Program of ChinaProject(2012AA112304) supported by the National High Technology Research and Development Program of ChinaProject(2009BAG13A07-5) supported by National Science and Technology Plan of Action of China for Traffic Safety
文摘Although either absolute speed or speed difference can be considered as a measure for speed consistency, few researches consider both in practice. The factor analysis method was introduced to extract an optimal number of factors from numerous original measures. The freeway diverging zone was divided into four elements, namely the upstream, the diverge area, the downstream and the exit ramp. Operating speeds together with individual vehicle speeds were collected at each element with radar guns. Following the factor analysis procedure, two factors, which explain 96.722% of the variance in the original data, were retained from the initial seven speed measures. According to the loadings after Varimax rotation, the two factors are clearly classified into two categories. The first category is named "speed scale" reflecting the absolute speed, and the other one is named "speed dispersion" interpreting speed discreteness. Then, the weighted score of speed consistency for each diverge area is given in terms of linear combination of the two retained factors. To facilitate the level classification of speed consistency, the weighted scores are normalized in the range of (0, 1.0). The criterion for speed consistency classification is given as 0≤F N <0.30, good consistency; 0.30≤F N <0.60, fair consistency; 0.60≤ F N ≤1.00, poor consistency. The validation by comparing with previously developed measures shows that the proposed measure is acceptable in evaluating speed consistency.
基金funded by the Chinese National Basic Research Program (2010CB731503)
文摘Soils with strain-softening behavior — manifesting as a reduction of strength with increasing plastic strain — are commonly found in the natural environment. For slopes in these soils,a progressive failure mechanism can occur due to a reduction of strength with increasing strain. Finite element method based numerical approaches have been widely performed for simulating such failure mechanism,owning to their ability for tracing the formation and development of the localized shear strain. However,the reliability of the currently used approaches are often affected by poor convergence or significant mesh-dependency,and their applicability is limited by the use of complicated soil models. This paper aims to overcome these limitations by developing a finite element approach using a local arc-length controlled iterative algorithm as the solution strategy. In the proposed finite element approach,the soils are simulated with an elastoplastic constitutive model in conjunction with the Mohr-Coulomb yield function. The strain-softening behavior is represented by a piece-wise linearrelationship between the Mohr-Coulomb strength parameters and the deviatoric plastic strain. To assess the reliability of the proposed finite element approach,comparisons of the numerical solutions obtained by different finite element methods and meshes with various qualities are presented. Moreover,a landslide triggered by excavation in a real expressway construction project is analyzed by the presented finite element approach to demonstrate its applicability for practical engineering problems.
文摘Identifying and classifying intersections according to severity is very important problem for implementation of safety related counter measures and effective models are needed to compare and assess the severity. Highway safety organizations have considered intersection safety among their priorities. In spite of significant advances in highways safety, the large numbers of crashes with high severities still occur in the highways. Investigation of influential factors on crashes enables engineers to carry out calculations in order to reduce crash severity. In the previous studies, there are no perfect models which are capable to illustrate the influence of human factors, road, vehicle, weather conditions and traffic features including traffic volume and flow speed on the crash severity. Therefore, this paper is aimed to develop the models for illustration of the simultaneous influence of these variables on the crash severity in urban highways. The models represented in this study have been developed using binary Logit Models. SPSS software has been used to calibrate the models. It must be mentioned that backward regression method in SPSS was used to identify the significant variables in the model. Consider to obtained results it can be concluded that the main factor in increasing of crash severity in urban highways are driver age, movement with reverse gear, technical defect of the vehicle, vehicle collision with motorcycle and bicycle, bridge, frontal impact collisions, frontal-lateral collisions and multi-vehicle crashes in urban highways which always increase the crash severity in urban highways. Obtained results show the effectiveness and capability of the developed models.
文摘A scientific and rational evaluation on road-region ecosystem stability is the premise to properly deal with the relationship between highway constructing and ecological environment protecting to a sustainable development. Based on the connotative meaning and the procedure of evaluation on road-region ecosystem stability, this paper studied the principles and the method on determining the evaluation index system on road-region ecosystem stability. It put forward an index system for assessing road-region ecosystem stability as a reference. On the basis of detailed analyze of the multidimensional space of road-region ecosystem, a new multi-objective comprehensive evaluation method for road-region ecosystem stability is presented and a calculation tormula for multi-objective comprehensive level of road-region ecosystem stability. This method was used to evaluate road-region ecosystem stability of Lin-Chang highway. This method possessed definite theoretical value and reliability in practice.
基金Supported by the National Science Foundation of China (50874042, 50674046)National Science Important Foundation (50634050)Hunan Science Foundation (06JJ50092)
文摘The three-dimensional damage constitutive relationship of coal is established and distribution law of the abutment pressure of the integrated coal beside the road-in packing for gob-side entry retaining in fully-mechanized caving face under the effect of given deformation of the main roof is analyzed by the damage mechanics theory. And the relationship between distribution of the abutment pressure and thickness of coal seam is explored. The presented result is of great theoretical significance and practical value to the study on stability control of the surrounding rock of road-in packing for gob-side entry retaining in fully-mechanized caving face.
文摘The increasing imbalance between road and maritime transport has led to saturation of the terrestrial infrastructures. For this reason, the development and analysis of an intermodal freight transport which is safe, reliable and sustainable is the first step to a more balanced growth of other transport options. In this sense, SSS (Short Sea Shipping) rises like a real and efficient alternative to the land road-based transport as well as integrated to a multimodal system door to door for the freight distribution. This paper aims to evaluate and identify all those parameters required to determine the characteristics ofa SSS service under a theoretical approach. The increasing growth of the transport market demands to the maritime transport an adaptation effort to the redistribution space processes of production centers and consumption and, as a result of it, of the logistic flows and transport. For this reason, a specific methodology has been developed to model all those phases integrated in the logistic chain of SSS. The final purpose is to determine costs and time of each one of them, for its later implementation in a heuristic algorithm of routing analysis. The main driving factors that determine under which conditions the SSS represents an effective and a feasible solution to road freight are also identified. Information regarding European Union programs to promote the SSS is also presented for a better understanding of the ways of funding sustainable freight transport projects. This investigation states an initial basis for evaluating the competitiveness of SSS concepts, and shows where market and environmental circumstances could be handled in order to enhance the competitiveness of SSS.
文摘Lidar (light detection and ranging) is a relatively new technology that is being used in many aspects of geology and engineering, including researching the potential for rock falls on highway rock cuts. At Missouri University of Science and Technology, we are developing methods for measuring joint orientations remotely and quantifying the raveling process. Measuring joint orientations remotely along highways is safer, more accurate and can result in larger and more accurate data sets, including measurements from otherwise inaccessible areas. Measuring the nature of rock raveling will provide the data needed to begin the process of modeling the rock raveling process. In both cases, terrestrial lidar scanning is used to generate large point clouds of coordinate triplets representing the surface of the rock cut. Automated algorithms have been developed to organize the lidar data, register successive images without survey control, and removal of vegetation and non-rock artifacts. In the first case, we look for planar elements, identify the plane and calculate the orientations. In the second case, we take a series of scans over time and use sophisticated change detection algorithms to calculate the numbers and volumes of rock that has fallen off the rock face.
基金supported by School Foundation of North University of ChinaPostdoctoral granted financial support from China Postdoctoral Science Foundation(20100481307)+1 种基金Natural Science Foundation of Shanxi(2009011018-3)National Natural Science Foundation of China(60876077)
文摘The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus passengers consider is the convenience and comfort of the bus ride,which reduces the transfer time of bus passengers."Transfer time" is considered to be the first factor by the majority of bus passengers who select the routes.In this paper,according to the needs of passengers,optimization algorithm,with the minimal distance being the first goal,namely,the improved Dijkstra algorithm based on the minimal distance,is put forward on the basis of the optimization algorithm with the minimal transfer time being the first goal.
文摘The theoretical design method of enhanced sensitivity fiber grating (FBG) strain sensors was given, and moreover high qualified strain sensors were developed and fabricated, whose sensing properties were good for practical applications. The strain sensor with cylindrical shell encapsulation contained three tubular structures, due to the uneven surface structure, in the area of the strain concentration, improving the sensitivity. It could achieve the embedment strain measurement and surface measurement and had the advantages of the easy installation. The good agreement was obtained between the measurements and theoretical simulation results. After each calibration test, twenty-four FBG strain sensors and six FBG temperature compensation sensors have been installed on the undersurface of the box girder of Diaoshuiyan bridge in Yongtaiwen highway. Finally, we built up a long-term structure health system for the highway bridge.
基金supported by the National Natural Science Foundation of China (Grant No. 10772152)the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010FM008)
文摘The lateral control for lane changing of intelligent vehicle on curved road in automatic highway systems was studied. Based on trapezoidal acceleration profile, considering the curvature difference between starting lane and target lane, a new virtual trajectory planning method for lane changing on curved road was presented, and the calculating formulas for ideal states of vehicle in the inertial coordinate system during a lane changing maneuver were established. Applying the predetermined trajectory, the reference yaw angle and yaw rate for lane changing were generated. On the assumption that the information on yaw rate of vehicle can be measured with on-board sensors and based on the lateral dynamical model of vehicle, the yaw-rate-tracking control law was designed by applying nonsingular terminal sliding mode technology. Based on Lyapunov function method, the finite-time convergence property of the system was obtained from the phase-plane analysis. Simulation results showed that if the curvature difference between starting lane and target lane was not considered, then at the finishing time of lane changing, it was impossible to avoid the deviation of the virtual trajectory panned from the target lane, which increased with the decrease of curvature radius. With the trajectory planning method and yaw rate-tracking control law proposed in this paper and considering the curvature difference between the starting lane and target lane, the desired virtual trajectory for lane changing without deviation was obtained and the expected tracking performance was also verified by the simulation.
基金supported by the Beijing Science Foundation Plan Projects (Grant No. D07020601400707, D101106049710005)the National Hi-Tech Research and Development Program of China ("863" Project) (Grant No. 2006AA11Z231)the National Natural Science Foundation of China (Grant No. 61104164)
文摘The accurate estimation of expressway traffic state can provide decision-making for both travelers and traffic managers. The speed is one of the most representative parameter of the traffic state. So the expressway speed spatial distribution can be taken as the expressway traffic state equivalent. In this paper, an algorithm based on virtual speed sensors (VSS) is presented to estimate the expressway traffic state (the speed spatial distribution). To gain the spatial distribution of expressway traffic state, virtual speed sensors are defined between adjacent traffic flow sensors. Then, the speed data extracted from traffic flow sensors in time series are mapped to space series to design virtual speed sensors. Then the speed of virtual speed sensors can be calculated with the weight matrix which is related with the speed of virtual speed sensors and the speed data extracted from traffic flow sensors and the speed data extracted from traffic flow sensors in time series. Finally, the expressway traffic state (the speed spatial distribution) can be gained. The acquisition of average travel speed of the expressway is taken for application of this traffic state estimation algorithm. One typical expressway in Beijing is adopted for the experiment analysis. The results prove that this traffic state estimation approach based on VSS is feasible and can achieve a high accuracy.