[Objective] The aim was to study change of the composition of cow dung compost by adding complex enzyme.[Method] 2.0% enzyme treatment group,1.5% enzyme treatment group and control group were set to analyze temperatur...[Objective] The aim was to study change of the composition of cow dung compost by adding complex enzyme.[Method] 2.0% enzyme treatment group,1.5% enzyme treatment group and control group were set to analyze temperature,moisture,pH value,crude fiber,TOC,TN,GI during composting.[Result] The results showed that adding complex enzymes could accelerate degradation of organic matter in pre-composting period.Crude fiber of 2.0%,.1.5% enzyme treatment group and control group decreased 49.6%,47% and 29.1% respectively,TOC decreased 41.7%,35.3% and 21.1%,TN decreased 32.6%,26.8% and 19.2%.2.0%,1.5% enzyme treatment groups could reach basic maturity degree at 30 d.[Conclusion] Composting cycle be shortened by adding complex enzymes,which was useful for maturity of cow dung compost.展开更多
[Objective] The purpose was to study the optimum composition ratio of compound substrate with spent mushroom compound (SMC) and cattle manure com- post (CMC) for the seedling growth of tomato, cucumber and waterme...[Objective] The purpose was to study the optimum composition ratio of compound substrate with spent mushroom compound (SMC) and cattle manure com- post (CMC) for the seedling growth of tomato, cucumber and watermelon. [Method] With internationally best formula substrate (turf:vermiculite=2:1) used for CK, SMC and CMC were matched according to different proportions to get different substrate whose physical and chemical nutrient properties and their effects on the growth of tomato, cucumber and watermelon were studied by means of plug seeding technolo- gy. [Result] The results showed that the bulk density, porosity and the pH of the compound substrates are all in the ideal condition. However, CMC increased the EC value and the pH of the compound substrates. Compound substrates with high ratio of CMC are not suitable for seedlings. [Conclusion] Tomato and watermelon seedlings grew well in the compost substrate with SMC:CMC=3:1 with no river sand. And the cucumber seedlings grew well in the compost substrate with SMC:CMC=2:1 with 5% volume river sand.展开更多
[Objective] The aim was to explore recycling utilization of manure of dairy cattle through returning of manures into fields. [Method] Effects of dairy cattle ma- nure and chemical fertilizer on fertility of soils grow...[Objective] The aim was to explore recycling utilization of manure of dairy cattle through returning of manures into fields. [Method] Effects of dairy cattle ma- nure and chemical fertilizer on fertility of soils grown with Cichorium intybus were in- vestigated through a pot experiment. [Result] After manure of dairy cattle was ap- plied, it can be concluded that organic matter, total N, total P, alkali-hydrolyzable ni- trogen, available P, activities of urease and invertase in soils increased by 0.14-1.28 times, 43.8%-79.7%, 17.4%-30.8%, 147%-188%, 7 times, 17.2%-38.5%, and 1.36%- 3.34%, respectively. Furthermore, organic matter, total N. urease and invertase activi- ties in group of M7F3 increased most; total P and available P achieved the best in group of M3F7. These indicated that the applied manures of dairy cattle would maintain and improve soil fertility, providing better soils for Cichorium intybus. [Conclusion] The research provides reference for recycling of cattle manures and construction of ecological cyclical pattern of "grass planting-cattle breeding-methane fermentation-returning of manures into fields".展开更多
The main aim of this research was the experimental study at lab scale to check the absorption technology for the in situ removal of H2S from biogas during anaerobic digestion process. The reagent FeCl3 was used to che...The main aim of this research was the experimental study at lab scale to check the absorption technology for the in situ removal of H2S from biogas during anaerobic digestion process. The reagent FeCl3 was used to check the removal efficiency of H2S produced from dairy manure during anaerobic bioconversion process. The experiments were conducted under mesophilic conditions. The composition of biogas was analyzed by gas chromatography analyzer equipped with flame photometer and thermal conductivity detectors. Experimental results under the same conditions demonstrate that high concentration of H2S in the form of FeS can be removed totally from the biogas using FeCl3 dosing with in anaerobic batch digester.展开更多
This study examined the dissolved organic matter(DOM) components of cow dung using a combination of fluorescence(excitation–emission matrix,EEM)spectroscopy and parallel factor(PARAFAC) modelling along with eleven tr...This study examined the dissolved organic matter(DOM) components of cow dung using a combination of fluorescence(excitation–emission matrix,EEM)spectroscopy and parallel factor(PARAFAC) modelling along with eleven trace metals using ICP-MS and nutrients(NH_4^+ and NO_3^-) using an AA3 auto analyser. EEM–PARAFAC analysis demonstrated that cow dung predominantly contained only one fluorescent DOM component with two fluorescence peaks(Ex/Em=275/311 nm and Ex/Em=220/311 nm),which could be denoted as tyrosine by comparison with its standard. Occurrence of tyrosine can be further confirmed by the FTIR spectra. Trace metals analysis revealed that Na,K and Mg were significantly higher than Ca,Fe,Mn,Zn Sr,Cu,Ni and Co. The NH_4^+ concentrations were substantially higher than NO_3^-.These results thus indicate that the dissolved components of the cow dung could be useful for better understanding its future uses in various important purposes.展开更多
Dung deposition is an important pathway of nutrient return and redistribution in alpine grasslands of the Qinghai-Tibetan Plateau.To date,information on the greenhouse gas emissions of yak dung on alpine grasslands,es...Dung deposition is an important pathway of nutrient return and redistribution in alpine grasslands of the Qinghai-Tibetan Plateau.To date,information on the greenhouse gas emissions of yak dung on alpine grasslands,especially where there are large amounts of rock fragments,is limited.Our aim,therefore,was to evaluate variations in N_2O,CH_4,and CO_2 emissions from yak dung(CCD),and compare it to dung placed on rock fragments(RCD),alpine steppe soil(CSD),and a soil and rock fragment mixture(RSD) over a 30-day incubation period.The results showed that the total N_2O emissions from treatments without soil were significantly(P < 0.05) lower than those from treatments with soil.The highest total CH_4 emissions were detected in the CSD treatment,while CH_4 losses from treatments without rock fragments were significantly(P < 0.05) greater than those with rock fragments.The total CO_2 emissions from the RSD treatment was 6.30%–12.0% lower than those in the other three treatments.The soil beneath yak dung pats elevated the globalwarming potential(GWP),while the addition of rock fragments to the soil significantly(P < 0.05) decreased the GWP by reducing emissions of the three greenhouse gases.We therefore suggest that interactions between rock fragments and alpine steppe soil are effective in decreasing yak dung greenhouse gas emissions.This finding indicates that rock fragments are an effective medium for reducing greenhouse gas emissions from dung pats,and more attention should therefore be paid to evaluate its ecological impact in future studies.These results should help guide scientific assessments of regional GHG budgets in agricultural ecosystems where the addition of livestock manure to soils with large amounts of rock fragments is common.展开更多
Generally, the diameter of organic melon fruit relatively short (the fruit is small), weight of fruit just as big as 1.25-1.49 kg only, while weight of inorganic melon fruit can reach 2-3 kg. The research was conduc...Generally, the diameter of organic melon fruit relatively short (the fruit is small), weight of fruit just as big as 1.25-1.49 kg only, while weight of inorganic melon fruit can reach 2-3 kg. The research was conducted by experiment method with the aim to enhance quality of the organic melon fruit. Experiment I is: N, P and K fertilizer solution concentration as main plot (0, 20, 30, and 40 g L^-1) and dose of cow manure fertilizer as sub plot (0, 10, 15, and 20 ton hal) (there are 16 treatment combinations). Experiment II is kinds of dung as main plot (chicken, cow, and goat) and dose of fertilizer as sub plot (20, 25, and 30 ton hat) (there are 9 treatment combinations). Experiment III is dose of cow manure fertilizer as main plot (15, 20, 25, and 30 ton hal) and gibberellins concentration as sub plot (0, 30, 60, and 120 ppm) and (there are 16 treatment combinations). Each of the treatment combination replicated 3 times. The result showed that chicken, cow, and goats manure can be used in organic cultivation of melons, and cow manure has the highest potential. The role of the dose is relatively low in plant growth, but to improve the quality of fruit need dose of 10-15 tons hat. The addition of inorganic NPK fertilizer solution or use of gibberellins can increase growth and fruit quality of melon (the used of gibberellins are recommended).展开更多
Inorganic fertilizer NPK (nitrogen, phosphorus and potassium) (S) 25:5:5:5 is generally recommended for optimum yield and quality of tea (Camellia sinensis). Non-judicious use of this inorganic fertilizer how...Inorganic fertilizer NPK (nitrogen, phosphorus and potassium) (S) 25:5:5:5 is generally recommended for optimum yield and quality of tea (Camellia sinensis). Non-judicious use of this inorganic fertilizer however acidifies the soils and pollutes the environment. Integrated soil fertility management (ISFM) which involves the combined use of organic and inorganic fertilizer is recommended for improved crop yield and soil health. An experiment was carried out to determine the effect of enriching cattle manure with different ratios of inorganic fertilizers (OM: NPKS at ratios 1:2 and 1:4), and rates on soil nutrient status, nitrogen uptake and yield of tea in the east of Rift Valley, Kenya. Enriching manures and organic manure up to a rate of 150 kg N/ha increased the level of P mature leaf. A higher N and K level in the mature leaf was observed when NPKS was applied at higher rates. In the soil, fertilizer rate up to 150 kg N/ha showed higher pH and K where organic manure and enriched manures were applied while NPKS treatment showed higher P content throughout the soil depths. Enriching organic manures with inorganic fertilizers increased yield significantly.展开更多
To clarify the effect of exposure to methane fermentation on the survival of seeds of Rumexobtusifolius L. contained in dairy slurry, the percentage of seed germination was observed after the mesophilic (35 ℃) and ...To clarify the effect of exposure to methane fermentation on the survival of seeds of Rumexobtusifolius L. contained in dairy slurry, the percentage of seed germination was observed after the mesophilic (35 ℃) and thermophilic (55 ℃) methane fermentation. The number of survival seed was 0% at 55 ℃, 81.6% at 35 ℃ from methane fermentation, and 0% at 55℃, 75.5% at 35 ℃ after heat treatment. The survival rate of the seeds in methane fermentation was similar to heat treatment at 35 ℃. However, in the investigation of seed status, the number of primary and secondary dormant seeds was higher than after heat treatment. This result suggests that since Rumexobtusifolius L. seeds survive in dormant state in mesophilic methane fermentation, the usage of manure as fertilizer need to be considered.展开更多
Artemisia annua is a plant used to cure malaria diseases. Artemisia plant contains artemisinin as secondary metabolite that used to eliminate parasite that caused malaria, such as Plasmodium falciparum. Artemisia grow...Artemisia annua is a plant used to cure malaria diseases. Artemisia plant contains artemisinin as secondary metabolite that used to eliminate parasite that caused malaria, such as Plasmodium falciparum. Artemisia growth affects production of artemisinin content in plant. Therefore, necessary environment conditions and appropriate organic manure application are needed to support the growth of Artemisia. This research aimed to determine the effect of fertilizer type and proportion in the medium on the Artemisia growth. This research was conducted at greenhouse of Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, in October 2015 to January 2016. This research used a completely randomized design (CRD), consisting of two factors of treatment with three replications. The first factor was type of fertilizer that consists of three types: horse manure fertilizer, compost filter press mud and cow manure fertilizer. The second factor was proportion of fertilizer with media consisted of five levels: fertilizer as media, proportion of fertilizer with media 4:1, 3:2, 2:3 and 1:4. Data were analyzed using analysis of variance and Duncan's multiple range test with level of 5%. It can be concluded that treatment with compost filter press mud provided the highest of plant height, root length, days to flowering, root volume, fresh weight and dry weight of crop.展开更多
Biohydrogen production from synthetic waste, SW (model organic fraction of municipal solid waste) co-digested with liquid dairy manure (M) was tested in batch reactions to assess the effect of temperature and mixi...Biohydrogen production from synthetic waste, SW (model organic fraction of municipal solid waste) co-digested with liquid dairy manure (M) was tested in batch reactions to assess the effect of temperature and mixing ratio of the substrates. A 5 × 2 factorial design experiment was conducted. Synthetic waste: manure mixtures of 1:1, 2:1, 3:1, 1:0, 0:1 (volatile solids, VS, basis) were tested at 37 (T37) and 55 ℃ (T55) using thirty 1 L laboratory scale digesters. Total VS of each mixture was 50 g/L except SW:M 0:I treatment, where total VS was 27.4 g/L. Gas samples were taken daily to determine hydrogen production, and slurry samples taken before and after experimentation, were analyzed for volatile fatty acid (VFA) concentration, volatile solid (VS) degradation, ammonium nitrogen (NH4+-N) and pH. Hydrogen production (mL/g-VS fed) showed a significant two-factor interaction between incubation temperature and SW:M ratio (P 〈 0.001). Maximum production of 15.8 mL/g-VS (fed) was achieved in SW:M ratio of 3:1 at 55 ℃. Generally, hydrogen productions at thermophilic temperature (T55) were significantly higher than at mesophilic (T37) temperature for all treatments (P 〈 0.001) except for SW:M 1:0 and SW:M 0:1 treatments (P 〉 0.05). This study indicates that hydrogen production from co-digestion of synthetic waste and manure is dependent on incubation temperature and relative contribution of wastes in the mixture.展开更多
Processing cow manure into biogas is a solution to reduce air pollutant, because it reduces the smell of the manure up to 70%. Besides producing biogas, the sludge of biodigester can also serve as solid and liquid fer...Processing cow manure into biogas is a solution to reduce air pollutant, because it reduces the smell of the manure up to 70%. Besides producing biogas, the sludge of biodigester can also serve as solid and liquid fertilizer. The solid fertilizer can be used as carder of entomopathogenic fungi to control the pest which lives underground. The research aimed to investigate the benefits of biodigester sludge as fertilizer and carrier of entomopathogenic fungi (Cordyceps sp.) to control white grub pest. The use of organic fertilizer and pesticide in the cultivation can minimize the environmental hazard. The method used in the study was completely randomized design with four treatments, which were the addition of Cordyceps sp. corn media as much as 0, 10, 20 and 30 g/kg of sludge. Every addition was repeated three times to corn planted in a tub. To examine the effect of the treatments, the data were analyzed with ANOVA and Duncan test was applied when differences occurred between treatments. The results of the research showed that the nutrients contained in the manure which had been processed into biogas were not lost. The plants cultivated in the planting medium supplemented with sludge grew healthier, bigger, taller and had stronger and longer roots. On the contrary, the plants cultivated without sludge addition were vulnerable to white grub attack. The Cordyceps sp., which was added into the sludge, was effective to control the white grub. The concentration of Cordyceps sp. as much as 20 g/kg of sludge in corn planting medium was the most effective concentration to control white grub pest.展开更多
An anaerobic digestion unit for producing biogas from cow dung in the rural communities was designed, fabricated and tested for performance, durability and throughput. The major components of the digester included the...An anaerobic digestion unit for producing biogas from cow dung in the rural communities was designed, fabricated and tested for performance, durability and throughput. The major components of the digester included the substrate holding tank, tank cover, agitator, debris collector, inlet and outlet pipes, gas reception tank, hose and heat source. The digester is a vertical cylindrical tank with an inlet pipe for the introduction of substrate and an outlet pipe to collect the digested substrate. An agitator is incorporated inside the digester to break scum on the substrate and create uniform temperature profile in the digester while a pressure gauge was fitted to the gas outlet valve to measure the gas pressure in the tank. The agitator shaft is extended outside to be driven by an electric motor through belt and pulley system. The criteria considered in the design of the digester included air tightness of the system, mesophilic and thermophilic temperature, nature and type of substrate used, substrate retention period, number of crank turns per minute and volumetric capacity of the digestion tank. Other considerations included the desire to make the digestion tank and gas reception tank of galvanized steel to ensure good quality of the product and the need for a strong structural support to ensure structural stability of the system. After construction and assembly, the biogas digestion unit was tested with 40 kg of cow dung diluted with 80 kg of water and subjected to a retention period to make a substrate (slurry) of 10 % total solid (TS). Daily gas yield was determined; gas pressure in the tank was measured by the pressure gauge, while the ambient temperature was taken at five hours interval. Results showed that a cumulative gas yield of 0.415 litres after 22 d retention period at average substrate temperature and pH of 29 ℃ and 6.2, respectively. The digester has a substrate holding capacity of 330.8 litres and a production cost of $375 with all the construction materials being available locally.展开更多
Recent studies have suggested that there may be a link between the use of in-feed antibiotics and the prevalence of antibiotic-resistant bacteria in human infections. It is believed that anaerobic digestion is a poten...Recent studies have suggested that there may be a link between the use of in-feed antibiotics and the prevalence of antibiotic-resistant bacteria in human infections. It is believed that anaerobic digestion is a potent method to reduce the antibiotic resistant bacteria present in waste from concentrated animal feeding operations. Cefazolin is a β-1actam antibiotic that is frequently used to treat the cows with mastitis in the Obihiro University herd. Disposal of untreated milk containing cefazolin residues promotes the occurrence of cefazolin resistant bacteria in the vicinity of farm, thus the objective of this study was to investigate the survival of antibiotic resistant bacteria in co-digestion of dairy manure and waste milk obtained from cows treated for mastitis with cefazolin under thermophilic conditions (55 ~C). Cow manure, digested slurry and waste milk (cefazolin residue concentration 2.17 mg/L) were used as the materials in order to have three digester contents; 100% slurry, 50% slurry + 50% manure and 50% slurry + 45% manure + 5% waste milk. The experiment was carried out using batch digesters (1 L) with active volume of 800 mL at 55 ℃ for 20 days to determine the survival of cefazolin resistant bacteria and to observe the digester performance by determining the bio gas and methane yield using gas chromatpgrapby. Dilution plate method was used to determine the population densities of total and cefazolin resistant bacteria at 0, 10th and 20th day of digestion. Total and cefazolin resistant bacterial counts were reduced with time by several orders until 10th day of digestion and those were almost similar at day 20th. Highest daily biogas and methane yield were observed in the digester contained slurry, manure and waste milk during early digestion period (until 5th day). The results suggest that thermophilic co-digestion of dairy manure and waste milk would be a suitable technology for reducing antibiotic (cefazolin) resistant bacteria while obtaining better digester performance.展开更多
A field experiment was conducted at Kpongu in the Upper West region of Ghana to determine the added benefits in grain yield of maize derived from the concurrent use of manure and mineral fertilizer, and their cost eff...A field experiment was conducted at Kpongu in the Upper West region of Ghana to determine the added benefits in grain yield of maize derived from the concurrent use of manure and mineral fertilizer, and their cost effectiveness. Factorial combinations of cattle manure and mineral fertilizer each at 0, 50 and 100% of their recommended rates were evaluated in both the field and the laboratory studies. The treatments were applied in a randomized complete block design with three replications on the field. The same treatments were applied in the incubation study in a completely randomized design. The use of 100% NPK (Nitrogen, Phosphorus, Potassium) + 5 t manure gave the highest grain yield of 4,678 kg·ha^-1. Synergistic interactions resulting in added benefits in grain yield were observed in all the combined nutrient inputs except 50% NPK + 2.5 t manure which accrued an added disadvantage of 44 kg·ha^-1. Economic analysis proved that 100% NPK + 2.5 t manure and 50% NPK + 5 t manure were the most economically viable combined treatments in terms of grain yield. Based on the results from this study, resource poor farmers in the Upper West region of Ghana may reduce mineral fertilizer recommended rates by 50% and supplement it with 5 t quality (N 〉2.5%) cattle manure without compromising yield and profit.展开更多
AD (anaerobic digestion) is a beneficial and efficient technique for the treatment of agricultural wastes, food wastes and wastes water to produce renewable energy. Solid agricultural are potential renewable energy ...AD (anaerobic digestion) is a beneficial and efficient technique for the treatment of agricultural wastes, food wastes and wastes water to produce renewable energy. Solid agricultural are potential renewable energy resoures. Biogas production by co-digestion of mixed Napier Pak Chong I and food waste at thermophilic temperature using anaerobic digestion in cow dung and chicken dung as the seed inoculums were investigated. The total reactor volume of the co-digester reactor was 7.94 m^3, which was equipped with pump, and it was operated continuously for the 20 days as a pilot scale at 50 ℃. The Napier Pak Chong I was cut into 2 mm sections, and the initial VS (volatile solids) was 30%. The initial VS of food waste were 70%. Two pilot-scale digesters filled with Napier Pak Chong I and food waste, which both digesters contained 476 kg of Napier Pak Chong I mixed 305 L of food waste, and 1305 L of water. There were carried out to investigate the optimum C/N (carbon to nitrogen) ratio for effective biogas production. The slurry raw materials provided sufficient buffering capacity to maintain appropriate pH values (between 7.0 and 8.0). Digester I was designed for 1.98 m^3 of cow dung as the seed inoculum while digester II was designed to establish 1.98 m^3 of chicken dung as the seed inoculum. Gas detector performs analysis gas production. The m^3/day in digester I and 1.86 m^3/day from digester II, resulting in added, respectively. Biogas production in digester I was directly experimental results indicate that total biogas production was 2.19 specific methane yields of 1.26 m^3 CH4/kgVS and 1.07 m^3 CH4/kgVS correlated with temperature.展开更多
A change in the European Union energy policy has markedly promoted the expansion of biogas production. Consequently, large amounts of nutrient-rich residues are being used as organic fertilizers. In this study, a pot ...A change in the European Union energy policy has markedly promoted the expansion of biogas production. Consequently, large amounts of nutrient-rich residues are being used as organic fertilizers. In this study, a pot experiment was conducted to simulate the high-risk situation of enhanced greenhouse gas (GHG) emissions following organic fertilizer application in energy maize cultivation. We hypothesized that cattle slurry application enhanced CO2 and N20 fluxes compared to biogas digestate because of the overall higher carbon (C) and nitrogen (N) input, and that higher levels of CO2 and N20 emissions could be expected by increasing soil organic C (SOC) and N contents. Biogas digestate and cattle slurry, at a rate of 150 kg NH+-N ha-1, were incorporated into 3 soil types with low, medium, and high SOC contents (Cambisol, Mollic Gleysol, and Sapric Histosol, termed Clow, Cmedium, and Chigh, respectively). The GHG exchange (CO2, CH4, and N20) was measured on 5 replicates over a period of 22 d using the closed chamber technique. The application of cattle slurry resulted in significantly higher CO2 and N20 fluxes compared to the application of biogas digestate. No differences were observed in CH4 exchange, which was close to zero for all treatments. Significantly higher CO2 emissions were observed in Chigh compared to the other two soil types, whereas the highest N20 emissions were observed in Cmedium. Thus, the results demonstrate the importance of soil type-adapted fertilization with respect to changing soil physical and environmental conditions.展开更多
Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise inno...Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise innovative profitable solutions. To develop biochar utilisation with an integrated system approach, an innovative program was implemented in 2012 on a 53-ha farm in Western Australia to determine the costs and benefits of integrating biochar with animal husbandry and improvement of pastures. Biochar was mixed with molasses and fed directly to cows. The dung-biochar mixture was incorporated into the soft profile by dung beetles. We studied the changes in soil properties over 3 years. Biochar extracted from fresh dung and from the soil to a depth of 40 cm was characterised. A preliminary financial analysis of the costs and benefits of this integrated approach was also undertaken. The preliminary investigation results suggested that this strategy was effective in improving soil properties and increasing returns to the farmer. It was also concluded that the biochar adsorbed nutrients from the cow's gut and from the dung. Dung beetles could transport this nutrient-rich biochar into the soil profile. There was little evidence that the recalcitrant component of the biochar was reduced through reactions inside the gut or on/in the soil. Further research is required to quantify the long-term impact of integrating biochar and dung beetles into the rearing of cows.展开更多
基金Supported by National Science and Technology Support Program"Key Technology Integration Research and Demonstration in the High-efficiency Production Mode of Farmland Cycle "(2007BAD89B16)~~
文摘[Objective] The aim was to study change of the composition of cow dung compost by adding complex enzyme.[Method] 2.0% enzyme treatment group,1.5% enzyme treatment group and control group were set to analyze temperature,moisture,pH value,crude fiber,TOC,TN,GI during composting.[Result] The results showed that adding complex enzymes could accelerate degradation of organic matter in pre-composting period.Crude fiber of 2.0%,.1.5% enzyme treatment group and control group decreased 49.6%,47% and 29.1% respectively,TOC decreased 41.7%,35.3% and 21.1%,TN decreased 32.6%,26.8% and 19.2%.2.0%,1.5% enzyme treatment groups could reach basic maturity degree at 30 d.[Conclusion] Composting cycle be shortened by adding complex enzymes,which was useful for maturity of cow dung compost.
基金Supported by Non-profit Industrial Project of Agricultural Ministry--Research and Demonstration of Integrated and Assorted Technological System on Agricultural Clean Production and Recycling Use of Rural Waste(200903011)~~
文摘[Objective] The purpose was to study the optimum composition ratio of compound substrate with spent mushroom compound (SMC) and cattle manure com- post (CMC) for the seedling growth of tomato, cucumber and watermelon. [Method] With internationally best formula substrate (turf:vermiculite=2:1) used for CK, SMC and CMC were matched according to different proportions to get different substrate whose physical and chemical nutrient properties and their effects on the growth of tomato, cucumber and watermelon were studied by means of plug seeding technolo- gy. [Result] The results showed that the bulk density, porosity and the pH of the compound substrates are all in the ideal condition. However, CMC increased the EC value and the pH of the compound substrates. Compound substrates with high ratio of CMC are not suitable for seedlings. [Conclusion] Tomato and watermelon seedlings grew well in the compost substrate with SMC:CMC=3:1 with no river sand. And the cucumber seedlings grew well in the compost substrate with SMC:CMC=2:1 with 5% volume river sand.
基金Supported by National Key Technology Research and Development Program during the Eleventh Five-year University(2006BAD25B08)Programs for Masters and Doctors of Honghe College(XJIS0918)Educational Reform of Honghe University(JYJG1117)~~
文摘[Objective] The aim was to explore recycling utilization of manure of dairy cattle through returning of manures into fields. [Method] Effects of dairy cattle ma- nure and chemical fertilizer on fertility of soils grown with Cichorium intybus were in- vestigated through a pot experiment. [Result] After manure of dairy cattle was ap- plied, it can be concluded that organic matter, total N, total P, alkali-hydrolyzable ni- trogen, available P, activities of urease and invertase in soils increased by 0.14-1.28 times, 43.8%-79.7%, 17.4%-30.8%, 147%-188%, 7 times, 17.2%-38.5%, and 1.36%- 3.34%, respectively. Furthermore, organic matter, total N. urease and invertase activi- ties in group of M7F3 increased most; total P and available P achieved the best in group of M3F7. These indicated that the applied manures of dairy cattle would maintain and improve soil fertility, providing better soils for Cichorium intybus. [Conclusion] The research provides reference for recycling of cattle manures and construction of ecological cyclical pattern of "grass planting-cattle breeding-methane fermentation-returning of manures into fields".
基金Supported by the Natural Science Foundation of Beijing (8062023). The authors wish to express their gratitude to Li Rongping, Khurram Shehzad, and Quratul Aian for their valuable suggestions, technical assistance, and moral support.
文摘The main aim of this research was the experimental study at lab scale to check the absorption technology for the in situ removal of H2S from biogas during anaerobic digestion process. The reagent FeCl3 was used to check the removal efficiency of H2S produced from dairy manure during anaerobic bioconversion process. The experiments were conducted under mesophilic conditions. The composition of biogas was analyzed by gas chromatography analyzer equipped with flame photometer and thermal conductivity detectors. Experimental results under the same conditions demonstrate that high concentration of H2S in the form of FeS can be removed totally from the biogas using FeCl3 dosing with in anaerobic batch digester.
基金financially supported by the Key Construction Program of the National 985 Project,Tianjin University,Chinathe National Key R and D Program of China (2016YFA0601000)
文摘This study examined the dissolved organic matter(DOM) components of cow dung using a combination of fluorescence(excitation–emission matrix,EEM)spectroscopy and parallel factor(PARAFAC) modelling along with eleven trace metals using ICP-MS and nutrients(NH_4^+ and NO_3^-) using an AA3 auto analyser. EEM–PARAFAC analysis demonstrated that cow dung predominantly contained only one fluorescent DOM component with two fluorescence peaks(Ex/Em=275/311 nm and Ex/Em=220/311 nm),which could be denoted as tyrosine by comparison with its standard. Occurrence of tyrosine can be further confirmed by the FTIR spectra. Trace metals analysis revealed that Na,K and Mg were significantly higher than Ca,Fe,Mn,Zn Sr,Cu,Ni and Co. The NH_4^+ concentrations were substantially higher than NO_3^-.These results thus indicate that the dissolved components of the cow dung could be useful for better understanding its future uses in various important purposes.
基金supported by grants from the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant No.XDB03030505)the National Natural Science Foundation of China(Grant No.41573070)the Open Fund of the State Key Laboratory of Soiland Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences(Grant No.Y412201403)
文摘Dung deposition is an important pathway of nutrient return and redistribution in alpine grasslands of the Qinghai-Tibetan Plateau.To date,information on the greenhouse gas emissions of yak dung on alpine grasslands,especially where there are large amounts of rock fragments,is limited.Our aim,therefore,was to evaluate variations in N_2O,CH_4,and CO_2 emissions from yak dung(CCD),and compare it to dung placed on rock fragments(RCD),alpine steppe soil(CSD),and a soil and rock fragment mixture(RSD) over a 30-day incubation period.The results showed that the total N_2O emissions from treatments without soil were significantly(P < 0.05) lower than those from treatments with soil.The highest total CH_4 emissions were detected in the CSD treatment,while CH_4 losses from treatments without rock fragments were significantly(P < 0.05) greater than those with rock fragments.The total CO_2 emissions from the RSD treatment was 6.30%–12.0% lower than those in the other three treatments.The soil beneath yak dung pats elevated the globalwarming potential(GWP),while the addition of rock fragments to the soil significantly(P < 0.05) decreased the GWP by reducing emissions of the three greenhouse gases.We therefore suggest that interactions between rock fragments and alpine steppe soil are effective in decreasing yak dung greenhouse gas emissions.This finding indicates that rock fragments are an effective medium for reducing greenhouse gas emissions from dung pats,and more attention should therefore be paid to evaluate its ecological impact in future studies.These results should help guide scientific assessments of regional GHG budgets in agricultural ecosystems where the addition of livestock manure to soils with large amounts of rock fragments is common.
文摘Generally, the diameter of organic melon fruit relatively short (the fruit is small), weight of fruit just as big as 1.25-1.49 kg only, while weight of inorganic melon fruit can reach 2-3 kg. The research was conducted by experiment method with the aim to enhance quality of the organic melon fruit. Experiment I is: N, P and K fertilizer solution concentration as main plot (0, 20, 30, and 40 g L^-1) and dose of cow manure fertilizer as sub plot (0, 10, 15, and 20 ton hal) (there are 16 treatment combinations). Experiment II is kinds of dung as main plot (chicken, cow, and goat) and dose of fertilizer as sub plot (20, 25, and 30 ton hat) (there are 9 treatment combinations). Experiment III is dose of cow manure fertilizer as main plot (15, 20, 25, and 30 ton hal) and gibberellins concentration as sub plot (0, 30, 60, and 120 ppm) and (there are 16 treatment combinations). Each of the treatment combination replicated 3 times. The result showed that chicken, cow, and goats manure can be used in organic cultivation of melons, and cow manure has the highest potential. The role of the dose is relatively low in plant growth, but to improve the quality of fruit need dose of 10-15 tons hat. The addition of inorganic NPK fertilizer solution or use of gibberellins can increase growth and fruit quality of melon (the used of gibberellins are recommended).
文摘Inorganic fertilizer NPK (nitrogen, phosphorus and potassium) (S) 25:5:5:5 is generally recommended for optimum yield and quality of tea (Camellia sinensis). Non-judicious use of this inorganic fertilizer however acidifies the soils and pollutes the environment. Integrated soil fertility management (ISFM) which involves the combined use of organic and inorganic fertilizer is recommended for improved crop yield and soil health. An experiment was carried out to determine the effect of enriching cattle manure with different ratios of inorganic fertilizers (OM: NPKS at ratios 1:2 and 1:4), and rates on soil nutrient status, nitrogen uptake and yield of tea in the east of Rift Valley, Kenya. Enriching manures and organic manure up to a rate of 150 kg N/ha increased the level of P mature leaf. A higher N and K level in the mature leaf was observed when NPKS was applied at higher rates. In the soil, fertilizer rate up to 150 kg N/ha showed higher pH and K where organic manure and enriched manures were applied while NPKS treatment showed higher P content throughout the soil depths. Enriching organic manures with inorganic fertilizers increased yield significantly.
文摘To clarify the effect of exposure to methane fermentation on the survival of seeds of Rumexobtusifolius L. contained in dairy slurry, the percentage of seed germination was observed after the mesophilic (35 ℃) and thermophilic (55 ℃) methane fermentation. The number of survival seed was 0% at 55 ℃, 81.6% at 35 ℃ from methane fermentation, and 0% at 55℃, 75.5% at 35 ℃ after heat treatment. The survival rate of the seeds in methane fermentation was similar to heat treatment at 35 ℃. However, in the investigation of seed status, the number of primary and secondary dormant seeds was higher than after heat treatment. This result suggests that since Rumexobtusifolius L. seeds survive in dormant state in mesophilic methane fermentation, the usage of manure as fertilizer need to be considered.
文摘Artemisia annua is a plant used to cure malaria diseases. Artemisia plant contains artemisinin as secondary metabolite that used to eliminate parasite that caused malaria, such as Plasmodium falciparum. Artemisia growth affects production of artemisinin content in plant. Therefore, necessary environment conditions and appropriate organic manure application are needed to support the growth of Artemisia. This research aimed to determine the effect of fertilizer type and proportion in the medium on the Artemisia growth. This research was conducted at greenhouse of Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, in October 2015 to January 2016. This research used a completely randomized design (CRD), consisting of two factors of treatment with three replications. The first factor was type of fertilizer that consists of three types: horse manure fertilizer, compost filter press mud and cow manure fertilizer. The second factor was proportion of fertilizer with media consisted of five levels: fertilizer as media, proportion of fertilizer with media 4:1, 3:2, 2:3 and 1:4. Data were analyzed using analysis of variance and Duncan's multiple range test with level of 5%. It can be concluded that treatment with compost filter press mud provided the highest of plant height, root length, days to flowering, root volume, fresh weight and dry weight of crop.
文摘Biohydrogen production from synthetic waste, SW (model organic fraction of municipal solid waste) co-digested with liquid dairy manure (M) was tested in batch reactions to assess the effect of temperature and mixing ratio of the substrates. A 5 × 2 factorial design experiment was conducted. Synthetic waste: manure mixtures of 1:1, 2:1, 3:1, 1:0, 0:1 (volatile solids, VS, basis) were tested at 37 (T37) and 55 ℃ (T55) using thirty 1 L laboratory scale digesters. Total VS of each mixture was 50 g/L except SW:M 0:I treatment, where total VS was 27.4 g/L. Gas samples were taken daily to determine hydrogen production, and slurry samples taken before and after experimentation, were analyzed for volatile fatty acid (VFA) concentration, volatile solid (VS) degradation, ammonium nitrogen (NH4+-N) and pH. Hydrogen production (mL/g-VS fed) showed a significant two-factor interaction between incubation temperature and SW:M ratio (P 〈 0.001). Maximum production of 15.8 mL/g-VS (fed) was achieved in SW:M ratio of 3:1 at 55 ℃. Generally, hydrogen productions at thermophilic temperature (T55) were significantly higher than at mesophilic (T37) temperature for all treatments (P 〈 0.001) except for SW:M 1:0 and SW:M 0:1 treatments (P 〉 0.05). This study indicates that hydrogen production from co-digestion of synthetic waste and manure is dependent on incubation temperature and relative contribution of wastes in the mixture.
文摘Processing cow manure into biogas is a solution to reduce air pollutant, because it reduces the smell of the manure up to 70%. Besides producing biogas, the sludge of biodigester can also serve as solid and liquid fertilizer. The solid fertilizer can be used as carder of entomopathogenic fungi to control the pest which lives underground. The research aimed to investigate the benefits of biodigester sludge as fertilizer and carrier of entomopathogenic fungi (Cordyceps sp.) to control white grub pest. The use of organic fertilizer and pesticide in the cultivation can minimize the environmental hazard. The method used in the study was completely randomized design with four treatments, which were the addition of Cordyceps sp. corn media as much as 0, 10, 20 and 30 g/kg of sludge. Every addition was repeated three times to corn planted in a tub. To examine the effect of the treatments, the data were analyzed with ANOVA and Duncan test was applied when differences occurred between treatments. The results of the research showed that the nutrients contained in the manure which had been processed into biogas were not lost. The plants cultivated in the planting medium supplemented with sludge grew healthier, bigger, taller and had stronger and longer roots. On the contrary, the plants cultivated without sludge addition were vulnerable to white grub attack. The Cordyceps sp., which was added into the sludge, was effective to control the white grub. The concentration of Cordyceps sp. as much as 20 g/kg of sludge in corn planting medium was the most effective concentration to control white grub pest.
文摘An anaerobic digestion unit for producing biogas from cow dung in the rural communities was designed, fabricated and tested for performance, durability and throughput. The major components of the digester included the substrate holding tank, tank cover, agitator, debris collector, inlet and outlet pipes, gas reception tank, hose and heat source. The digester is a vertical cylindrical tank with an inlet pipe for the introduction of substrate and an outlet pipe to collect the digested substrate. An agitator is incorporated inside the digester to break scum on the substrate and create uniform temperature profile in the digester while a pressure gauge was fitted to the gas outlet valve to measure the gas pressure in the tank. The agitator shaft is extended outside to be driven by an electric motor through belt and pulley system. The criteria considered in the design of the digester included air tightness of the system, mesophilic and thermophilic temperature, nature and type of substrate used, substrate retention period, number of crank turns per minute and volumetric capacity of the digestion tank. Other considerations included the desire to make the digestion tank and gas reception tank of galvanized steel to ensure good quality of the product and the need for a strong structural support to ensure structural stability of the system. After construction and assembly, the biogas digestion unit was tested with 40 kg of cow dung diluted with 80 kg of water and subjected to a retention period to make a substrate (slurry) of 10 % total solid (TS). Daily gas yield was determined; gas pressure in the tank was measured by the pressure gauge, while the ambient temperature was taken at five hours interval. Results showed that a cumulative gas yield of 0.415 litres after 22 d retention period at average substrate temperature and pH of 29 ℃ and 6.2, respectively. The digester has a substrate holding capacity of 330.8 litres and a production cost of $375 with all the construction materials being available locally.
文摘Recent studies have suggested that there may be a link between the use of in-feed antibiotics and the prevalence of antibiotic-resistant bacteria in human infections. It is believed that anaerobic digestion is a potent method to reduce the antibiotic resistant bacteria present in waste from concentrated animal feeding operations. Cefazolin is a β-1actam antibiotic that is frequently used to treat the cows with mastitis in the Obihiro University herd. Disposal of untreated milk containing cefazolin residues promotes the occurrence of cefazolin resistant bacteria in the vicinity of farm, thus the objective of this study was to investigate the survival of antibiotic resistant bacteria in co-digestion of dairy manure and waste milk obtained from cows treated for mastitis with cefazolin under thermophilic conditions (55 ~C). Cow manure, digested slurry and waste milk (cefazolin residue concentration 2.17 mg/L) were used as the materials in order to have three digester contents; 100% slurry, 50% slurry + 50% manure and 50% slurry + 45% manure + 5% waste milk. The experiment was carried out using batch digesters (1 L) with active volume of 800 mL at 55 ℃ for 20 days to determine the survival of cefazolin resistant bacteria and to observe the digester performance by determining the bio gas and methane yield using gas chromatpgrapby. Dilution plate method was used to determine the population densities of total and cefazolin resistant bacteria at 0, 10th and 20th day of digestion. Total and cefazolin resistant bacterial counts were reduced with time by several orders until 10th day of digestion and those were almost similar at day 20th. Highest daily biogas and methane yield were observed in the digester contained slurry, manure and waste milk during early digestion period (until 5th day). The results suggest that thermophilic co-digestion of dairy manure and waste milk would be a suitable technology for reducing antibiotic (cefazolin) resistant bacteria while obtaining better digester performance.
文摘A field experiment was conducted at Kpongu in the Upper West region of Ghana to determine the added benefits in grain yield of maize derived from the concurrent use of manure and mineral fertilizer, and their cost effectiveness. Factorial combinations of cattle manure and mineral fertilizer each at 0, 50 and 100% of their recommended rates were evaluated in both the field and the laboratory studies. The treatments were applied in a randomized complete block design with three replications on the field. The same treatments were applied in the incubation study in a completely randomized design. The use of 100% NPK (Nitrogen, Phosphorus, Potassium) + 5 t manure gave the highest grain yield of 4,678 kg·ha^-1. Synergistic interactions resulting in added benefits in grain yield were observed in all the combined nutrient inputs except 50% NPK + 2.5 t manure which accrued an added disadvantage of 44 kg·ha^-1. Economic analysis proved that 100% NPK + 2.5 t manure and 50% NPK + 5 t manure were the most economically viable combined treatments in terms of grain yield. Based on the results from this study, resource poor farmers in the Upper West region of Ghana may reduce mineral fertilizer recommended rates by 50% and supplement it with 5 t quality (N 〉2.5%) cattle manure without compromising yield and profit.
文摘AD (anaerobic digestion) is a beneficial and efficient technique for the treatment of agricultural wastes, food wastes and wastes water to produce renewable energy. Solid agricultural are potential renewable energy resoures. Biogas production by co-digestion of mixed Napier Pak Chong I and food waste at thermophilic temperature using anaerobic digestion in cow dung and chicken dung as the seed inoculums were investigated. The total reactor volume of the co-digester reactor was 7.94 m^3, which was equipped with pump, and it was operated continuously for the 20 days as a pilot scale at 50 ℃. The Napier Pak Chong I was cut into 2 mm sections, and the initial VS (volatile solids) was 30%. The initial VS of food waste were 70%. Two pilot-scale digesters filled with Napier Pak Chong I and food waste, which both digesters contained 476 kg of Napier Pak Chong I mixed 305 L of food waste, and 1305 L of water. There were carried out to investigate the optimum C/N (carbon to nitrogen) ratio for effective biogas production. The slurry raw materials provided sufficient buffering capacity to maintain appropriate pH values (between 7.0 and 8.0). Digester I was designed for 1.98 m^3 of cow dung as the seed inoculum while digester II was designed to establish 1.98 m^3 of chicken dung as the seed inoculum. Gas detector performs analysis gas production. The m^3/day in digester I and 1.86 m^3/day from digester II, resulting in added, respectively. Biogas production in digester I was directly experimental results indicate that total biogas production was 2.19 specific methane yields of 1.26 m^3 CH4/kgVS and 1.07 m^3 CH4/kgVS correlated with temperature.
文摘A change in the European Union energy policy has markedly promoted the expansion of biogas production. Consequently, large amounts of nutrient-rich residues are being used as organic fertilizers. In this study, a pot experiment was conducted to simulate the high-risk situation of enhanced greenhouse gas (GHG) emissions following organic fertilizer application in energy maize cultivation. We hypothesized that cattle slurry application enhanced CO2 and N20 fluxes compared to biogas digestate because of the overall higher carbon (C) and nitrogen (N) input, and that higher levels of CO2 and N20 emissions could be expected by increasing soil organic C (SOC) and N contents. Biogas digestate and cattle slurry, at a rate of 150 kg NH+-N ha-1, were incorporated into 3 soil types with low, medium, and high SOC contents (Cambisol, Mollic Gleysol, and Sapric Histosol, termed Clow, Cmedium, and Chigh, respectively). The GHG exchange (CO2, CH4, and N20) was measured on 5 replicates over a period of 22 d using the closed chamber technique. The application of cattle slurry resulted in significantly higher CO2 and N20 fluxes compared to the application of biogas digestate. No differences were observed in CH4 exchange, which was close to zero for all treatments. Significantly higher CO2 emissions were observed in Chigh compared to the other two soil types, whereas the highest N20 emissions were observed in Cmedium. Thus, the results demonstrate the importance of soil type-adapted fertilization with respect to changing soil physical and environmental conditions.
基金funded by the Linkage,Infrastructure,Equipment and Facilities (LIEF) grant from the Australian Research Council (ARC) (No.LE120100104)supported by the ARC (No.LP120200418),Renewed Carbon Pty Ltd.of Australiathe Department of Agriculture,Australian Government’s Carbon Farming Futures Filling the Research Gap (No.RG134978)
文摘Addition of biochar produced through thermal decomposition of biomass has been seen as a strategy to improve soils and to sequester carbon (C), but wide scale implementation of the technology requires to devise innovative profitable solutions. To develop biochar utilisation with an integrated system approach, an innovative program was implemented in 2012 on a 53-ha farm in Western Australia to determine the costs and benefits of integrating biochar with animal husbandry and improvement of pastures. Biochar was mixed with molasses and fed directly to cows. The dung-biochar mixture was incorporated into the soft profile by dung beetles. We studied the changes in soil properties over 3 years. Biochar extracted from fresh dung and from the soil to a depth of 40 cm was characterised. A preliminary financial analysis of the costs and benefits of this integrated approach was also undertaken. The preliminary investigation results suggested that this strategy was effective in improving soil properties and increasing returns to the farmer. It was also concluded that the biochar adsorbed nutrients from the cow's gut and from the dung. Dung beetles could transport this nutrient-rich biochar into the soil profile. There was little evidence that the recalcitrant component of the biochar was reduced through reactions inside the gut or on/in the soil. Further research is required to quantify the long-term impact of integrating biochar and dung beetles into the rearing of cows.