The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,...The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,X-ray diffraction,transmission electron microscopy,and hot compression tests.The results showed that at a low strain of 0.05,the basal,pyramidaland<c+a>slip modes were simultaneously activated.Nevertheless,at the middle stage of deformation(strain of 0.1,0.2 and 0.5),theslip mode was difficult to be activated and<c+a>slip mode became dominant.The deformation process between strains of 0.2 and 0.5 was primarily characterized by the softening effect resulting from the simultaneous occurrence of continuous dynamic recrystallization and discontinuous dynamic recrystallization.Ultimately,at strain of 0.8,a dynamic equilibrium was established,with the flow stress remaining constant due to the interplay between the dynamic softening brought about by discontinuous dynamic recrystallization and the work-hardening effect induced by the activation of the basalslip mode.展开更多
A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical bound...A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical boundary condition at the tool-workpiece interface,and the dynamic mesh technique are both employed for the consideration of the tool eccentricity during tool rotating.It is found that tool eccentricity induces the periodical variation of the heat densities both at the tool-workpiece interface and inside the shear layer,but the fluctuation amplitudes of the heat density variations are limited.However,it is demonstrated that tool eccentricity results in significant variation of the material flow behavior in one tool rotating period.Moreover,the material velocity variation at the retreating side is particularly important for the formation of the periodic characteristics in FSW.The modeling result is found to be in good agreement with the experimental one.展开更多
The high-temperature oxidation behaviour of the Inconel 625 alloy at 950℃ was investigated after different ageing treatments.The effect of heat treatment on the oxidation behaviour of the alloy was analysed by charac...The high-temperature oxidation behaviour of the Inconel 625 alloy at 950℃ was investigated after different ageing treatments.The effect of heat treatment on the oxidation behaviour of the alloy was analysed by characterizing the structure and elemental distribution before and after oxidation.The results reveal that the two ageing treatments at 650℃ for 500 h and at 750℃ for 400 h both reduced the oxidation mass gain.After oxidation at 950℃,an outer Cr_(2)O_(3) layer and inner Al_(2)O_(3) are identified as the main oxidation products.Moreover,Nb_(2)O_(5) andδ(Ni_(3)Nb)phases precipitated after oxidation.The ageing treatments cause the rapid generation of a dense Cr_(2)O_(3) layer on the surface,which prevents the diffusion of oxygen into the matrix,reduce the Al_(2)O_(3) inward growth depth,and improve the oxidation resistance of the alloy.展开更多
Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain ra...The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.展开更多
The hot deformation behavior of beta C titanium alloy in β phase field was investigated by isothermal compression testson a Gleeble?3800 thermomechanical simulator. The constitutive equation describing the hot defor...The hot deformation behavior of beta C titanium alloy in β phase field was investigated by isothermal compression testson a Gleeble?3800 thermomechanical simulator. The constitutive equation describing the hot deformation behavior was obtained anda processing map was established at the true strain of 0.7. The microstructure was characterized by optical microscopy (OM),scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) technique. The results show that the flow stressincreases with increasing strain rates, and decreases with increasing experimental temperatures. The calculated apparent activationenergy (167 kJ/mol) is close to that of self-diffusion in β titanium. The processing map and microstructure observation exhibit adynamic recrystallization domain in the temperature range of 900-1000 ℃ and strain rate range of 0.1-1 s^-1. An instability regionexists when the strain rate is higher than 1.7 s^-1. The microstructure of beta C titanium alloy can be optimized by proper heattreatments after the deformation in the dynamic recrystallization domain.展开更多
According to the characteristics of circular agricultural mode focusing on pig farming and by dint of system dynamics mode-based analysis techniques to analyze the characteristics,the operation force for the recycling...According to the characteristics of circular agricultural mode focusing on pig farming and by dint of system dynamics mode-based analysis techniques to analyze the characteristics,the operation force for the recycling agricultural system focusing on pig farming was put forward.展开更多
To investigate the flow behaviors of different size particles in hydrocyclone,a designed process was numerically simulated by the transient solver,where the quartz particles possessing a size distribution were injecte...To investigate the flow behaviors of different size particles in hydrocyclone,a designed process was numerically simulated by the transient solver,where the quartz particles possessing a size distribution were injected into a 100 mm diameter hydrocyclone with the steady water field and air core inside.A lab experimental work has validated the chosen models in simulation by comparing the classification efficiency results.The simulated process shows that the 25 μm quartz particles,close to the cut size,need much more time than the finer and coarser particles to reach the steady flow rate on the outlets of hydrocyclone.For the particles in the inner swirl,with the quartz size increasing from 5 to 25 μm,the particles take more time to enter the vortex finder.The 25 μm quartz particles move outward in the radial direction when they go up to the vortex finder,which is contrary to the quartz particles of 5 μm and 15 μm as they are closely surrounding the air core.The studies reveal that the flow behaviors of particles inside the hydrocyclone depend on the particle size.展开更多
Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the s...Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the strain rate ranging from 0.001 to 10 s^-1. The material constants of a and n, activation energy Q and A were calculated as a function of strain by a fifth-order polynomial fit. Constitutive models incorporating deformation temperature, strain rate and strain were developed to model the hot deformation behavior of X20Cr13 martensitic stainless steel based on the Arrhenius equation. The predictable efficiency of the developed constitutive models of X20Cr13 martensitic stainless steel was analyzed by correlation coefficient and average absolute relative error which are 0.996 and 3.22%, respectively.展开更多
The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different op...The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different optimal model parameters being used to control the vertical vibration.First, the MMSD biodynamic model is employed to simulate the pedestrians, and the time-varying control equations of the vertical dynamic coupling system of the pedestrian-bridgeTMD are established with the consideration of pedestrianbridge dynamic interaction; and the equations are solved by using the Runge-Kutta-Felhberg integral method with variable step size. Secondly, the footbridge dynamic response is calculated under the model of pedestrian-structure dynamic interaction and the model of moving load when the pedestrian pace frequency is consistent with the natural frequency of footbridge. Finally, a comparative study and analysis are made on the control effects of the vertical dynamic coupling system in different optimal models of the TMD. The calculation results show that the pedestrian-bridge dynamic interaction cannot be ignored when the vertical human-induced vibration serviceability of low-frequency and light-weight footbridge is evaluated. The TMD can effectively reduce the vibration under the resonance of pedestrian-bridge, and TMD parameters are recommended for the determination by the Warburton optimization model.展开更多
Reform dividends refer to the improvements in certain economic actors under the new, reformed institutional system as compared against the original system. Reform leads to greater economic growth potential by changing...Reform dividends refer to the improvements in certain economic actors under the new, reformed institutional system as compared against the original system. Reform leads to greater economic growth potential by changing the institutional environment, which in turn increases the vibrancy and innovation of economic actors. The most economically convenient system is also in actuality the most effective market economic system. Reform based on public and collective actions should be based on the following principle: if institutional reform is evolving towards the enhancement of economic convenience, then we can be sure that reform is embarking on the path of releasing dividends.展开更多
Measurements of atmospheric benzene and toluene were carried out continuously using dif- ferential optical absorption spectroscopy from August 7 to August 28 in Beijing during the period of vehicular restrictions. The...Measurements of atmospheric benzene and toluene were carried out continuously using dif- ferential optical absorption spectroscopy from August 7 to August 28 in Beijing during the period of vehicular restrictions. The correlations between traffic flows and totals of benzene and toluene were studied during the period of vehicular traffic restrictions from August 17 to August 20 and non-traffic restrictions on August 16 and August 21. The correlation coef- ficient was 0.8 between benzene and toluene. And the calculated daily mean value ratios of benzene to toluene were 0.43-0.50. During the period of vehicular restrictions, traffic flows were reduced about 11.8% and the levels of benzene and toluene were reduced by 11.4% and 12.8%, respectively. The vehicle emissions were recognized as the major sources for atmospheric benzene and toluene in Beijing.展开更多
A novel design for an electrostriction appliance derived from the theory and application of electromagnetics is presented. The working principle, that is the application of gravitation and elasticity together to reali...A novel design for an electrostriction appliance derived from the theory and application of electromagnetics is presented. The working principle, that is the application of gravitation and elasticity together to realize the "shrinking" and "extending" effect from the distortion and transforming power into mechanical energy, is briefly explained. The characteristic parameter relationships are established and the experimental research is performed. Experimental results show that this sort of electrostriction appliance can perform well as regards driving force and beeline displacement, and furthermore, its self-weight is smaller. This makes it suitable for beeline drivers with a high application value, especially for the driver of the bionic appliance. In the application of the electrostriction appliance to a bionics-flapping aircraft, the wings can work with a flapping angle in the range of a certain value by controlling the "shrinking" and "extending" of the electrostriction appliance. It can reduce the startup power and the impact load of the driver. The flapping extent of the wings will change when the voltage which is put into the electrostriction appliance varies. This makes it more flexible as the bionics-flapping aircraft realizes different actions of flying.展开更多
The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Moti...The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Motion trajectory equations are derived for driving points of the stator. The motor operation and driving mechanisms are investigated. The vibration modes and the construction of the motor are analyzed by using the finite element method (FEM). A prototype motor is built and its stator dimension is 13 mm × 13 mm× 30 mm. The motor is experimentally characterized and the maximum output force of 5- 2 N is obtained.展开更多
The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopki...The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopkinson bars apparatus.The microstructures of the base metal(BM) and the welded metal(WM) were observed with optical microscope.The fracture characteristics of the BM and WM were characterized with scanning electronic microscope.In Ti-6Al-4V alloy joint,the flow stress of WM is higher than that of BM,while the fracture strain of WM is less than that of BM at strain rates of 103 and 10-3 s-1,respectively.The fracture strain of WM has apparent improvement when the strain rate rises from 10-3 to 103 s-1,while the fracture strain of BM almost has no change.At the same time,the fracture mode of WM alters from brittle to ductile fracture,which causes improvement of the fracture strain of WM.展开更多
A mixed-signal driver chip for a 132 × 64-pixel passive matrix OLED panel is presented. The chip has a 64-step gray scale control using the PWM method and two-step voltage pre-charge technology to pre-charge the ...A mixed-signal driver chip for a 132 × 64-pixel passive matrix OLED panel is presented. The chip has a 64-step gray scale control using the PWM method and two-step voltage pre-charge technology to pre-charge the OLED pixels. It consists of a digital controller,SRAM for display data memory,a DC-DC voltage converter,reference current generators,a pre-charge voltage generator,64 common drivers, and 132 segment drivers. The single chip is a typical current-drive circuit. It has been implemented in a Chartered 0.35/μm 18V HV (DDD) CMOS process with a die area of 10mm× 2mm. Test results show that the power consumption of the whole chip and all pixels with a constant driving current of 100μA while displaying the highest gray scale is 294mW with a 12V high voltage supply and a 3V low voltage supply.展开更多
To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A...To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A Peters-He finite-state wake model is improved to incorporate the operating-state-dependent KR to embody maneuver-induced effects. The curvature parameter KR varies with rotor forward speed, thrust and maneuvering angular rate according to a smoking experiment. Moreover, aerodynamic force/moment experiment indicates that after a quasi-step angular input, both on-axis and off-axis rotor responses show that an overshoot and its amplitude increases with the pitching rate. The comparison between theoretical and experimental results shows that the operating-state-accurate curvature parameter must be adopted to obtain accurate aerodynamic forces/moments, especially for the off-axis response. Additionally, combined with a dynamic wake distortion model, the obtained correlation agrees well with experimental data.展开更多
The deformation characteristic in the forming process of aluminum alloy 7075 cross valve under multi-way loading was investigated by numerical simulation method. The results indicate that there exist 4 deformation pat...The deformation characteristic in the forming process of aluminum alloy 7075 cross valve under multi-way loading was investigated by numerical simulation method. The results indicate that there exist 4 deformation patterns in the multi-way loading forming process of cross valve, such as forward extrusion, backward extrusion, forward-lateral extrusion and backward-lateral extrusion; one or several patterns occur at different forming stages depending on loading path. In general, the main deformation pattern is forward extrusion or backward extrusion at the initial stage; the main deformation pattern is backward extrusion at the intermediate stage, and the backward extrusion and forward-lateral extrusion occur at the final stage. In order to improve the cavity fill and reduce the forming defects, the lateral extrusion deformation should be increased at the initial and intermediate stages, and the forward extrusion deformation at the final forging stage should be reduced or avoided.展开更多
In order to study the relationship between pavement friction management criteria and braking distance requirements of road geometric design, an approach for determining the braking distance considering pavement fricti...In order to study the relationship between pavement friction management criteria and braking distance requirements of road geometric design, an approach for determining the braking distance considering pavement frictional properties is proposed. A finite element model (FEM) of a rolling tire under steady state is established based on theoretical hydrodynamics and mechanics principles, in which factors, including tire type, water film thickness, pavement surface properties, and vehicle speed, are considered. With the FEM, braking distances under different operating conditions are calculated. Furthermore, the allowable water film thickness is determined by comparing braking distances calculated with friction management criteria and that required by road geometric design. The results show that the braking distance is affected by the above operating conditions. As a result, it is necessary to maintain consistency between geometric design braking distance requirements and pavement friction management to achieve safe road operations.展开更多
The Taihang Mountain piedmont fault is a large-scale structure zone in north and east China which cross Beijing,with the NE-NNE extent spans approximately 620 km.It is very important to determine the fault zone activi...The Taihang Mountain piedmont fault is a large-scale structure zone in north and east China which cross Beijing,with the NE-NNE extent spans approximately 620 km.It is very important to determine the fault zone activity due to the close relation of active structures and earthquakes.Regarding the fault activity,there are three different opinions:1) it is a large deep fault zone;2) it is an active fault zone and an earthquake structure belt;and 3) it is not an earthquake structure belt.In order to ascertain the active character of the fault,the deep tectonic setting and the activity since the Quaternary were investigated using recent seismic and drilling data to make a joint interpretation.The investigation results show that the Taihang Mountain piedmont fault is not a large lithospheric fault because the early middle Pleistocene(Q(P2)) layers are offset by the fault and the late middle Pleistocene(Q(P2)) and late Pleistocene layers are not offset by the fault.We determine that the Taihang Mountain piedmont fault in the area is not an active fault and is also not a large lithospheric fault.This study result provides important geological and geophysical data for city planning and construction in Hebei province and, especially,has great significance for seismic hazard assessment of the capital area.展开更多
基金supported by the National Natural Science Foundation of China (No.51901153)Shanxi Scholarship Council of China (No.2019032)+2 种基金Natural Science Foundation of Shanxi Province,China (No.202103021224049)the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China (No.2022SX-TD025)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University,China (No.2023-DXSSKF-Z02)。
文摘The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,X-ray diffraction,transmission electron microscopy,and hot compression tests.The results showed that at a low strain of 0.05,the basal,pyramidaland<c+a>slip modes were simultaneously activated.Nevertheless,at the middle stage of deformation(strain of 0.1,0.2 and 0.5),theslip mode was difficult to be activated and<c+a>slip mode became dominant.The deformation process between strains of 0.2 and 0.5 was primarily characterized by the softening effect resulting from the simultaneous occurrence of continuous dynamic recrystallization and discontinuous dynamic recrystallization.Ultimately,at strain of 0.8,a dynamic equilibrium was established,with the flow stress remaining constant due to the interplay between the dynamic softening brought about by discontinuous dynamic recrystallization and the work-hardening effect induced by the activation of the basalslip mode.
基金the financial support from the National Natural Science Foundation of China (Nos. 52005297, 52035005)the Key Research and Development Program of Shandong Province, China (No. 2021ZLGX01)。
文摘A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical boundary condition at the tool-workpiece interface,and the dynamic mesh technique are both employed for the consideration of the tool eccentricity during tool rotating.It is found that tool eccentricity induces the periodical variation of the heat densities both at the tool-workpiece interface and inside the shear layer,but the fluctuation amplitudes of the heat density variations are limited.However,it is demonstrated that tool eccentricity results in significant variation of the material flow behavior in one tool rotating period.Moreover,the material velocity variation at the retreating side is particularly important for the formation of the periodic characteristics in FSW.The modeling result is found to be in good agreement with the experimental one.
基金financially supported by the National Science and Technology Major Project of China (Nos.MJ-2018-G-48,J2019-Ⅵ-0023-0140)the Research Fund of the State Key Laboratory of Solidification Processing (NPU),China (No.2022-TS-04)。
文摘The high-temperature oxidation behaviour of the Inconel 625 alloy at 950℃ was investigated after different ageing treatments.The effect of heat treatment on the oxidation behaviour of the alloy was analysed by characterizing the structure and elemental distribution before and after oxidation.The results reveal that the two ageing treatments at 650℃ for 500 h and at 750℃ for 400 h both reduced the oxidation mass gain.After oxidation at 950℃,an outer Cr_(2)O_(3) layer and inner Al_(2)O_(3) are identified as the main oxidation products.Moreover,Nb_(2)O_(5) andδ(Ni_(3)Nb)phases precipitated after oxidation.The ageing treatments cause the rapid generation of a dense Cr_(2)O_(3) layer on the surface,which prevents the diffusion of oxygen into the matrix,reduce the Al_(2)O_(3) inward growth depth,and improve the oxidation resistance of the alloy.
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.
基金Project (51075098) supported by the National Natural Science Foundation of ChinaProject (HIT.NSRIF.2014006) supported by the Fundamental Research Funds for the Central Universities,China
文摘The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.
文摘The hot deformation behavior of beta C titanium alloy in β phase field was investigated by isothermal compression testson a Gleeble?3800 thermomechanical simulator. The constitutive equation describing the hot deformation behavior was obtained anda processing map was established at the true strain of 0.7. The microstructure was characterized by optical microscopy (OM),scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) technique. The results show that the flow stressincreases with increasing strain rates, and decreases with increasing experimental temperatures. The calculated apparent activationenergy (167 kJ/mol) is close to that of self-diffusion in β titanium. The processing map and microstructure observation exhibit adynamic recrystallization domain in the temperature range of 900-1000 ℃ and strain rate range of 0.1-1 s^-1. An instability regionexists when the strain rate is higher than 1.7 s^-1. The microstructure of beta C titanium alloy can be optimized by proper heattreatments after the deformation in the dynamic recrystallization domain.
基金Supported by National Natural Science Fund(70861004)~~
文摘According to the characteristics of circular agricultural mode focusing on pig farming and by dint of system dynamics mode-based analysis techniques to analyze the characteristics,the operation force for the recycling agricultural system focusing on pig farming was put forward.
基金Projects(2006BAB11B07,2007BAB15B01)supported by the National Science&Technology Pillar Program during the Eleventh Five-year Plan Period,ChinaProject(2011BAB05B01)supported by the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period,China
文摘To investigate the flow behaviors of different size particles in hydrocyclone,a designed process was numerically simulated by the transient solver,where the quartz particles possessing a size distribution were injected into a 100 mm diameter hydrocyclone with the steady water field and air core inside.A lab experimental work has validated the chosen models in simulation by comparing the classification efficiency results.The simulated process shows that the 25 μm quartz particles,close to the cut size,need much more time than the finer and coarser particles to reach the steady flow rate on the outlets of hydrocyclone.For the particles in the inner swirl,with the quartz size increasing from 5 to 25 μm,the particles take more time to enter the vortex finder.The 25 μm quartz particles move outward in the radial direction when they go up to the vortex finder,which is contrary to the quartz particles of 5 μm and 15 μm as they are closely surrounding the air core.The studies reveal that the flow behaviors of particles inside the hydrocyclone depend on the particle size.
基金Project(51005150)supported by the National Natural Science Foundation of ChinaProject(2011CB012903)supported by the National Basic Research Program of China
文摘Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the strain rate ranging from 0.001 to 10 s^-1. The material constants of a and n, activation energy Q and A were calculated as a function of strain by a fifth-order polynomial fit. Constitutive models incorporating deformation temperature, strain rate and strain were developed to model the hot deformation behavior of X20Cr13 martensitic stainless steel based on the Arrhenius equation. The predictable efficiency of the developed constitutive models of X20Cr13 martensitic stainless steel was analyzed by correlation coefficient and average absolute relative error which are 0.996 and 3.22%, respectively.
基金The National Natural Science Foundation of China(No.51508257,51668042,51578274)the Yangtze River Scholar and the Innovation Team of M inistry of Education(No.IRT13068)the Scientific Research Project of Gansu Higher Education(No.2015B-34)
文摘The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different optimal model parameters being used to control the vertical vibration.First, the MMSD biodynamic model is employed to simulate the pedestrians, and the time-varying control equations of the vertical dynamic coupling system of the pedestrian-bridgeTMD are established with the consideration of pedestrianbridge dynamic interaction; and the equations are solved by using the Runge-Kutta-Felhberg integral method with variable step size. Secondly, the footbridge dynamic response is calculated under the model of pedestrian-structure dynamic interaction and the model of moving load when the pedestrian pace frequency is consistent with the natural frequency of footbridge. Finally, a comparative study and analysis are made on the control effects of the vertical dynamic coupling system in different optimal models of the TMD. The calculation results show that the pedestrian-bridge dynamic interaction cannot be ignored when the vertical human-induced vibration serviceability of low-frequency and light-weight footbridge is evaluated. The TMD can effectively reduce the vibration under the resonance of pedestrian-bridge, and TMD parameters are recommended for the determination by the Warburton optimization model.
文摘Reform dividends refer to the improvements in certain economic actors under the new, reformed institutional system as compared against the original system. Reform leads to greater economic growth potential by changing the institutional environment, which in turn increases the vibrancy and innovation of economic actors. The most economically convenient system is also in actuality the most effective market economic system. Reform based on public and collective actions should be based on the following principle: if institutional reform is evolving towards the enhancement of economic convenience, then we can be sure that reform is embarking on the path of releasing dividends.
文摘Measurements of atmospheric benzene and toluene were carried out continuously using dif- ferential optical absorption spectroscopy from August 7 to August 28 in Beijing during the period of vehicular restrictions. The correlations between traffic flows and totals of benzene and toluene were studied during the period of vehicular traffic restrictions from August 17 to August 20 and non-traffic restrictions on August 16 and August 21. The correlation coef- ficient was 0.8 between benzene and toluene. And the calculated daily mean value ratios of benzene to toluene were 0.43-0.50. During the period of vehicular restrictions, traffic flows were reduced about 11.8% and the levels of benzene and toluene were reduced by 11.4% and 12.8%, respectively. The vehicle emissions were recognized as the major sources for atmospheric benzene and toluene in Beijing.
文摘A novel design for an electrostriction appliance derived from the theory and application of electromagnetics is presented. The working principle, that is the application of gravitation and elasticity together to realize the "shrinking" and "extending" effect from the distortion and transforming power into mechanical energy, is briefly explained. The characteristic parameter relationships are established and the experimental research is performed. Experimental results show that this sort of electrostriction appliance can perform well as regards driving force and beeline displacement, and furthermore, its self-weight is smaller. This makes it suitable for beeline drivers with a high application value, especially for the driver of the bionic appliance. In the application of the electrostriction appliance to a bionics-flapping aircraft, the wings can work with a flapping angle in the range of a certain value by controlling the "shrinking" and "extending" of the electrostriction appliance. It can reduce the startup power and the impact load of the driver. The flapping extent of the wings will change when the voltage which is put into the electrostriction appliance varies. This makes it more flexible as the bionics-flapping aircraft realizes different actions of flying.
基金Supported by the National Natural Science Foundation of China(50575103, 50735002)~~
文摘The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Motion trajectory equations are derived for driving points of the stator. The motor operation and driving mechanisms are investigated. The vibration modes and the construction of the motor are analyzed by using the finite element method (FEM). A prototype motor is built and its stator dimension is 13 mm × 13 mm× 30 mm. The motor is experimentally characterized and the maximum output force of 5- 2 N is obtained.
文摘The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopkinson bars apparatus.The microstructures of the base metal(BM) and the welded metal(WM) were observed with optical microscope.The fracture characteristics of the BM and WM were characterized with scanning electronic microscope.In Ti-6Al-4V alloy joint,the flow stress of WM is higher than that of BM,while the fracture strain of WM is less than that of BM at strain rates of 103 and 10-3 s-1,respectively.The fracture strain of WM has apparent improvement when the strain rate rises from 10-3 to 103 s-1,while the fracture strain of BM almost has no change.At the same time,the fracture mode of WM alters from brittle to ductile fracture,which causes improvement of the fracture strain of WM.
文摘A mixed-signal driver chip for a 132 × 64-pixel passive matrix OLED panel is presented. The chip has a 64-step gray scale control using the PWM method and two-step voltage pre-charge technology to pre-charge the OLED pixels. It consists of a digital controller,SRAM for display data memory,a DC-DC voltage converter,reference current generators,a pre-charge voltage generator,64 common drivers, and 132 segment drivers. The single chip is a typical current-drive circuit. It has been implemented in a Chartered 0.35/μm 18V HV (DDD) CMOS process with a die area of 10mm× 2mm. Test results show that the power consumption of the whole chip and all pixels with a constant driving current of 100μA while displaying the highest gray scale is 294mW with a 12V high voltage supply and a 3V low voltage supply.
文摘To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A Peters-He finite-state wake model is improved to incorporate the operating-state-dependent KR to embody maneuver-induced effects. The curvature parameter KR varies with rotor forward speed, thrust and maneuvering angular rate according to a smoking experiment. Moreover, aerodynamic force/moment experiment indicates that after a quasi-step angular input, both on-axis and off-axis rotor responses show that an overshoot and its amplitude increases with the pitching rate. The comparison between theoretical and experimental results shows that the operating-state-accurate curvature parameter must be adopted to obtain accurate aerodynamic forces/moments, especially for the off-axis response. Additionally, combined with a dynamic wake distortion model, the obtained correlation agrees well with experimental data.
基金Project(2011ZX04016-081)supported by the National Science and Technology Major Project of China
文摘The deformation characteristic in the forming process of aluminum alloy 7075 cross valve under multi-way loading was investigated by numerical simulation method. The results indicate that there exist 4 deformation patterns in the multi-way loading forming process of cross valve, such as forward extrusion, backward extrusion, forward-lateral extrusion and backward-lateral extrusion; one or several patterns occur at different forming stages depending on loading path. In general, the main deformation pattern is forward extrusion or backward extrusion at the initial stage; the main deformation pattern is backward extrusion at the intermediate stage, and the backward extrusion and forward-lateral extrusion occur at the final stage. In order to improve the cavity fill and reduce the forming defects, the lateral extrusion deformation should be increased at the initial and intermediate stages, and the forward extrusion deformation at the final forging stage should be reduced or avoided.
基金The Research and Innovation Foundation for Graduate Students in Jiangsu Province(No.CX10B_070Z)
文摘In order to study the relationship between pavement friction management criteria and braking distance requirements of road geometric design, an approach for determining the braking distance considering pavement frictional properties is proposed. A finite element model (FEM) of a rolling tire under steady state is established based on theoretical hydrodynamics and mechanics principles, in which factors, including tire type, water film thickness, pavement surface properties, and vehicle speed, are considered. With the FEM, braking distances under different operating conditions are calculated. Furthermore, the allowable water film thickness is determined by comparing braking distances calculated with friction management criteria and that required by road geometric design. The results show that the braking distance is affected by the above operating conditions. As a result, it is necessary to maintain consistency between geometric design braking distance requirements and pavement friction management to achieve safe road operations.
基金supported by the Fund Project:Subsidized by the Project of City Active Fault Detection and Seismic Risk Assessment in Hebei Province(Handan City).
文摘The Taihang Mountain piedmont fault is a large-scale structure zone in north and east China which cross Beijing,with the NE-NNE extent spans approximately 620 km.It is very important to determine the fault zone activity due to the close relation of active structures and earthquakes.Regarding the fault activity,there are three different opinions:1) it is a large deep fault zone;2) it is an active fault zone and an earthquake structure belt;and 3) it is not an earthquake structure belt.In order to ascertain the active character of the fault,the deep tectonic setting and the activity since the Quaternary were investigated using recent seismic and drilling data to make a joint interpretation.The investigation results show that the Taihang Mountain piedmont fault is not a large lithospheric fault because the early middle Pleistocene(Q(P2)) layers are offset by the fault and the late middle Pleistocene(Q(P2)) and late Pleistocene layers are not offset by the fault.We determine that the Taihang Mountain piedmont fault in the area is not an active fault and is also not a large lithospheric fault.This study result provides important geological and geophysical data for city planning and construction in Hebei province and, especially,has great significance for seismic hazard assessment of the capital area.