Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revea...Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revealed that 9 out of the 10 mitochondrial genes, except for atp6, showed no difference in different tissues of the corresponding materials of NCα CMS system and that they might be constitutively expressed genes. Eight genes, such as orf139, orf222, atpl, cox1, cox2, cob, rm5S, and rm26S, showed no difference among the three tissues of all the materials detected. So the expression of these eight genes was not regulated by nuclear genes and was not tissue-specific. The transcripts of atp9 were identical among different tissues, but diverse among different materials, indicating that transcription of atp9 was neither controlled by nuclear gene nor tissue-specific. Gene atp6 displayed similar transcripts with the same size among different tissues of all the materials but differed in abundance among tissues of corresponding materials and its expression might be tissue-specific under regulation of nuclear gene. Moreover, three transcripts of orf222 were detected in the floral buds of NCa cms and fertile F1, but no transcript was detected in floral buds of the maintainer line.The transcription of orf139 was similar to that of orf222 but only two transcripts of 0.8 kb and 0.6 kb were produced. The atp9 probe detected a single transcript of 0.6 kb in NCa cms and in maintainer line and an additional transcript of 1.2 kb in fertile F1. The relationship of expression of orf222, orf139, and atp9 with NCa sterility was discussed.展开更多
This paper aims to explain the biochemistry of anthocyanin synthesis based on an overview of plant anthocyanin synthesis genes and environmental factors in the regulation of anthocyanin metabolism. The results show t...This paper aims to explain the biochemistry of anthocyanin synthesis based on an overview of plant anthocyanin synthesis genes and environmental factors in the regulation of anthocyanin metabolism. The results show that: ① The metabolism of anthocyanins in plants is affected by the temperature, light, ultraviolet, fertilization status, hormone levels and other factors, which affect the military anthocyanin biosynthetic genes, and then induce or inhibit the synthesis of anthocyanins. ② In the regulation of genes, some of the structural genes of anthocyanin synthesis showed promoting effect, while others showed inhibitory effect. At different environ- mental conditions, the regulation of gene activation and inhibition of the amount of different regulatory genes that anthocyanin accumulation is different, and cause different colors of plant-organs production. ③ In different environmental factors or hor-mones induced to produce the same or different regulation of gene expression changes in regulatory genes, resulting in several different anthocyanins or anthocyanin ratio changes, so that the color of plant organs in different colors.展开更多
RpoS protein is a σ factor of RNA polymerase that can control the expression of a group-specific gene, thus playing a vital role in bacteria. In bacteria, RpoS expression is under strict control and is mainly regulat...RpoS protein is a σ factor of RNA polymerase that can control the expression of a group-specific gene, thus playing a vital role in bacteria. In bacteria, RpoS expression is under strict control and is mainly regulated at three levels: transcription level, translation level and post-translational level. Environmental stress enters bacterial cells through signal transduction and leads to a series of variations in microenvironment, thereby causing changes of regulator and controlling its levels based on the direct and indirect interaction between regulator and RpoS protein. In addition, RpoS protein has played special roles in bacteria, therefore the changes of RpoS protein levels will lead to variations in expression levels of a large number of genes, thereby causing variations of bacterial response to different environmental stress and changes of certain characteristics of bacteria, which provides a new strategy for the control of bacterial diseases in the future. This paper reviewed the recent progress on the regulation of RpoS protein expression and its function in several common bacteria. Due to the functional complexity of RpoS protein, there are still a lot of unknown functions to be further identified.展开更多
Mitochondrial ATPase (mtATPase) complex plays vital roles in higher plants. It consists of a few subunits. In the present study, a new copy of the mtATPase subunit 6 (EC 3.6.1.34) gene (atp6) was cloned and characteri...Mitochondrial ATPase (mtATPase) complex plays vital roles in higher plants. It consists of a few subunits. In the present study, a new copy of the mtATPase subunit 6 (EC 3.6.1.34) gene (atp6) was cloned and characterized from Glycine max (L.) Merr., which has the shortest opening reading frame of 223 amino acids in all organisms examined and designated as the atp6 copy3 (atp6_3). PCR amplifications of the atp6_3 from 9 soybean cultivars combined with sequencing analysis suggested its wide occurrence in G. max . RFLP analysis of a RILs population implied that paternal inheritance of the atp6_3 might occur in G. max at undetermined frequency. Under salicylic acid (SA)_treated condition, the expression of the atp6 gene was significantly inhibited. The possible role of this inhibition was discussed.展开更多
cDNA encoding caffeoyl CoA O-methyltransferase (CCoAOMT) from Chinese white poplar ( Populus tomentosa Carr.) was cloned by RT-PCR and sequenced. Northern analysis displayed that the CCoAOMT was expressed specifically...cDNA encoding caffeoyl CoA O-methyltransferase (CCoAOMT) from Chinese white poplar ( Populus tomentosa Carr.) was cloned by RT-PCR and sequenced. Northern analysis displayed that the CCoAOMT was expressed specifically in the developing secondary xylem and its expression was coincident with lignification. The antisense CCoAOMT cDNA was transformed into P. tremula x P. alba mediated by Agrobacterium tumefaciens ( Smith et Townsend) Conn. Transgenic plants were identified with PCR, PCR-Southern and Southern analysis. Lignin content in 5- to 6-month-old transgenic plants was measured. One of the transgenic lines had significant reduction of 17.9% in Klason lignin content as compared with that of untransformed poplar. The results demonstrate that antisense repression of CCoAOMT is an efficient way to reduce lignin content for improving pulping property in engineered trees.展开更多
The recent progress in neural stem cells (NSCs) research has shed lights on possibility of repair and restoration of neuronal function in neurodegenerative diseases using stem cells. Induction of stem cells differen...The recent progress in neural stem cells (NSCs) research has shed lights on possibility of repair and restoration of neuronal function in neurodegenerative diseases using stem cells. Induction of stem cells differentiate into mature neurons is critical to achieve the clinical applications of NSCs. At present, molecular mechanisms modulating NSC differentiation are not fully understood. Differentiation of stem cells into neuronal and glial cells involves an array of changes in expression of transcription factors. Transcription factors then trigger the expression of a variety of central nervous system (CNS) genes that lead NSCs to differentiate towards different cell types. In this paper, we summarized the recent findings on the gene regulation of NSCs differentiation into neuronal cells.展开更多
Blastocyst formation is a crucial stage of early embryo development.Cell junction proteins and cell adhesion associated proteins are involved in the establishment of cell junction,and subsequently induce cell compacti...Blastocyst formation is a crucial stage of early embryo development.Cell junction proteins and cell adhesion associated proteins are involved in the establishment of cell junction,and subsequently induce cell compaction,blastocyst formation,differentiation of trophectoderm and maintenance of blastocyst expansion.Genes regulating development and differentiation participate in embryo development and differentiation of inner cell mass and trophectoderm,which controls the transition from the undifferentiation to differentiation state.Furthermore,cytokine and growth factor have influence on the proliferation of cells of inner cell mass.In a word,many proteins and factors are involved in the gene expression and regulation of blastocyst formation.展开更多
The feed forward loop (FFL), wherein a gene X can regulate target gene Z alone or cooperatively with gene Y, is one of the most important motifs in gene regulatory networks. Gene expression often involves a small nu...The feed forward loop (FFL), wherein a gene X can regulate target gene Z alone or cooperatively with gene Y, is one of the most important motifs in gene regulatory networks. Gene expression often involves a small number of reactant molecules and thus internal molecular fluctuation is considerable. Here we studied how an FFL responds to small external signal inputs at gene X, with particular attention paid to the fluctuation resonance (FR) phenomenon of gene Z. We found that for all coherent FFLs, where the sign of the direct regulation path from X to Z is the same as the overall sign of the indirect path via Y, the FR shows a regular single peak, while for incoherent FFLs, the FR exhibits distinct bimodal shapes. The results indicate that one could use small external signals to help identify the regulatory structure of an unknown FFL in complex gene networks.展开更多
What summarized in this paper is the progress in recent years' in the causdive mechanism on study of developmental toxicants as chemical teratogenesis in three aspects.(1) It is about the phenomena and the possibl...What summarized in this paper is the progress in recent years' in the causdive mechanism on study of developmental toxicants as chemical teratogenesis in three aspects.(1) It is about the phenomena and the possible reason of chemical teratogenesis in the preimplantation period. These research results are contrary to the past traditional concepts. (2) Due to using much more molecular biology methods, it can be observed more dead foetus phenomena before birth, which cannot be done previously and are of great value for reference. (3) When analyzing the genetic reason of chemical abnormal, a new research idea may be showed, i.e. the developmental abnormal due to chemical teratogenesis is induced with association of more relative genes and their expression abnormal. 13 references are involved in.展开更多
The tumor microenvironment (TME) plays a prominent role in the growth of tumor cells. As the major inflammatory component of the TME, M2d macrophages are educated by the TME such that they adopt an immunosnppressive...The tumor microenvironment (TME) plays a prominent role in the growth of tumor cells. As the major inflammatory component of the TME, M2d macrophages are educated by the TME such that they adopt an immunosnppressive role that promotes tumor metastasis and progression. Fra-1 forms activator protein-1 heterodimers with Jun partners and drives gene transcription. Fra-1 is thought to drastically induce tumorigenesis and progression. However, the functional role of Fra-1 in the generation of M2d macrophages is poorly understood to date. Here, we demonstrate that 4T1 mammary carcinoma cells, when co-cultured with RAW264.7 macrophage cells, skew the RAW264.7 macrophage cell differentiation into M2d macrophages. The 4T1 cells stimulate de novo overexpression of Fra-1 in RAW264.7 cells, and then Fra-1 binds to the interleukin 6 (IL-6) promoter to increase the production of the cytokine IL-6 in RAW264.7 cells. IL-6 acts in an autocrine fashion to skew RAW264.7 macrophage cell differentiation into M2d macrophages. These findings open new insights into how to reverse M2d macrophage-induced immune tolerance to improve the efficacy of immunotherapeutic approaches.展开更多
Functional analysis of control genes is playing an important role in animal development.The research is mainly focused on developing a method of estimating the gene's effect or function in the development of anima...Functional analysis of control genes is playing an important role in animal development.The research is mainly focused on developing a method of estimating the gene's effect or function in the development of animals.In this article,the gene's expression and control are described by models of quantitative genetics,which include the genetic models about the genes with no interaction and interaction effect.On this basis,a method analyzing the functions of control genes in batches is advanced,the method includes three steps as follows: Firstly,describe the gene's expression and control with multiple regression models in statistic method in different conditions.Secondly,collect the material of gene's polymorphism related to the gene's expression and control.Because,gene's polymorphism or the codominant molecular marker electropherogram in a gene locus present 3 states,and can be expressed with -1,0 and 1 respectively.The author thinks it can be regarded as levels in orthogonal layout.Discard the materials of gene's polymorphism not fitting the orthogonal layout,and use the materials of gene's polymorphism fitting the orthogonal layout as the data to estimate the gene's effects.Thirdly,analyze the gene's effect or function with equations as follows:suppose that a quantitative trait is controlled by N gene loci,in each locus there are two alleles,the alleles' effects are A GM1 ?a GM1 ;A GM2 ? a GM2 ;...;A GMi ?a GMi ;...;A GMN ;a GMN units respectively.When the genotype in a locus is heterozygous A GMi a GMi ,the interaction coefficient of alleles in a locus is K units.If there is no interaction among different gene loci,the author thinks,the gene's effects and gene's type can be estimated by using such equation: P GM =2∑Ni=1(A i-a i+K i)+∑Ni=1(A i-a i)M GMi -∑Ni=1K GMi M GMi 2 If there are interactions among different gene loci,and the effect of the x th gene's state combined with the y th gene's state in the k th gene group is defined as Y xyr ,and let gene group electropherogram states be r (where r∈ ),the author thinks,the gene group's effects can be estimated by the equation: Y xyr = K PCxy0 +K PCxy r+K PCxy' r 2+K PCxy'' 3+K PCxy(3') r 4+K PCxy(4') r 5+K PCxy(5') r 6+K PCxy(6') r 7+K PCxy(7') r 8 If there are interactions among more genes,the analogous method can also be used. In this way,be using the gene's codominent marker materials fitting the orthogonal layout,the gene's expression and control can be researched by the method of multiple regression,the gene's relative effect can be estimated,the overdominant gene's overdominant coefficient can be assessed,the gene's type can be identified,the interaction gene group's relative effect and the interaction gene's relation can be estimated as well,and furthermore,the gene's relation can be expressed in equations.For the sake of understanding the method used in this paper,the rout to prove it is given as well.Finally,the author thinks,this method is very useful to research the gene's function in molecular developmental biology.展开更多
MicroRNAs (miRNAs) are an emerging class of highly conserved non-coding small RNAs that regulate gene expression at the post-transcriptional level. It is now clear that miRNAs can potentially regulate every aspect of ...MicroRNAs (miRNAs) are an emerging class of highly conserved non-coding small RNAs that regulate gene expression at the post-transcriptional level. It is now clear that miRNAs can potentially regulate every aspect of cellular activity, including differentiation and development, metabolism, proliferation, apoptotic cell death, viral infection and tumorigenesis. Recent studies provide clear evidence that miRNAs are abundant in the liver and modulate a diverse spectrum of liver functions. Deregulation of miRNA expression may be a key pathogenetic factor in many liver diseases including viral hepatitis, hepatocellular cancer and polycystic liver diseases. A clearer understanding of the mechanisms involved in miRNA deregulation will offer new diagnostic and therapeutic strategies to treat liver diseases. Moreover, better understanding of miRNA regulation and identification of tissue-specific miRNA targets employing transgenic/knockout models and/or modulating oligonucleotides will improve our knowledge of liver physiology and diseases.展开更多
DNA methylation is a type of epigenetic modification in the human genome,which means that gene expression is regulated without altering the DNA sequence.Methylation and the relationship between methylation and cancer ...DNA methylation is a type of epigenetic modification in the human genome,which means that gene expression is regulated without altering the DNA sequence.Methylation and the relationship between methylation and cancer have been the focus of molecular biology researches.Methylation represses gene expression and can influence embryogenesis and tumorigenesis.In different tissues and at different stages of life,the level of methylation of DNA varies,implying a fundamental but distinct role for methylation.When genes are repressed by abnormal methylation,the resulting effects can include instability of that gene and inactivation of a tumor suppressor gene.MicroRNAs have some aspects in common with this regulation of gene expression.Here we reviewed the influence of gene methylation on cancer and analyzed the methods used to profile methylation.We also assessed the correlation between methylation and other epigenetic modifications and microRNAs.About 55 845 research papers have been published about methylation,and one-fifth of these are about the appearance of methylation in cancer.We conclude that methylation does play a role in some cancer types.展开更多
Peptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. Wh...Peptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. When bound to double-stranded DNA (dsDNA) targets, the PNA molecule replaces one DNA strand in the duplex by strand invasion to form a PNA/DNA/PNA [or (PNA)2/DNA] triplex structure and the displaced DNA strand exists as a singlestranded D-loop. PNA has been used in many studies as research tools for gene regulation and gene targeting. The Dloops generated from the PNA binding have also been demonstrated for its potential in initiating transcription and inducing gene expression. PNA provides a powerful tool to study the mechanism of transcription and an innovative strategy to regulate target gene expression. An understanding of the PNA-mediated gene regulation will have important clinical implications in treatment of many human diseases including genetic, cancerous, and age-related diseases.展开更多
MicroRNAs are short regulatory RNAs that negatively modulate gene expression at the post-transcriptional level, and are deeply involved in the pathogenesis of several types of cancers. To investigate whether specific ...MicroRNAs are short regulatory RNAs that negatively modulate gene expression at the post-transcriptional level, and are deeply involved in the pathogenesis of several types of cancers. To investigate whether specific miRNAs and their target genes participate in the molecular pathogenesis of laryngeal carcinoma, oligonucleotide microarrays were used to assess the differential expression profiles of microRNAs and mRNAs in laryngeal carcinoma tissues compared with normal tissues. The oncogeuic miRNA, microRNA-21 (miR-21), was found to he npregulated in laryngeal carcinoma tissues. Knockdown of miR-21 by specific antisense oligonucleotides inhibited the proliferation potential of HEp-2 cells, whereas overexpression of miR-21 elevated growth activity of the cells, as detected by the colony formation assay. The cell number reduction caused by miR-21 inhibition was due to the loss of control of the G1-S phase transition, instead of a noticeable increase in apoptosis. Subsequently, a new target gene of miR- 21, BTG2, was found to be downregulated in laryngeal carcinoma tissues. BTG2 is known to act as a pan-cell cycle regulator and tumor suppressor. These findings indicate that aberrant expression of miR-21 may contribute to the malignant phenotype of laryngeal carcinoma by maintaining a low level of BTG2. The identification of the oneogenic miR-21 and its target gene, BTG2, in laryngeal carcinoma is potentially valuable for cancer diagnosis and therapy.展开更多
Macroautophagy is a multistep, vacuolar, degradation pathway terminating in the lysosomal compartment, and it is of fundamental importance in tissue homeostasis. In this review, we consider macroautophagy in the light...Macroautophagy is a multistep, vacuolar, degradation pathway terminating in the lysosomal compartment, and it is of fundamental importance in tissue homeostasis. In this review, we consider macroautophagy in the light of recent advances in our understanding of the formation of autophagosomes, which are double-membrane-bound vacuoles that sequester cytoplasmic cargos and deliver them to lysosomes. In most cases, this final step is preceded by a maturation step during which autophagosomes interact with the endocytic pathway. The discovery of AuTophaGyrelated genes has greatly increased our knowledge about the mechanism responsible for antophagosome formation, and there has also been progress in the understanding of molecular aspects of autophagosome maturation. Finally, the regulation of autophagy is now better understood because of the discovery that the activity of Atg complexes is targeted by protein kinases, and owing to the importance of nuclear regulation via transcription factors in regulating the expression of autophagy genes.展开更多
Once thought to be transcriptional noise, large non-coding RNAs (IncRNAs) have recently been demonstrated to be functional molecules. The cell-type-specific expression patterns of lncRNAs suggest that their transcri...Once thought to be transcriptional noise, large non-coding RNAs (IncRNAs) have recently been demonstrated to be functional molecules. The cell-type-specific expression patterns of lncRNAs suggest that their transcription may be regulated epigenetically. Using a custom-designed microarray, here we examine the expression profile of IncRNAs in embryonic stem (ES) cells, lineage-restricted neuronal progenitor cells, and terminally differentiated fibroblasts. In addition, we also analyze the relationship between their expression and their promoter H3K4 and H3K27 methyla- tion patterns. We find that numerous lncRNAs in these cell types undergo changes in the levels of expression and promoter H3K4me3 and H3K27me3. Interestingly, lncRNAs that are expressed at lower levels in ES cells exhibit higher levels of H3K27me3 at their promoters. Consistent with this result, knockdown of the H3K27me3 methyltransferase Ezh2 results in derepression of these IncRNAs in ES cells. Thus, our results establish a role for Ezh2-mediated H3K27 methylation in lncRNA silencing in ES cells and reveal that lncRNAs are subject to epigenetic regulation in a similar manner to that of the protein-coding genes.展开更多
In the monocot rice species Oryza sativa L., one of the most striking morphological processes during reproductive development is the concurrence of panicle development with the sequential elongation of upper internod...In the monocot rice species Oryza sativa L., one of the most striking morphological processes during reproductive development is the concurrence of panicle development with the sequential elongation of upper internodes (UPIs). To elucidate the underlying molecular mechanisms, we cloned the rice gene NECK LEAF 1 (NL1), which when mutated results in delays in flowering time, smaller panicles with overgrown bracts and abnormal UPI elongation patterns. The NL1 gene encodes a GATA-type transcription factor with a single zinc finger domain, and its transcripts are de- tected predominantly in the bract primordia, which normally degenerate in the wild-type plants. Overexpression of NL1 in transgenic plants often gives rise to severe growth retardation, less vegetative phytomers and smaller leaves, suggesting that NL1 plays an important role in organ differentiation. A novel mutant allele of PLASTOCHRON1 (PLAD, a gene known to play a key role in regulating leaf initiation, was identified in this study. Genetic analysis demonstrated an interaction between nil and plal, with NL1 acting upstream of PLA1. The expression level and spatial pattern of PLA1 were found to be altered in the nil mutant. Furthermore, the expression of two regulators of flowering, Hd3a and OsMADS1, was also affected in the nil mutant. On the basis of these findings, we propose that NL1 is an intrinsic factor that modulates and coordinates organogenesis through regulating the expression of PLA1 and other regulatory genes during reproductive development in rice.展开更多
基金This work was supported by the National High Technology R&D Project of China (No.2002AA207009) and Wuhan Dawn Project for Youth (No. 20035002016-36).
文摘Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revealed that 9 out of the 10 mitochondrial genes, except for atp6, showed no difference in different tissues of the corresponding materials of NCα CMS system and that they might be constitutively expressed genes. Eight genes, such as orf139, orf222, atpl, cox1, cox2, cob, rm5S, and rm26S, showed no difference among the three tissues of all the materials detected. So the expression of these eight genes was not regulated by nuclear genes and was not tissue-specific. The transcripts of atp9 were identical among different tissues, but diverse among different materials, indicating that transcription of atp9 was neither controlled by nuclear gene nor tissue-specific. Gene atp6 displayed similar transcripts with the same size among different tissues of all the materials but differed in abundance among tissues of corresponding materials and its expression might be tissue-specific under regulation of nuclear gene. Moreover, three transcripts of orf222 were detected in the floral buds of NCa cms and fertile F1, but no transcript was detected in floral buds of the maintainer line.The transcription of orf139 was similar to that of orf222 but only two transcripts of 0.8 kb and 0.6 kb were produced. The atp9 probe detected a single transcript of 0.6 kb in NCa cms and in maintainer line and an additional transcript of 1.2 kb in fertile F1. The relationship of expression of orf222, orf139, and atp9 with NCa sterility was discussed.
基金Supported by Gansu Natural Science Fund863 Project in China~~
文摘This paper aims to explain the biochemistry of anthocyanin synthesis based on an overview of plant anthocyanin synthesis genes and environmental factors in the regulation of anthocyanin metabolism. The results show that: ① The metabolism of anthocyanins in plants is affected by the temperature, light, ultraviolet, fertilization status, hormone levels and other factors, which affect the military anthocyanin biosynthetic genes, and then induce or inhibit the synthesis of anthocyanins. ② In the regulation of genes, some of the structural genes of anthocyanin synthesis showed promoting effect, while others showed inhibitory effect. At different environ- mental conditions, the regulation of gene activation and inhibition of the amount of different regulatory genes that anthocyanin accumulation is different, and cause different colors of plant-organs production. ③ In different environmental factors or hor-mones induced to produce the same or different regulation of gene expression changes in regulatory genes, resulting in several different anthocyanins or anthocyanin ratio changes, so that the color of plant organs in different colors.
基金Supported by Science and Technology Program of Shandong Province (No. 2010GHY10501)National Department Public Benefit Research Fond of China (No. 200909020)~~
文摘RpoS protein is a σ factor of RNA polymerase that can control the expression of a group-specific gene, thus playing a vital role in bacteria. In bacteria, RpoS expression is under strict control and is mainly regulated at three levels: transcription level, translation level and post-translational level. Environmental stress enters bacterial cells through signal transduction and leads to a series of variations in microenvironment, thereby causing changes of regulator and controlling its levels based on the direct and indirect interaction between regulator and RpoS protein. In addition, RpoS protein has played special roles in bacteria, therefore the changes of RpoS protein levels will lead to variations in expression levels of a large number of genes, thereby causing variations of bacterial response to different environmental stress and changes of certain characteristics of bacteria, which provides a new strategy for the control of bacterial diseases in the future. This paper reviewed the recent progress on the regulation of RpoS protein expression and its function in several common bacteria. Due to the functional complexity of RpoS protein, there are still a lot of unknown functions to be further identified.
文摘Mitochondrial ATPase (mtATPase) complex plays vital roles in higher plants. It consists of a few subunits. In the present study, a new copy of the mtATPase subunit 6 (EC 3.6.1.34) gene (atp6) was cloned and characterized from Glycine max (L.) Merr., which has the shortest opening reading frame of 223 amino acids in all organisms examined and designated as the atp6 copy3 (atp6_3). PCR amplifications of the atp6_3 from 9 soybean cultivars combined with sequencing analysis suggested its wide occurrence in G. max . RFLP analysis of a RILs population implied that paternal inheritance of the atp6_3 might occur in G. max at undetermined frequency. Under salicylic acid (SA)_treated condition, the expression of the atp6 gene was significantly inhibited. The possible role of this inhibition was discussed.
文摘cDNA encoding caffeoyl CoA O-methyltransferase (CCoAOMT) from Chinese white poplar ( Populus tomentosa Carr.) was cloned by RT-PCR and sequenced. Northern analysis displayed that the CCoAOMT was expressed specifically in the developing secondary xylem and its expression was coincident with lignification. The antisense CCoAOMT cDNA was transformed into P. tremula x P. alba mediated by Agrobacterium tumefaciens ( Smith et Townsend) Conn. Transgenic plants were identified with PCR, PCR-Southern and Southern analysis. Lignin content in 5- to 6-month-old transgenic plants was measured. One of the transgenic lines had significant reduction of 17.9% in Klason lignin content as compared with that of untransformed poplar. The results demonstrate that antisense repression of CCoAOMT is an efficient way to reduce lignin content for improving pulping property in engineered trees.
基金supported by the National Natural Science Foundation of China(No.30470587)the Natural Science Foundation of Jiangsu Province(No.BK2004037)the Department of Personnel of Jiangsu Province(No.L2134501).
文摘The recent progress in neural stem cells (NSCs) research has shed lights on possibility of repair and restoration of neuronal function in neurodegenerative diseases using stem cells. Induction of stem cells differentiate into mature neurons is critical to achieve the clinical applications of NSCs. At present, molecular mechanisms modulating NSC differentiation are not fully understood. Differentiation of stem cells into neuronal and glial cells involves an array of changes in expression of transcription factors. Transcription factors then trigger the expression of a variety of central nervous system (CNS) genes that lead NSCs to differentiate towards different cell types. In this paper, we summarized the recent findings on the gene regulation of NSCs differentiation into neuronal cells.
文摘Blastocyst formation is a crucial stage of early embryo development.Cell junction proteins and cell adhesion associated proteins are involved in the establishment of cell junction,and subsequently induce cell compaction,blastocyst formation,differentiation of trophectoderm and maintenance of blastocyst expansion.Genes regulating development and differentiation participate in embryo development and differentiation of inner cell mass and trophectoderm,which controls the transition from the undifferentiation to differentiation state.Furthermore,cytokine and growth factor have influence on the proliferation of cells of inner cell mass.In a word,many proteins and factors are involved in the gene expression and regulation of blastocyst formation.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20673106).
文摘The feed forward loop (FFL), wherein a gene X can regulate target gene Z alone or cooperatively with gene Y, is one of the most important motifs in gene regulatory networks. Gene expression often involves a small number of reactant molecules and thus internal molecular fluctuation is considerable. Here we studied how an FFL responds to small external signal inputs at gene X, with particular attention paid to the fluctuation resonance (FR) phenomenon of gene Z. We found that for all coherent FFLs, where the sign of the direct regulation path from X to Z is the same as the overall sign of the indirect path via Y, the FR shows a regular single peak, while for incoherent FFLs, the FR exhibits distinct bimodal shapes. The results indicate that one could use small external signals to help identify the regulatory structure of an unknown FFL in complex gene networks.
文摘What summarized in this paper is the progress in recent years' in the causdive mechanism on study of developmental toxicants as chemical teratogenesis in three aspects.(1) It is about the phenomena and the possible reason of chemical teratogenesis in the preimplantation period. These research results are contrary to the past traditional concepts. (2) Due to using much more molecular biology methods, it can be observed more dead foetus phenomena before birth, which cannot be done previously and are of great value for reference. (3) When analyzing the genetic reason of chemical abnormal, a new research idea may be showed, i.e. the developmental abnormal due to chemical teratogenesis is induced with association of more relative genes and their expression abnormal. 13 references are involved in.
文摘The tumor microenvironment (TME) plays a prominent role in the growth of tumor cells. As the major inflammatory component of the TME, M2d macrophages are educated by the TME such that they adopt an immunosnppressive role that promotes tumor metastasis and progression. Fra-1 forms activator protein-1 heterodimers with Jun partners and drives gene transcription. Fra-1 is thought to drastically induce tumorigenesis and progression. However, the functional role of Fra-1 in the generation of M2d macrophages is poorly understood to date. Here, we demonstrate that 4T1 mammary carcinoma cells, when co-cultured with RAW264.7 macrophage cells, skew the RAW264.7 macrophage cell differentiation into M2d macrophages. The 4T1 cells stimulate de novo overexpression of Fra-1 in RAW264.7 cells, and then Fra-1 binds to the interleukin 6 (IL-6) promoter to increase the production of the cytokine IL-6 in RAW264.7 cells. IL-6 acts in an autocrine fashion to skew RAW264.7 macrophage cell differentiation into M2d macrophages. These findings open new insights into how to reverse M2d macrophage-induced immune tolerance to improve the efficacy of immunotherapeutic approaches.
文摘Functional analysis of control genes is playing an important role in animal development.The research is mainly focused on developing a method of estimating the gene's effect or function in the development of animals.In this article,the gene's expression and control are described by models of quantitative genetics,which include the genetic models about the genes with no interaction and interaction effect.On this basis,a method analyzing the functions of control genes in batches is advanced,the method includes three steps as follows: Firstly,describe the gene's expression and control with multiple regression models in statistic method in different conditions.Secondly,collect the material of gene's polymorphism related to the gene's expression and control.Because,gene's polymorphism or the codominant molecular marker electropherogram in a gene locus present 3 states,and can be expressed with -1,0 and 1 respectively.The author thinks it can be regarded as levels in orthogonal layout.Discard the materials of gene's polymorphism not fitting the orthogonal layout,and use the materials of gene's polymorphism fitting the orthogonal layout as the data to estimate the gene's effects.Thirdly,analyze the gene's effect or function with equations as follows:suppose that a quantitative trait is controlled by N gene loci,in each locus there are two alleles,the alleles' effects are A GM1 ?a GM1 ;A GM2 ? a GM2 ;...;A GMi ?a GMi ;...;A GMN ;a GMN units respectively.When the genotype in a locus is heterozygous A GMi a GMi ,the interaction coefficient of alleles in a locus is K units.If there is no interaction among different gene loci,the author thinks,the gene's effects and gene's type can be estimated by using such equation: P GM =2∑Ni=1(A i-a i+K i)+∑Ni=1(A i-a i)M GMi -∑Ni=1K GMi M GMi 2 If there are interactions among different gene loci,and the effect of the x th gene's state combined with the y th gene's state in the k th gene group is defined as Y xyr ,and let gene group electropherogram states be r (where r∈ ),the author thinks,the gene group's effects can be estimated by the equation: Y xyr = K PCxy0 +K PCxy r+K PCxy' r 2+K PCxy'' 3+K PCxy(3') r 4+K PCxy(4') r 5+K PCxy(5') r 6+K PCxy(6') r 7+K PCxy(7') r 8 If there are interactions among more genes,the analogous method can also be used. In this way,be using the gene's codominent marker materials fitting the orthogonal layout,the gene's expression and control can be researched by the method of multiple regression,the gene's relative effect can be estimated,the overdominant gene's overdominant coefficient can be assessed,the gene's type can be identified,the interaction gene group's relative effect and the interaction gene's relation can be estimated as well,and furthermore,the gene's relation can be expressed in equations.For the sake of understanding the method used in this paper,the rout to prove it is given as well.Finally,the author thinks,this method is very useful to research the gene's function in molecular developmental biology.
基金Supported by National Institute of Health grant (R01 AI071321)the Tobacco Settlement Foundation of Nebraska (LB 692)
文摘MicroRNAs (miRNAs) are an emerging class of highly conserved non-coding small RNAs that regulate gene expression at the post-transcriptional level. It is now clear that miRNAs can potentially regulate every aspect of cellular activity, including differentiation and development, metabolism, proliferation, apoptotic cell death, viral infection and tumorigenesis. Recent studies provide clear evidence that miRNAs are abundant in the liver and modulate a diverse spectrum of liver functions. Deregulation of miRNA expression may be a key pathogenetic factor in many liver diseases including viral hepatitis, hepatocellular cancer and polycystic liver diseases. A clearer understanding of the mechanisms involved in miRNA deregulation will offer new diagnostic and therapeutic strategies to treat liver diseases. Moreover, better understanding of miRNA regulation and identification of tissue-specific miRNA targets employing transgenic/knockout models and/or modulating oligonucleotides will improve our knowledge of liver physiology and diseases.
文摘DNA methylation is a type of epigenetic modification in the human genome,which means that gene expression is regulated without altering the DNA sequence.Methylation and the relationship between methylation and cancer have been the focus of molecular biology researches.Methylation represses gene expression and can influence embryogenesis and tumorigenesis.In different tissues and at different stages of life,the level of methylation of DNA varies,implying a fundamental but distinct role for methylation.When genes are repressed by abnormal methylation,the resulting effects can include instability of that gene and inactivation of a tumor suppressor gene.MicroRNAs have some aspects in common with this regulation of gene expression.Here we reviewed the influence of gene methylation on cancer and analyzed the methods used to profile methylation.We also assessed the correlation between methylation and other epigenetic modifications and microRNAs.About 55 845 research papers have been published about methylation,and one-fifth of these are about the appearance of methylation in cancer.We conclude that methylation does play a role in some cancer types.
文摘Peptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. When bound to double-stranded DNA (dsDNA) targets, the PNA molecule replaces one DNA strand in the duplex by strand invasion to form a PNA/DNA/PNA [or (PNA)2/DNA] triplex structure and the displaced DNA strand exists as a singlestranded D-loop. PNA has been used in many studies as research tools for gene regulation and gene targeting. The Dloops generated from the PNA binding have also been demonstrated for its potential in initiating transcription and inducing gene expression. PNA provides a powerful tool to study the mechanism of transcription and an innovative strategy to regulate target gene expression. An understanding of the PNA-mediated gene regulation will have important clinical implications in treatment of many human diseases including genetic, cancerous, and age-related diseases.
基金Acknowledgments This work was supported by grants from the National Natural Science Foundation of China (No. 30873017) and the Key Program of the Natural Science Foundation of Tianjing (No. 08JCZDJC23300). We thank Tianjin First Center Hospital for providing human laryngeal tissue samples. We also thank the College of Public Health of Tianjin Medical University for the technical assistance in fluorescent detection. The ArrayExpress accession numbers of miRNA microarray design and cDNA microarray design are A-MEXP-1506 and A-MEXP-1511. The ArrayExpress accession numbers of miRNA microarray experiment and eDNA microarray experiment are E-MEXP-2039 and E-MEXP-2056.
文摘MicroRNAs are short regulatory RNAs that negatively modulate gene expression at the post-transcriptional level, and are deeply involved in the pathogenesis of several types of cancers. To investigate whether specific miRNAs and their target genes participate in the molecular pathogenesis of laryngeal carcinoma, oligonucleotide microarrays were used to assess the differential expression profiles of microRNAs and mRNAs in laryngeal carcinoma tissues compared with normal tissues. The oncogeuic miRNA, microRNA-21 (miR-21), was found to he npregulated in laryngeal carcinoma tissues. Knockdown of miR-21 by specific antisense oligonucleotides inhibited the proliferation potential of HEp-2 cells, whereas overexpression of miR-21 elevated growth activity of the cells, as detected by the colony formation assay. The cell number reduction caused by miR-21 inhibition was due to the loss of control of the G1-S phase transition, instead of a noticeable increase in apoptosis. Subsequently, a new target gene of miR- 21, BTG2, was found to be downregulated in laryngeal carcinoma tissues. BTG2 is known to act as a pan-cell cycle regulator and tumor suppressor. These findings indicate that aberrant expression of miR-21 may contribute to the malignant phenotype of laryngeal carcinoma by maintaining a low level of BTG2. The identification of the oneogenic miR-21 and its target gene, BTG2, in laryngeal carcinoma is potentially valuable for cancer diagnosis and therapy.
文摘Macroautophagy is a multistep, vacuolar, degradation pathway terminating in the lysosomal compartment, and it is of fundamental importance in tissue homeostasis. In this review, we consider macroautophagy in the light of recent advances in our understanding of the formation of autophagosomes, which are double-membrane-bound vacuoles that sequester cytoplasmic cargos and deliver them to lysosomes. In most cases, this final step is preceded by a maturation step during which autophagosomes interact with the endocytic pathway. The discovery of AuTophaGyrelated genes has greatly increased our knowledge about the mechanism responsible for antophagosome formation, and there has also been progress in the understanding of molecular aspects of autophagosome maturation. Finally, the regulation of autophagy is now better understood because of the discovery that the activity of Atg complexes is targeted by protein kinases, and owing to the importance of nuclear regulation via transcription factors in regulating the expression of autophagy genes.
文摘Once thought to be transcriptional noise, large non-coding RNAs (IncRNAs) have recently been demonstrated to be functional molecules. The cell-type-specific expression patterns of lncRNAs suggest that their transcription may be regulated epigenetically. Using a custom-designed microarray, here we examine the expression profile of IncRNAs in embryonic stem (ES) cells, lineage-restricted neuronal progenitor cells, and terminally differentiated fibroblasts. In addition, we also analyze the relationship between their expression and their promoter H3K4 and H3K27 methyla- tion patterns. We find that numerous lncRNAs in these cell types undergo changes in the levels of expression and promoter H3K4me3 and H3K27me3. Interestingly, lncRNAs that are expressed at lower levels in ES cells exhibit higher levels of H3K27me3 at their promoters. Consistent with this result, knockdown of the H3K27me3 methyltransferase Ezh2 results in derepression of these IncRNAs in ES cells. Thus, our results establish a role for Ezh2-mediated H3K27 methylation in lncRNA silencing in ES cells and reveal that lncRNAs are subject to epigenetic regulation in a similar manner to that of the protein-coding genes.
文摘In the monocot rice species Oryza sativa L., one of the most striking morphological processes during reproductive development is the concurrence of panicle development with the sequential elongation of upper internodes (UPIs). To elucidate the underlying molecular mechanisms, we cloned the rice gene NECK LEAF 1 (NL1), which when mutated results in delays in flowering time, smaller panicles with overgrown bracts and abnormal UPI elongation patterns. The NL1 gene encodes a GATA-type transcription factor with a single zinc finger domain, and its transcripts are de- tected predominantly in the bract primordia, which normally degenerate in the wild-type plants. Overexpression of NL1 in transgenic plants often gives rise to severe growth retardation, less vegetative phytomers and smaller leaves, suggesting that NL1 plays an important role in organ differentiation. A novel mutant allele of PLASTOCHRON1 (PLAD, a gene known to play a key role in regulating leaf initiation, was identified in this study. Genetic analysis demonstrated an interaction between nil and plal, with NL1 acting upstream of PLA1. The expression level and spatial pattern of PLA1 were found to be altered in the nil mutant. Furthermore, the expression of two regulators of flowering, Hd3a and OsMADS1, was also affected in the nil mutant. On the basis of these findings, we propose that NL1 is an intrinsic factor that modulates and coordinates organogenesis through regulating the expression of PLA1 and other regulatory genes during reproductive development in rice.