A new equation for predicting surface tension is proposed based on the thermodynamic definition of surface tension and the expression of the Gibbs free energy of the system. Using the NRTL equation to represent the ex...A new equation for predicting surface tension is proposed based on the thermodynamic definition of surface tension and the expression of the Gibbs free energy of the system. Using the NRTL equation to represent the excess Gibbs free energy, a two-parameter surface tension equation is derived. The feasibility of the new equation has been tested in terms of 124 binary and 16 multicomponent systems(13-ternary and 3-quaternary) with absolute relative deviations of 0.59% and 1.55% respectively. This model is also predictive for the temperature dependence of surface tension of liquid mixtures. It is shown that, with good accuracy, this equation is simple and reliable for practical use.展开更多
基金the Scientific Research Foundation of the State Education Ministry for Returned Overseas Chinese Scholar.
文摘A new equation for predicting surface tension is proposed based on the thermodynamic definition of surface tension and the expression of the Gibbs free energy of the system. Using the NRTL equation to represent the excess Gibbs free energy, a two-parameter surface tension equation is derived. The feasibility of the new equation has been tested in terms of 124 binary and 16 multicomponent systems(13-ternary and 3-quaternary) with absolute relative deviations of 0.59% and 1.55% respectively. This model is also predictive for the temperature dependence of surface tension of liquid mixtures. It is shown that, with good accuracy, this equation is simple and reliable for practical use.