期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
李竞先生治疗皮肤溃疡的经验 被引量:3
1
作者 周方 《陕西中医》 2012年第9期1195-1197,共3页
目的:介绍李竞先生治疗皮肤疮疡的宝贵经验,传承中医疡科有效的独特的治病方法。方法:跟师学习,总结先生的学术思想和临床经验。结论:"给邪出路"、"去腐生肌"、"肌平皮长"、"神经平衡"的治疗... 目的:介绍李竞先生治疗皮肤疮疡的宝贵经验,传承中医疡科有效的独特的治病方法。方法:跟师学习,总结先生的学术思想和临床经验。结论:"给邪出路"、"去腐生肌"、"肌平皮长"、"神经平衡"的治疗原则应贯穿治疗疡科疾病始终,其换药方法是多年临床研究的经验总结,独具特色。 展开更多
关键词 溃疡/中医药疗法 中医师 @李竞
下载PDF
Uncalibrated visual servoing design for competitive networked robots
2
作者 卢翔 Liu Jingtai +2 位作者 Yu Kaiyan Li Yan Sun Lei 《High Technology Letters》 EI CAS 2013年第4期413-421,共9页
In this paper,a method with an eye-in-hand configuration is developed to hit targets during visual tracking for the TLS(Tele-Light Saber) game.It is not necessary to calibrate camera parameters and predict the traject... In this paper,a method with an eye-in-hand configuration is developed to hit targets during visual tracking for the TLS(Tele-Light Saber) game.It is not necessary to calibrate camera parameters and predict the trajectory of the moving object.Firstly,the expression of the image Jacobian matrix for the eye-in-hand configuration is proposed,and then an update law is designed to estimate the image Jacobian online.Furthermore,a control scheme is presented and the Lyapunov method is employed to prove asymptotic convergence of image errors.No assumption for the moving objects is needed.Finally,both simulation and experimental results are shown to support the approach in this paper. 展开更多
关键词 visual servoing uncalibrated eye-in-hand robust information filter Lyapunov method
下载PDF
Traveling wave solutions for a diffusive predator-prey model with predator saturation and competition
3
作者 Lin Zhu Shi-Liang Wu 《International Journal of Biomathematics》 2017年第6期231-253,共23页
The purpose of this paper is to study the traveling wave solutions of a diffusive predator- prey model with predator saturation and competition functional response. The system admits three equilibria: a zero equilibr... The purpose of this paper is to study the traveling wave solutions of a diffusive predator- prey model with predator saturation and competition functional response. The system admits three equilibria: a zero equilibrium E0, a boundary equilibrium E1 and a posi- tive equilibrium E. under some conditions. We establish the existence of two types of traveling wave solutions which connect E0 and E. and E1 and E., respectively. Our main arguments are based on a simplified shooting method, a sandwich method and constructions of appropriate Lyapunov functions. Our particular interest is to investi- gate the oscillation of both types of traveling wave solutions when they approach the positive equilibrium. 展开更多
关键词 Diffusive predator prey model traveling wave solution shooting argument Wazewski's set LaSalle's invariance principle.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部