AIM:To investigate the effect of acetyl-L-carnitine(ALCAR)on cell viability,morphological integrity,and vascular endothelial growth factor(VEGF)expression in human retinal pigment epithelium(ARPE-19)cells using a hypo...AIM:To investigate the effect of acetyl-L-carnitine(ALCAR)on cell viability,morphological integrity,and vascular endothelial growth factor(VEGF)expression in human retinal pigment epithelium(ARPE-19)cells using a hypoxic model.METHODS:In the first set of experiments,the optimal CoCl_(2) dose was determined by exposing ARPE-19 cell cultures to different concentrations.To evaluate the effect of ALCAR on cell viability,five groups of ARPE-19 cell culture were established that included a control group,a sham group(200μM CoCl_(2)),and groups that received 1,10 and 100 mM doses of ALCAR combined with 200μM CoCl_(2),respectively.The cell viability was measured by MTT assay.The morphological characteristics of cells were observed by an inverted phase contrast microscope.The levels of VEGF and HIF-1α secretion by ARPE-19 cells were detected by enzyme linked immunosorbent assay(ELISA)assay.RESULTS:ARPE-19 cells were exposed to different doses of CoCl_(2) in order to create a hypoxia model.Nevertheless,when exposed to a concentration of 200μM CoCl_(2),a notable decrease in viability to 83% was noted.ALCAR was found to increase the cell viability at 1 mM and 10 mM concentrations,while the highest concentration(100 mM)did not have an added effect.The cell viability was found to be significantly higher in the groups treated with a concentration of 1 mM and 10 mM ALCAR compared to the Sham group(P=0.041,P=0.019,respectively).The cell viability and morphology remained unaffected by the greatest dose of ALCAR(100 mM).The administration of 10 mM ALCAR demonstrated a statistically significant reduction in the levels of VEGF and HIF-1α compared with the Sham group(P=0.013,P=0.033,respectively).CONCLUSION:The findings from the current study indicate that ALCAR could represent a viable therapeutic option with the potential to open up novel treatment pathways for retinal diseases,particular relevance for age-related macular degeneration(AMD).However,to fully elucidate ALCAR’s application potential in retinal diseases,additional investigation is necessary to clearly define the exact mechanisms involved.展开更多
Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin ...Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin (EPO) in vivo and in vitro. Methods Rat model of cerebral ischemia was established by middle cerebral artery occlusion with or without DFO administration. Infarct size was examined by TTC staining, and the neurological severity score was evaluated according to published method. Cortical neurons were cultured under ischemia stress which was mimicked by oxygen-glucose deprivation (OGD), and the neuron damage was assessed by MTT assay. Immunofluorescent staining was employed to detect the expressions of HIF-1 and EPO. Results The protective effect induced by DFO (decreasing the infarction volume and ameliorating the neurological function) appeared at 2 d after administration ofDFO (post-DFO), lasted until 7 d and disappeared at 14 d (P 〈 0.05); the most effective action was observed at 3 d post-DFO. DFO induced tolerance of cultured neurons against OGD: neuronal viability was increased 23%, 34%, 40%, 48% and 56% at 8 h, 12 h, 24 h, 36 h, and 48 h, respectively, post-DFO (P 〈 0.05). Immunofluorescent staining found that HIF-1 α and EPO were upregulated in the neurons of rat brain at 3 d and 7 d post-DFO; increase of HIF-1 α and EPO appeared in cultured cortex neurons at 36 h and 48 h post-DFO. Conclusion DFO induced tolerance against focal cerebral ischemia in rats, and exerted protective effect on OGD cultured cortical neurons. DFO significant induced the expression of HIF- 1 α and EPO both in vivo and in vitro. DFO preconditioning can protect against cerebral ischemia, which may be associated with the synthesis of HIF- 1 α and EPO.展开更多
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. H...Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and pnsttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycnlytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described.展开更多
AIM:To investigate the relation of reactive oxygen species (ROS) to hypoxia induced factor 1α (HIF-1α) in gastric ischemia. METHODS:The animal model of gastric ischemia reperfusion was established by placing an elas...AIM:To investigate the relation of reactive oxygen species (ROS) to hypoxia induced factor 1α (HIF-1α) in gastric ischemia. METHODS:The animal model of gastric ischemia reperfusion was established by placing an elastic rubber band on the proximal part of the bilateral lower limb for ligature for 3 h and reperfusion for 0,1,3,6,12 or 24 h. Ischemic post-conditioning,three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were conducted before reperfusion. Histological and immunohistochemical methods were used to assess the gastric oxidative damage and the expression of HIF1-α in gastric ischemia. The malondialdehyde (MDA) content and superoxide dismutase (SOD),xanthine oxidase (XOD) and myeloperoxidase (MPO) activities were determined by colorimetric assays. RESULTS:Ischemic post-conditioning can reduce post-ischemic oxidative stress and the expression of HIF-1α of gastric tissue resulting from limb ischemia reperfusion injury. MDA,SOD,XOD and MPO were regarded as indexes for mucosal injuries from ROS,and ROS was found to affect the expression of HIF-1α under gastric ischemic conditions. CONCLUSION:ROS affects HIF-1α expression under gastric ischemic conditions induced by limb ischemia reperfusion injury. Therefore,ROS can regulate HIF-1α expression in gastric ischemia.展开更多
AIM: To examine the etiology and pathophysiology in human ischemic colitis from the viewpoint of ischemic factors such as hypoxia-inducible factor 1 alpha (HIF-1 alpha and vascular endothelial growth factor (VEGF). ME...AIM: To examine the etiology and pathophysiology in human ischemic colitis from the viewpoint of ischemic factors such as hypoxia-inducible factor 1 alpha (HIF-1 alpha and vascular endothelial growth factor (VEGF). METHODS: Thirteen patients with ischemic colitis and 21 normal controls underwent colonoscopy. The follow-up colonoscopy was performed in 8 patients at 7 to 10 d after the occurrence of ischemic colitis. Biopsy samples were subjected to real-time RT-PCR and immunohistochemistry to detect the expression of HIF-1 alpha and VEGF. RESULTS: HIF-1 alpha and VEGF expression were found in the normal colon tissues by RT-PCR and immunohistochemistry. HIF-1 alpha and VEGF were overexpressed in the lesions of ischemic colitis. Overexpressed HIF-1 alpha and VEGF RNA quickly decreased to the normal level in the scar regions at 7 to 10 d after the occurrence of ischemic colitis. CONCLUSION: Constant expression of HIF-1 alpha and VEGF in normal human colon tissue suggested that HIF-1 alpha and VEGF play an important role in maintaining tissue integrity. We confirmed the ischemic crisis in ischemic colitis at the molecular level, demonstrating overexpression of HIF-1 alpha and VEGF in ischemic lesions. These ischemic factors may play an important role in the pathophysiology of ischemic colitis.展开更多
Toll-like receptors (TLRs) 7 and 8 are crucial in host defence against single-stranded RNA (ssRNA) viruses. Such viruses cause severe illnesses, which remain a serious medical burden in both industrialised and dev...Toll-like receptors (TLRs) 7 and 8 are crucial in host defence against single-stranded RNA (ssRNA) viruses. Such viruses cause severe illnesses, which remain a serious medical burden in both industrialised and developing countries. TLR7/8 downstream signaling leads tO a dramatic cellular stress associated with energy consumption. However, the molecular mechanisms of cell survival and adaptation to TLR7/8-induced stress, which give the cells an opportunity to initiate proper inflammatory reactions, are not clear at all. Here we report for the first time that ligand-induced activation of TLR7/8 leads to the accumulation of hypoxia-inducible factor 1 alpha (HIF-1α) protein in THP-1 human myeloid macrophages via redoxand reactive nitrogen species-dependent mechanisms. MAP kinases and phosphoinositol-3K are not involved in TLR7/8-mediated HIF-1α accumulation. Experiments with HIF-1α knockdown THP- 1 cells have clearly demonstrated that HIF-1α is important for the protection of these cells against TLR7/8-induced depletion of ATP. Thus, HIF-1α might support both cell survival and the production of pro-inflammatory cytokines upon TLR7/8 activation.展开更多
AIM:To study the inhibition of tumor angiogenesis by 5,2,4'-trihydroxy-6,7,5'-trimethoxyflavone(TTF1) isolated from an extract of herbal medicine Sorbaria sorbifolia.METHODS:Angiogenic activity was assayed usi...AIM:To study the inhibition of tumor angiogenesis by 5,2,4'-trihydroxy-6,7,5'-trimethoxyflavone(TTF1) isolated from an extract of herbal medicine Sorbaria sorbifolia.METHODS:Angiogenic activity was assayed using the chick embryo chorioallantoic membrane(CAM) method.Microvessel density(MVD) was determined by staining tissue sections immunohistochemically for CD34 using the Weidner capillary counting method.The mRNA and protein levels of vascular endothelial growth factor(VEGF),vascular endothelialgrowth factor receptor 2(VEGFR2,Flk-1/KDR),basic fibroblast growth factor(bFGF),cyclo-oxygenase(COX)-2 and hypoxia-inducible factor(HIF)-1α were detected by quantitative real-time polymerase chain reaction and Western blotting analysis.RESULTS:The TTF1 inhibition rates for CAM were 30.8%,38.2% and 47.5% with treatment concentrations of 25,50 and 100 μg/embryo × 5 d,respectively.The inhibitory rates for tumor size were 43.8%,49.4% and 59.6% at TTF1 treatment concentrations of 5,10,and 20 μmol/kg,respectively.The average MVD was 14.2,11.2 and 8.5 at treatment concentrations of 5 μmol/kg,10 μmol/kg and 20 μmol/kg TTF1,respectively.The mRNA and protein levels of VEGF,KDR,bFGF,COX-2 and HIF-1α in mice treated with TTF1 were significantly decreased.CONCLUSION:TTF1 can inhibit tumor angiogenesis,and the mechanism may be associated with the down-regulation of VEGF,KDR,bFGF,HIF-1α and COX-2.展开更多
Objective: To investigate the correlations among the expressions of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial cell growth factor (VEGF) and microvessel density (MVD), and their relationships ...Objective: To investigate the correlations among the expressions of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial cell growth factor (VEGF) and microvessel density (MVD), and their relationships to the clinicopathologic characteristics of esophageal squamous cell carcinomas (ESCC). Methods: The expressions of HIF-1α, VEGF and MVD were detected by immunohistochemical method in 45 cases of ESCC, 30 intraepithelial neoplasia and 35 normal esophageal mucosal epithelia tissues. The correlations among the expressions of HIF-1α, VEGF and MVD, and their relationships to the clinicopathologic features of ESCC were analyzed. Results: The rate of positive expression of HIF-1α and VEGF which were 80% and 84% in ESCC were significantly higher than those in intraepithelial neoplasia and normal esophageal mucosal epithelium tissues (P 〈 0.01) and so did the MVD value which was71.10 ±15.02 in ESCC (P 〈 0.01). The expression of HIF-1α and VEGF were positively correlated with the depth of tumor invasion, lymph node metastasis and TNM staging of ESCC. The expressions of HIF-1α were positively correlated with the expressions of VEGF and the value of MVD. Conclusion: Overexpression of HIF-1α is found in ESCC. HIF-1α may induce the angiogenesis in ESCC by upregulating the transcription of VEGF gene. It may play an important role in the carcinogenesis and aggression in ESCC, HIF-1α, VEGF and MVD may be a useful marker for evaluating the biological behaviors of ESCC.展开更多
OBJECTIVE To explore the role (HIF-1α) in the proliferation and cells under hypoxic conditions. of hypoxic inducible factor-1α apoptosis of pancreatic cancer METHODS A cassette encoding small interference RNA (si...OBJECTIVE To explore the role (HIF-1α) in the proliferation and cells under hypoxic conditions. of hypoxic inducible factor-1α apoptosis of pancreatic cancer METHODS A cassette encoding small interference RNA (siRNA) targeting HIF-1α mediated by recombinant adeno-associated virus (rAAV) was constructed, giving rAAV-siHIE rAAV-siHIF or rAAV- hrGFP was transfected into exponentially growing MiaPaCa2 cells under hypoxic conditions. Then, the expression of HIF-1α mRNA and protein, the proliferation and apoptosis of MiaPaCa2 cells were examined, using real-time PCR, Western Blot, MTT and TUNEL, respectively. RESULTS Under hypoxic conditions, rAAV-siHIF inhibited the expression of HIF-1α mRNA and protein in MiaPaCa2 cells. At the same time, rAAV-siHIF decreased MiaPaCa2 cell proliferation and induced apoptosis. However, rAAV-hrGFP had no effect on the expression of HIF-1α as well as the proliferation and apoptosis of MiaPaCa2 cells under hypoxic conditions. CONCLUSION Under hypoxic conditions, HIF-1α plays a key role in the proliferation of MiaPaCa2 cells, and inhibition of HIF- 1α expression can lead to MiaPaCa2 cell apoptosis.展开更多
AIM: To investigate whether hypoxia inducible factor-1α (HIF-1α) is linked to the protective effects of ischemic preconditioning (IP) on sinusoidal endothelial cells against ischemia/reperfusion injury. METHODS: Sin...AIM: To investigate whether hypoxia inducible factor-1α (HIF-1α) is linked to the protective effects of ischemic preconditioning (IP) on sinusoidal endothelial cells against ischemia/reperfusion injury. METHODS: Sinusoidal endothelial cell lines ECV-304 were cultured and divided into four groups: control group, cells were cultured in complete DMEM medium; cold anoxia/warm reoxygenation (A/R) group, cells were preserved in a 4℃ UW solution in a mixture of 95% N2 and 5% CO2 for 24 h; anoxia-preconditioning (APC) group, cells were treated with 4 cycles of short anoxia and reoxygenation before prolonged anoxia- preconditioning treatment; and anoxia-preconditioning and hypoxia inducible factor-1α (HIF-1α) inhibitor (I-HIF-1) group, cells were pretreated with 5 μm of HIF-1α inhibitor NS398 in DMEM medium before subjected to the same treatment as group APC. After the anoxia treatment, each group was reoxygenated in a mixture of 95% air and 5% CO2 incubator for 6 h. Cytoprotections were evaluated by cell viabilities from Trypan blue, lactate dehydrogenase (LDH) release rates, and intracellular cell adhesion molecule-1 (ICAM-1) expressions. Expressions of HIF-1α mRNA and HIF-1α protein from each group were determined by the RT-PCR method and Western blotting, respectively. RESULTS: Ischemia preconditioning increased cell viability, and reduced LDH release and ICAM-1 expressions. Ischemia preconditioning also upregulated the HIF-1α mRNA level and HIF-1α protein expression. However, all of these changes were reversed by HIF-1α inhibitor NS398.CONCLUSION: Ischemia preconditioning effectively inhibited cold hypoxia/warm reoxygenation injury to endothelial cells, and the authors showed for the first time HIF-1α is causally linked to the protective effects of ischemic preconditioning on endothelial cells.展开更多
Protein-protein interactions are vital for a wide range of biological processes.The interactions between the hypoxia-inducible factor and von Hippel Lindau(VHL)are attractive drug targets for ischemic heart disease.In...Protein-protein interactions are vital for a wide range of biological processes.The interactions between the hypoxia-inducible factor and von Hippel Lindau(VHL)are attractive drug targets for ischemic heart disease.In order to disrupt this interaction,the strategy to target VHL binding site using a hydroxyproline-like(pro-like)small molecule has been reported.In this study,we focused on the inhibition mechanism between the pro-like inhibitors and the VHL protein,which were investigated via molecular dynamics simulations and binding free energy calculations.It was found that pro-like inhibitors showed a strong binding affinity toward VHL.Binding free energy calculations and free energy decompositions suggested that the modification of various regions of pro-like inhibitors may provide useful information for future drug design.展开更多
Objective:The aim of this study was to analyze the expression features of hypoxia inducible factor-1α (HIF-1α) in hepatocellular carcinoma (HCC) and effects of HIF-1α silencing on HepG2 cells.Methods:HIF-1α expres...Objective:The aim of this study was to analyze the expression features of hypoxia inducible factor-1α (HIF-1α) in hepatocellular carcinoma (HCC) and effects of HIF-1α silencing on HepG2 cells.Methods:HIF-1α expression was analyzed in the self-control HCC specimens by immunohistochemistry.After HepG2 cells with miRNA transfection,the expression of HIF-1α was determined at mRNA or protein level by real-time polymerase chain reaction (PCR) or Western blotting.Vascular endothelial growth factor (VEGF) and angiopoietin-2 (ANG-2) were determined by ELISA.Alterations of cell cycles and apoptosis of HepG2 cells were measured using a flow cytometer.Results:Positive HIF-1α was brown and granule-like in the cytoplasm or nucleus.Significant difference was found between HCC (80%) and its surrounding tissues (100%,χ2=22.35,P < 0.001) and HIF-1α expression related to tumor size.At 72 h after miRNA transfection,the expression of HIF-1α in HepG2 cells was down-regulated by 87% at mRNA or 65% at protein level,with VEGF and ANG-2 decreased to 54% and 36%,respectively.After RNA interference combined with anti-cancer drug,the apoptotic rate of HepG2 cells was increasing from 22.46% ± 0.61% to 36.99% ± 0.88%,with up-regulation of G1 phase (65.68% ± 0.91%) and down-regulation of S phase (19.47 ± 1.34 %).Conclusion:Abnormal expression of HIF-1α is associated with development of HCC,and HIF-1α gene silencing can effectively inhibit HepG2 cell proliferation.展开更多
Objective:Cervical cancer has become a major public health problem.The development of effective,systemic therapies for cervical cancer is highly desired.We show here that hypoxia inducible factor-1α(HIF-1α) was indi...Objective:Cervical cancer has become a major public health problem.The development of effective,systemic therapies for cervical cancer is highly desired.We show here that hypoxia inducible factor-1α(HIF-1α) was indicated as an attractive therapeutic molecular target for cervical cancer.Methods:Firstly,we observed the expressional level of HIF-1α in cervical cancer and Hela and Siha cell lines.Secondly,by constructuring HIF-1α shRNA targeting human HIF-1α mRNA common sequence and transfecting it with plasmid to cervical cell,we detected the changes of HIF-1α and its downstream genes levels VEGF.Then we injected selected stably transfected cell line into athymic nude mice to estimate its' antitumor effects.Results:We observed that HIF-1α inhibition was related to down-regulated VEGF resulting in prevention of angiogenesis,then leading to slower-growing tumors.Conclusion:The underlying concept of transfecting a HIF-1α shRNA expression vector to block the HIF-1α holds promise as the clinical potential of gene therapy for cervical cancer.展开更多
Objective: The aim of the study was to investigate the impact of 60Co y-ray on apoptosis, cell cycles and the expression of protein hypoxia-inducible factor-1α (HIF-1α) to Hep-2 cell line in the conditions of nor...Objective: The aim of the study was to investigate the impact of 60Co y-ray on apoptosis, cell cycles and the expression of protein hypoxia-inducible factor-1α (HIF-1α) to Hep-2 cell line in the conditions of normoxia and hypoxia. Methods: Hep-2 cell were divided into 2 groups: group A (normoxia) and group B (hypoxia). All of the ceils were exposed to y-ray with dosage being 0, 1, 3, 5, 10, 20, and 40 Gy. Flow cytometry was used to measure the protein level of HIF-1α and to detect apoptosis and cell cycles. The protein level of HIF-1α was also determined by immunohistochemistry and Western blotting. Results: The protein level of HIF-1α in group B was significantly higher than that in group A. In group A, low doses (1-5 Gy) of y-ray had caused G0/G1 cell cycle arrest and high doses (10-40 Gy) had caused G2/M cell cycle arrest. In group B, without exposure of y-ray (0 Gy) had caused G0/G1 cell cycle arrest, all of the different dosage of y-ray could cause G2/M cell cycle arrest. The curve of apoptosis rate in group A was a parabola, the apoptotic rate was related to the dosage of y-ray in a dosage dependent manner. The peak was at the point of 5 Gy. The apoptosis rate in group A was significantly higher than that in group B. Conclusion: Different doses of y-ray could cause different cell cycles arrest then make different impact on apoptosis to Hep-2 ceil. The lower apoptosis rate in condition of hypoxia maybe has a relationship with G2/M cell cycle arrest. Up-regulated HIF-1α protein may be one of the reasons for G2/M cell cycle arrest.展开更多
Objective:To investigate the vasculogenic mimicry formation induced by hypoxia in Ⅱ-Ⅲ human glioma cell and the effect of alphastatin peptide suppressing the hypoxia-induced vasculogenic mimicry formation and the me...Objective:To investigate the vasculogenic mimicry formation induced by hypoxia in Ⅱ-Ⅲ human glioma cell and the effect of alphastatin peptide suppressing the hypoxia-induced vasculogenic mimicry formation and the mechanism.Methods:MTT,Transwell and three-dimentional culture were used to detect the proliferation,migration and tubule formation of SHG44.The expression of vascular endothelial growth factor-α(VEGF-α),erythropoietin-producing hepatocellular carcinoma-A2 (EphA2) and matrix metalloproteinases 2 (MMP2) was detected by RT-PCR and Western blotting analysis.Results:The OD 490 in hypoxia group was 0.60±0.06 and in control group was 0.46±0.05.The number of cell migration was 178.71±18.81 in hypoxia group and 85.86±17.92 in control group.The tubule formation was 56.80±12.21 in hypoxia group and 4.20±2.62 in control group.The proliferation,migration and tubule formation in hypoxia group were significantly higher than that in control group.The expression of VEGF-α,EphA2 and MMP2 was upregulated in hypoxia.When various concentrations of alphastatin (100,1 000,10 000 nmol/L) were added to hypoxia group,the numbers of cell migration were 142.57±12.12,92.71±17.68,30.00±7.72 and the tubule formation were 47.71±10.58,18.86±8.40,8.43±5.62.The cell migration and tubule formation were significantly suppressed by alphastatin in a dose-dependent manner.In alphastatin group,the phosphorylation of EphA2 protein (P=0.037,F=4.629) and activation of MMP2 protein (P=0.005,F=9.331) were significantly suppressed but there was no change in VEGF-α protein.Conclusion:Ⅱ-Ⅲ human glioma cell is able to form vasculogenic mimicry induced by hypoxia and alphastatin peptide can suppress the hypoxia-induced vasculogenic mimicry.VEGF-α induced EphA2 phospharilation and MMP2 activation maybe the key pathway to form vasculogenic mimicry.展开更多
Objective To explore the expression pattern and possible role of hypoxia inducible factor-1α ( HIF-1α ) in fetal vertebrae development of mouse. Methods The developmental stages of mice fetal vertebrae were obser...Objective To explore the expression pattern and possible role of hypoxia inducible factor-1α ( HIF-1α ) in fetal vertebrae development of mouse. Methods The developmental stages of mice fetal vertebrae were observed from embryonic days 13. 5 to 18. 5 ( E13. 5 to E18. 5 ) by stereoscopic and light microscopes respectively, and the expressions of HIF-1α at various times were also detected at levels of mRNA and protein by using methods of RT-PCR and Western blotting. Distribution of HIF-1α in the vertebrae was examined by immunohistochemical assay. Vascular endothelia growth factor (VEGF) mRNA and other chondro-osteoblast marker genes as type II collagen al ( Coll2al ) and osteocalcin (OCN) were detected by RT-PCR too. Results The cartilaginous spine column began to form at E13. 5, followed by the arising of the primary ossification center in vertebrae at E15. 5, then the osteogenesis expanded and extended to both sides of the vertebrae. HIF-1α mRNA began to express at E13. 5, and showed significantly higher level at E14. 5 ( P 〈 O. 05 ), then declined to a low level. VEGF mRNA expressed coincidently with HIF-1α. While HIF-1α protein expression was observed at E14. 5 and lasted at low level till to birth. The expression pattern of Coll2al and OCN elucidated the cell evolution from chondrocyte to osteoblast. Conclusion The developmental pattern of vertebrae appears to be an endochondral osteogenesis process. Existed hypoxia microenviroment in the vertebrae may increase HIF-1α mRNA and protein contents thus activate VEGF expression, as may be related to the activation of other downstream genes of hypoxia inducible factor-1α and initiate the cascade of endochondral osteogenesis.展开更多
文摘AIM:To investigate the effect of acetyl-L-carnitine(ALCAR)on cell viability,morphological integrity,and vascular endothelial growth factor(VEGF)expression in human retinal pigment epithelium(ARPE-19)cells using a hypoxic model.METHODS:In the first set of experiments,the optimal CoCl_(2) dose was determined by exposing ARPE-19 cell cultures to different concentrations.To evaluate the effect of ALCAR on cell viability,five groups of ARPE-19 cell culture were established that included a control group,a sham group(200μM CoCl_(2)),and groups that received 1,10 and 100 mM doses of ALCAR combined with 200μM CoCl_(2),respectively.The cell viability was measured by MTT assay.The morphological characteristics of cells were observed by an inverted phase contrast microscope.The levels of VEGF and HIF-1α secretion by ARPE-19 cells were detected by enzyme linked immunosorbent assay(ELISA)assay.RESULTS:ARPE-19 cells were exposed to different doses of CoCl_(2) in order to create a hypoxia model.Nevertheless,when exposed to a concentration of 200μM CoCl_(2),a notable decrease in viability to 83% was noted.ALCAR was found to increase the cell viability at 1 mM and 10 mM concentrations,while the highest concentration(100 mM)did not have an added effect.The cell viability was found to be significantly higher in the groups treated with a concentration of 1 mM and 10 mM ALCAR compared to the Sham group(P=0.041,P=0.019,respectively).The cell viability and morphology remained unaffected by the greatest dose of ALCAR(100 mM).The administration of 10 mM ALCAR demonstrated a statistically significant reduction in the levels of VEGF and HIF-1α compared with the Sham group(P=0.013,P=0.033,respectively).CONCLUSION:The findings from the current study indicate that ALCAR could represent a viable therapeutic option with the potential to open up novel treatment pathways for retinal diseases,particular relevance for age-related macular degeneration(AMD).However,to fully elucidate ALCAR’s application potential in retinal diseases,additional investigation is necessary to clearly define the exact mechanisms involved.
文摘Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin (EPO) in vivo and in vitro. Methods Rat model of cerebral ischemia was established by middle cerebral artery occlusion with or without DFO administration. Infarct size was examined by TTC staining, and the neurological severity score was evaluated according to published method. Cortical neurons were cultured under ischemia stress which was mimicked by oxygen-glucose deprivation (OGD), and the neuron damage was assessed by MTT assay. Immunofluorescent staining was employed to detect the expressions of HIF-1 and EPO. Results The protective effect induced by DFO (decreasing the infarction volume and ameliorating the neurological function) appeared at 2 d after administration ofDFO (post-DFO), lasted until 7 d and disappeared at 14 d (P 〈 0.05); the most effective action was observed at 3 d post-DFO. DFO induced tolerance of cultured neurons against OGD: neuronal viability was increased 23%, 34%, 40%, 48% and 56% at 8 h, 12 h, 24 h, 36 h, and 48 h, respectively, post-DFO (P 〈 0.05). Immunofluorescent staining found that HIF-1 α and EPO were upregulated in the neurons of rat brain at 3 d and 7 d post-DFO; increase of HIF-1 α and EPO appeared in cultured cortex neurons at 36 h and 48 h post-DFO. Conclusion DFO induced tolerance against focal cerebral ischemia in rats, and exerted protective effect on OGD cultured cortical neurons. DFO significant induced the expression of HIF- 1 α and EPO both in vivo and in vitro. DFO preconditioning can protect against cerebral ischemia, which may be associated with the synthesis of HIF- 1 α and EPO.
文摘Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and pnsttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycnlytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described.
基金Supported by Technology from the School of Basic Medical Sciences of Lanzhou University and the Animal Experimental Center, Gansu College of Traditional Chinese Medicine
文摘AIM:To investigate the relation of reactive oxygen species (ROS) to hypoxia induced factor 1α (HIF-1α) in gastric ischemia. METHODS:The animal model of gastric ischemia reperfusion was established by placing an elastic rubber band on the proximal part of the bilateral lower limb for ligature for 3 h and reperfusion for 0,1,3,6,12 or 24 h. Ischemic post-conditioning,three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were conducted before reperfusion. Histological and immunohistochemical methods were used to assess the gastric oxidative damage and the expression of HIF1-α in gastric ischemia. The malondialdehyde (MDA) content and superoxide dismutase (SOD),xanthine oxidase (XOD) and myeloperoxidase (MPO) activities were determined by colorimetric assays. RESULTS:Ischemic post-conditioning can reduce post-ischemic oxidative stress and the expression of HIF-1α of gastric tissue resulting from limb ischemia reperfusion injury. MDA,SOD,XOD and MPO were regarded as indexes for mucosal injuries from ROS,and ROS was found to affect the expression of HIF-1α under gastric ischemic conditions. CONCLUSION:ROS affects HIF-1α expression under gastric ischemic conditions induced by limb ischemia reperfusion injury. Therefore,ROS can regulate HIF-1α expression in gastric ischemia.
文摘AIM: To examine the etiology and pathophysiology in human ischemic colitis from the viewpoint of ischemic factors such as hypoxia-inducible factor 1 alpha (HIF-1 alpha and vascular endothelial growth factor (VEGF). METHODS: Thirteen patients with ischemic colitis and 21 normal controls underwent colonoscopy. The follow-up colonoscopy was performed in 8 patients at 7 to 10 d after the occurrence of ischemic colitis. Biopsy samples were subjected to real-time RT-PCR and immunohistochemistry to detect the expression of HIF-1 alpha and VEGF. RESULTS: HIF-1 alpha and VEGF expression were found in the normal colon tissues by RT-PCR and immunohistochemistry. HIF-1 alpha and VEGF were overexpressed in the lesions of ischemic colitis. Overexpressed HIF-1 alpha and VEGF RNA quickly decreased to the normal level in the scar regions at 7 to 10 d after the occurrence of ischemic colitis. CONCLUSION: Constant expression of HIF-1 alpha and VEGF in normal human colon tissue suggested that HIF-1 alpha and VEGF play an important role in maintaining tissue integrity. We confirmed the ischemic crisis in ischemic colitis at the molecular level, demonstrating overexpression of HIF-1 alpha and VEGF in ischemic lesions. These ischemic factors may play an important role in the pathophysiology of ischemic colitis.
文摘Toll-like receptors (TLRs) 7 and 8 are crucial in host defence against single-stranded RNA (ssRNA) viruses. Such viruses cause severe illnesses, which remain a serious medical burden in both industrialised and developing countries. TLR7/8 downstream signaling leads tO a dramatic cellular stress associated with energy consumption. However, the molecular mechanisms of cell survival and adaptation to TLR7/8-induced stress, which give the cells an opportunity to initiate proper inflammatory reactions, are not clear at all. Here we report for the first time that ligand-induced activation of TLR7/8 leads to the accumulation of hypoxia-inducible factor 1 alpha (HIF-1α) protein in THP-1 human myeloid macrophages via redoxand reactive nitrogen species-dependent mechanisms. MAP kinases and phosphoinositol-3K are not involved in TLR7/8-mediated HIF-1α accumulation. Experiments with HIF-1α knockdown THP- 1 cells have clearly demonstrated that HIF-1α is important for the protection of these cells against TLR7/8-induced depletion of ATP. Thus, HIF-1α might support both cell survival and the production of pro-inflammatory cytokines upon TLR7/8 activation.
基金Supported by The National Natural Science Foundation Grant,No. 30860374
文摘AIM:To study the inhibition of tumor angiogenesis by 5,2,4'-trihydroxy-6,7,5'-trimethoxyflavone(TTF1) isolated from an extract of herbal medicine Sorbaria sorbifolia.METHODS:Angiogenic activity was assayed using the chick embryo chorioallantoic membrane(CAM) method.Microvessel density(MVD) was determined by staining tissue sections immunohistochemically for CD34 using the Weidner capillary counting method.The mRNA and protein levels of vascular endothelial growth factor(VEGF),vascular endothelialgrowth factor receptor 2(VEGFR2,Flk-1/KDR),basic fibroblast growth factor(bFGF),cyclo-oxygenase(COX)-2 and hypoxia-inducible factor(HIF)-1α were detected by quantitative real-time polymerase chain reaction and Western blotting analysis.RESULTS:The TTF1 inhibition rates for CAM were 30.8%,38.2% and 47.5% with treatment concentrations of 25,50 and 100 μg/embryo × 5 d,respectively.The inhibitory rates for tumor size were 43.8%,49.4% and 59.6% at TTF1 treatment concentrations of 5,10,and 20 μmol/kg,respectively.The average MVD was 14.2,11.2 and 8.5 at treatment concentrations of 5 μmol/kg,10 μmol/kg and 20 μmol/kg TTF1,respectively.The mRNA and protein levels of VEGF,KDR,bFGF,COX-2 and HIF-1α in mice treated with TTF1 were significantly decreased.CONCLUSION:TTF1 can inhibit tumor angiogenesis,and the mechanism may be associated with the down-regulation of VEGF,KDR,bFGF,HIF-1α and COX-2.
基金Supported by a grant from the Natural Sciences Foundation of Anhui Province (No.2006KJ134C)
文摘Objective: To investigate the correlations among the expressions of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial cell growth factor (VEGF) and microvessel density (MVD), and their relationships to the clinicopathologic characteristics of esophageal squamous cell carcinomas (ESCC). Methods: The expressions of HIF-1α, VEGF and MVD were detected by immunohistochemical method in 45 cases of ESCC, 30 intraepithelial neoplasia and 35 normal esophageal mucosal epithelia tissues. The correlations among the expressions of HIF-1α, VEGF and MVD, and their relationships to the clinicopathologic features of ESCC were analyzed. Results: The rate of positive expression of HIF-1α and VEGF which were 80% and 84% in ESCC were significantly higher than those in intraepithelial neoplasia and normal esophageal mucosal epithelium tissues (P 〈 0.01) and so did the MVD value which was71.10 ±15.02 in ESCC (P 〈 0.01). The expression of HIF-1α and VEGF were positively correlated with the depth of tumor invasion, lymph node metastasis and TNM staging of ESCC. The expressions of HIF-1α were positively correlated with the expressions of VEGF and the value of MVD. Conclusion: Overexpression of HIF-1α is found in ESCC. HIF-1α may induce the angiogenesis in ESCC by upregulating the transcription of VEGF gene. It may play an important role in the carcinogenesis and aggression in ESCC, HIF-1α, VEGF and MVD may be a useful marker for evaluating the biological behaviors of ESCC.
基金supported by a grant from Nature Science Foundation of Tianjin,China(No.05YFSYSF01300).
文摘OBJECTIVE To explore the role (HIF-1α) in the proliferation and cells under hypoxic conditions. of hypoxic inducible factor-1α apoptosis of pancreatic cancer METHODS A cassette encoding small interference RNA (siRNA) targeting HIF-1α mediated by recombinant adeno-associated virus (rAAV) was constructed, giving rAAV-siHIE rAAV-siHIF or rAAV- hrGFP was transfected into exponentially growing MiaPaCa2 cells under hypoxic conditions. Then, the expression of HIF-1α mRNA and protein, the proliferation and apoptosis of MiaPaCa2 cells were examined, using real-time PCR, Western Blot, MTT and TUNEL, respectively. RESULTS Under hypoxic conditions, rAAV-siHIF inhibited the expression of HIF-1α mRNA and protein in MiaPaCa2 cells. At the same time, rAAV-siHIF decreased MiaPaCa2 cell proliferation and induced apoptosis. However, rAAV-hrGFP had no effect on the expression of HIF-1α as well as the proliferation and apoptosis of MiaPaCa2 cells under hypoxic conditions. CONCLUSION Under hypoxic conditions, HIF-1α plays a key role in the proliferation of MiaPaCa2 cells, and inhibition of HIF- 1α expression can lead to MiaPaCa2 cell apoptosis.
文摘AIM: To investigate whether hypoxia inducible factor-1α (HIF-1α) is linked to the protective effects of ischemic preconditioning (IP) on sinusoidal endothelial cells against ischemia/reperfusion injury. METHODS: Sinusoidal endothelial cell lines ECV-304 were cultured and divided into four groups: control group, cells were cultured in complete DMEM medium; cold anoxia/warm reoxygenation (A/R) group, cells were preserved in a 4℃ UW solution in a mixture of 95% N2 and 5% CO2 for 24 h; anoxia-preconditioning (APC) group, cells were treated with 4 cycles of short anoxia and reoxygenation before prolonged anoxia- preconditioning treatment; and anoxia-preconditioning and hypoxia inducible factor-1α (HIF-1α) inhibitor (I-HIF-1) group, cells were pretreated with 5 μm of HIF-1α inhibitor NS398 in DMEM medium before subjected to the same treatment as group APC. After the anoxia treatment, each group was reoxygenated in a mixture of 95% air and 5% CO2 incubator for 6 h. Cytoprotections were evaluated by cell viabilities from Trypan blue, lactate dehydrogenase (LDH) release rates, and intracellular cell adhesion molecule-1 (ICAM-1) expressions. Expressions of HIF-1α mRNA and HIF-1α protein from each group were determined by the RT-PCR method and Western blotting, respectively. RESULTS: Ischemia preconditioning increased cell viability, and reduced LDH release and ICAM-1 expressions. Ischemia preconditioning also upregulated the HIF-1α mRNA level and HIF-1α protein expression. However, all of these changes were reversed by HIF-1α inhibitor NS398.CONCLUSION: Ischemia preconditioning effectively inhibited cold hypoxia/warm reoxygenation injury to endothelial cells, and the authors showed for the first time HIF-1α is causally linked to the protective effects of ischemic preconditioning on endothelial cells.
基金supported by the National Natural Science Foundation of China(No.21973064)the Post-Doctor Research Project,West China Hospital,Sichuan University(No.2021HXBH017)。
文摘Protein-protein interactions are vital for a wide range of biological processes.The interactions between the hypoxia-inducible factor and von Hippel Lindau(VHL)are attractive drug targets for ischemic heart disease.In order to disrupt this interaction,the strategy to target VHL binding site using a hydroxyproline-like(pro-like)small molecule has been reported.In this study,we focused on the inhibition mechanism between the pro-like inhibitors and the VHL protein,which were investigated via molecular dynamics simulations and binding free energy calculations.It was found that pro-like inhibitors showed a strong binding affinity toward VHL.Binding free energy calculations and free energy decompositions suggested that the modification of various regions of pro-like inhibitors may provide useful information for future drug design.
基金Supported by grants from Jiang su Health Key Project(No.K201102)Nantong City Social Development Project (No. S2009027)
文摘Objective:The aim of this study was to analyze the expression features of hypoxia inducible factor-1α (HIF-1α) in hepatocellular carcinoma (HCC) and effects of HIF-1α silencing on HepG2 cells.Methods:HIF-1α expression was analyzed in the self-control HCC specimens by immunohistochemistry.After HepG2 cells with miRNA transfection,the expression of HIF-1α was determined at mRNA or protein level by real-time polymerase chain reaction (PCR) or Western blotting.Vascular endothelial growth factor (VEGF) and angiopoietin-2 (ANG-2) were determined by ELISA.Alterations of cell cycles and apoptosis of HepG2 cells were measured using a flow cytometer.Results:Positive HIF-1α was brown and granule-like in the cytoplasm or nucleus.Significant difference was found between HCC (80%) and its surrounding tissues (100%,χ2=22.35,P < 0.001) and HIF-1α expression related to tumor size.At 72 h after miRNA transfection,the expression of HIF-1α in HepG2 cells was down-regulated by 87% at mRNA or 65% at protein level,with VEGF and ANG-2 decreased to 54% and 36%,respectively.After RNA interference combined with anti-cancer drug,the apoptotic rate of HepG2 cells was increasing from 22.46% ± 0.61% to 36.99% ± 0.88%,with up-regulation of G1 phase (65.68% ± 0.91%) and down-regulation of S phase (19.47 ± 1.34 %).Conclusion:Abnormal expression of HIF-1α is associated with development of HCC,and HIF-1α gene silencing can effectively inhibit HepG2 cell proliferation.
文摘Objective:Cervical cancer has become a major public health problem.The development of effective,systemic therapies for cervical cancer is highly desired.We show here that hypoxia inducible factor-1α(HIF-1α) was indicated as an attractive therapeutic molecular target for cervical cancer.Methods:Firstly,we observed the expressional level of HIF-1α in cervical cancer and Hela and Siha cell lines.Secondly,by constructuring HIF-1α shRNA targeting human HIF-1α mRNA common sequence and transfecting it with plasmid to cervical cell,we detected the changes of HIF-1α and its downstream genes levels VEGF.Then we injected selected stably transfected cell line into athymic nude mice to estimate its' antitumor effects.Results:We observed that HIF-1α inhibition was related to down-regulated VEGF resulting in prevention of angiogenesis,then leading to slower-growing tumors.Conclusion:The underlying concept of transfecting a HIF-1α shRNA expression vector to block the HIF-1α holds promise as the clinical potential of gene therapy for cervical cancer.
文摘Objective: The aim of the study was to investigate the impact of 60Co y-ray on apoptosis, cell cycles and the expression of protein hypoxia-inducible factor-1α (HIF-1α) to Hep-2 cell line in the conditions of normoxia and hypoxia. Methods: Hep-2 cell were divided into 2 groups: group A (normoxia) and group B (hypoxia). All of the ceils were exposed to y-ray with dosage being 0, 1, 3, 5, 10, 20, and 40 Gy. Flow cytometry was used to measure the protein level of HIF-1α and to detect apoptosis and cell cycles. The protein level of HIF-1α was also determined by immunohistochemistry and Western blotting. Results: The protein level of HIF-1α in group B was significantly higher than that in group A. In group A, low doses (1-5 Gy) of y-ray had caused G0/G1 cell cycle arrest and high doses (10-40 Gy) had caused G2/M cell cycle arrest. In group B, without exposure of y-ray (0 Gy) had caused G0/G1 cell cycle arrest, all of the different dosage of y-ray could cause G2/M cell cycle arrest. The curve of apoptosis rate in group A was a parabola, the apoptotic rate was related to the dosage of y-ray in a dosage dependent manner. The peak was at the point of 5 Gy. The apoptosis rate in group A was significantly higher than that in group B. Conclusion: Different doses of y-ray could cause different cell cycles arrest then make different impact on apoptosis to Hep-2 ceil. The lower apoptosis rate in condition of hypoxia maybe has a relationship with G2/M cell cycle arrest. Up-regulated HIF-1α protein may be one of the reasons for G2/M cell cycle arrest.
基金Supported in Part by a Grant from the National Nature Science Foundation of China(No.30672126)
文摘Objective:To investigate the vasculogenic mimicry formation induced by hypoxia in Ⅱ-Ⅲ human glioma cell and the effect of alphastatin peptide suppressing the hypoxia-induced vasculogenic mimicry formation and the mechanism.Methods:MTT,Transwell and three-dimentional culture were used to detect the proliferation,migration and tubule formation of SHG44.The expression of vascular endothelial growth factor-α(VEGF-α),erythropoietin-producing hepatocellular carcinoma-A2 (EphA2) and matrix metalloproteinases 2 (MMP2) was detected by RT-PCR and Western blotting analysis.Results:The OD 490 in hypoxia group was 0.60±0.06 and in control group was 0.46±0.05.The number of cell migration was 178.71±18.81 in hypoxia group and 85.86±17.92 in control group.The tubule formation was 56.80±12.21 in hypoxia group and 4.20±2.62 in control group.The proliferation,migration and tubule formation in hypoxia group were significantly higher than that in control group.The expression of VEGF-α,EphA2 and MMP2 was upregulated in hypoxia.When various concentrations of alphastatin (100,1 000,10 000 nmol/L) were added to hypoxia group,the numbers of cell migration were 142.57±12.12,92.71±17.68,30.00±7.72 and the tubule formation were 47.71±10.58,18.86±8.40,8.43±5.62.The cell migration and tubule formation were significantly suppressed by alphastatin in a dose-dependent manner.In alphastatin group,the phosphorylation of EphA2 protein (P=0.037,F=4.629) and activation of MMP2 protein (P=0.005,F=9.331) were significantly suppressed but there was no change in VEGF-α protein.Conclusion:Ⅱ-Ⅲ human glioma cell is able to form vasculogenic mimicry induced by hypoxia and alphastatin peptide can suppress the hypoxia-induced vasculogenic mimicry.VEGF-α induced EphA2 phospharilation and MMP2 activation maybe the key pathway to form vasculogenic mimicry.
基金Supported by Anhui Provincial Natural Science Foundation (No. 070413097)the Special Funds for Major State Basic Research Project of Shanghai (No. 04DZ05606)
文摘Objective To explore the expression pattern and possible role of hypoxia inducible factor-1α ( HIF-1α ) in fetal vertebrae development of mouse. Methods The developmental stages of mice fetal vertebrae were observed from embryonic days 13. 5 to 18. 5 ( E13. 5 to E18. 5 ) by stereoscopic and light microscopes respectively, and the expressions of HIF-1α at various times were also detected at levels of mRNA and protein by using methods of RT-PCR and Western blotting. Distribution of HIF-1α in the vertebrae was examined by immunohistochemical assay. Vascular endothelia growth factor (VEGF) mRNA and other chondro-osteoblast marker genes as type II collagen al ( Coll2al ) and osteocalcin (OCN) were detected by RT-PCR too. Results The cartilaginous spine column began to form at E13. 5, followed by the arising of the primary ossification center in vertebrae at E15. 5, then the osteogenesis expanded and extended to both sides of the vertebrae. HIF-1α mRNA began to express at E13. 5, and showed significantly higher level at E14. 5 ( P 〈 O. 05 ), then declined to a low level. VEGF mRNA expressed coincidently with HIF-1α. While HIF-1α protein expression was observed at E14. 5 and lasted at low level till to birth. The expression pattern of Coll2al and OCN elucidated the cell evolution from chondrocyte to osteoblast. Conclusion The developmental pattern of vertebrae appears to be an endochondral osteogenesis process. Existed hypoxia microenviroment in the vertebrae may increase HIF-1α mRNA and protein contents thus activate VEGF expression, as may be related to the activation of other downstream genes of hypoxia inducible factor-1α and initiate the cascade of endochondral osteogenesis.