3.90 mm 65Si2CrV汽车尾门弹簧钢丝生产过程中出现表面龟裂。对表面龟裂产生的主要原因进行分析,6.50 mm钢丝剥皮过程中表面产生厚度约3~4μm白亮层,在韧化转变不充分时遗传下来,后续拉拔时在钢丝表面重新生成白亮层,形成微裂纹,随着拉...3.90 mm 65Si2CrV汽车尾门弹簧钢丝生产过程中出现表面龟裂。对表面龟裂产生的主要原因进行分析,6.50 mm钢丝剥皮过程中表面产生厚度约3~4μm白亮层,在韧化转变不充分时遗传下来,后续拉拔时在钢丝表面重新生成白亮层,形成微裂纹,随着拉拔道次增加,表面白亮层厚度和裂纹深度不断增大,形成裂纹。通过调整剥皮钢丝的韧化工艺,在原韧化温度基础上提高50℃处理后,钢丝表面龟裂未再发生。展开更多
We report the performances of a chalcopyrite Cu(In, Ga)Se<sub>2 </sub>CIGS-based thin-film solar cell with a newly employed high conductive n-Si layer. The data analysis was performed with the help of the ...We report the performances of a chalcopyrite Cu(In, Ga)Se<sub>2 </sub>CIGS-based thin-film solar cell with a newly employed high conductive n-Si layer. The data analysis was performed with the help of the 1D-Solar Cell Capacitance Simulator (1D-SCAPS) software program. The new device structure is based on the CIGS layer as the absorber layer, n-Si as the high conductive layer, i-In<sub>2</sub>S<sub>3</sub>, and i-ZnO as the buffer and window layers, respectively. The optimum CIGS bandgap was determined first and used to simulate and analyze the cell performance throughout the experiment. This analysis revealed that the absorber layer’s optimum bandgap value has to be 1.4 eV to achieve maximum efficiency of 22.57%. Subsequently, output solar cell parameters were analyzed as a function of CIGS layer thickness, defect density, and the operating temperature with an optimized n-Si layer. The newly modeled device has a p-CIGS/n-Si/In<sub>2</sub>S<sub>3</sub>/Al-ZnO structure. The main objective was to improve the overall cell performance while optimizing the thickness of absorber layers, defect density, bandgap, and operating temperature with the newly employed optimized n-Si layer. The increase of absorber layer thickness from 0.2 - 2 µm showed an upward trend in the cell’s performance, while the increase of defect density and operating temperature showed a downward trend in solar cell performance. This study illustrates that the proposed cell structure shows higher cell performances and can be fabricated on the lab-scale and industrial levels.展开更多
文摘3.90 mm 65Si2CrV汽车尾门弹簧钢丝生产过程中出现表面龟裂。对表面龟裂产生的主要原因进行分析,6.50 mm钢丝剥皮过程中表面产生厚度约3~4μm白亮层,在韧化转变不充分时遗传下来,后续拉拔时在钢丝表面重新生成白亮层,形成微裂纹,随着拉拔道次增加,表面白亮层厚度和裂纹深度不断增大,形成裂纹。通过调整剥皮钢丝的韧化工艺,在原韧化温度基础上提高50℃处理后,钢丝表面龟裂未再发生。
文摘We report the performances of a chalcopyrite Cu(In, Ga)Se<sub>2 </sub>CIGS-based thin-film solar cell with a newly employed high conductive n-Si layer. The data analysis was performed with the help of the 1D-Solar Cell Capacitance Simulator (1D-SCAPS) software program. The new device structure is based on the CIGS layer as the absorber layer, n-Si as the high conductive layer, i-In<sub>2</sub>S<sub>3</sub>, and i-ZnO as the buffer and window layers, respectively. The optimum CIGS bandgap was determined first and used to simulate and analyze the cell performance throughout the experiment. This analysis revealed that the absorber layer’s optimum bandgap value has to be 1.4 eV to achieve maximum efficiency of 22.57%. Subsequently, output solar cell parameters were analyzed as a function of CIGS layer thickness, defect density, and the operating temperature with an optimized n-Si layer. The newly modeled device has a p-CIGS/n-Si/In<sub>2</sub>S<sub>3</sub>/Al-ZnO structure. The main objective was to improve the overall cell performance while optimizing the thickness of absorber layers, defect density, bandgap, and operating temperature with the newly employed optimized n-Si layer. The increase of absorber layer thickness from 0.2 - 2 µm showed an upward trend in the cell’s performance, while the increase of defect density and operating temperature showed a downward trend in solar cell performance. This study illustrates that the proposed cell structure shows higher cell performances and can be fabricated on the lab-scale and industrial levels.