本文设计制备了一种新型的氮掺杂碳包覆镍钴双金属磷化物中空核壳结构纳米立方体(Ni1.2Co0.8P@N-C)作为钠离子电池负极材料.该材料以镍钴类普鲁士蓝(PBA)纳米粒子为模板,先后经水热法、磷化法和高温碳化处理后合成.将其作为活性材料应...本文设计制备了一种新型的氮掺杂碳包覆镍钴双金属磷化物中空核壳结构纳米立方体(Ni1.2Co0.8P@N-C)作为钠离子电池负极材料.该材料以镍钴类普鲁士蓝(PBA)纳米粒子为模板,先后经水热法、磷化法和高温碳化处理后合成.将其作为活性材料应用在钠离子电池中,该材料展现出优异的循环稳定性,当以100 m A·g^-1的电流密度循环至200圈时,该材料的库仑效率保持在99.3%.进一步通过对不同电位下Ni1.2Co0.8P@N-C材料中的氮掺杂碳进行原位拉曼光谱测试,结果显示钠离子在氮掺杂的碳壳中的脱嵌行为具有较大程度的可逆性,研究结果对钠离子电池充放电过程的后续电化学研究提供了有价值的信息.展开更多
Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium-sulfur batteries(LSBs).Her...Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium-sulfur batteries(LSBs).Herein,novel binder-free Ni@N-doped carbon nanospheres(N-CNSs)films as sulfur host are firstly synthesized via a facile combined hydrothermal-atomic layer deposition method.The cross-linked multilayer N-CNSs films can effectively enhance the electrical conductivity of electrode and provide physical blocking“dams”toward the soluble long-chain polysulfides.Moreover,the doped N heteroatoms and superficial NiO layer on Ni layer can work synergistically to suppress the shuttle of lithium polysulfides by effective chemical interaction/adsorption.In virtue of the unique composite architecture and reinforced dual physical and chemical adsorption to the soluble polysulfides,the obtained Ni@N-CNSs/S electrode is demonstrated with enhanced rate performance(816 mAh g?1 at 2 C)and excellent long cycling life(87%after 200 cycles at 0.1 C),much better than N-CNSs/S electrode and other carbon/S counterparts.Our proposed design strategy offers a promising prospect for construction of advanced sulfur cathodes for applications in LSBs and other energy storage systems.展开更多
文摘本文设计制备了一种新型的氮掺杂碳包覆镍钴双金属磷化物中空核壳结构纳米立方体(Ni1.2Co0.8P@N-C)作为钠离子电池负极材料.该材料以镍钴类普鲁士蓝(PBA)纳米粒子为模板,先后经水热法、磷化法和高温碳化处理后合成.将其作为活性材料应用在钠离子电池中,该材料展现出优异的循环稳定性,当以100 m A·g^-1的电流密度循环至200圈时,该材料的库仑效率保持在99.3%.进一步通过对不同电位下Ni1.2Co0.8P@N-C材料中的氮掺杂碳进行原位拉曼光谱测试,结果显示钠离子在氮掺杂的碳壳中的脱嵌行为具有较大程度的可逆性,研究结果对钠离子电池充放电过程的后续电化学研究提供了有价值的信息.
基金supported by National Natural Science Foundation of China(Nos.51772272 and 51728204)Fundamental Research Funds for the Central Universities(No.2018QNA4011)+3 种基金Science and Technology Program of Guangdong Province of China(No.2016A010104020)Pearl River S&T Nova Program of Guangzhou(No.201610010116)Qianjiang Talents Plan D(QJD1602029)Startup Foundation for Hundred-Talent Program of Zhejiang University.
文摘Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium-sulfur batteries(LSBs).Herein,novel binder-free Ni@N-doped carbon nanospheres(N-CNSs)films as sulfur host are firstly synthesized via a facile combined hydrothermal-atomic layer deposition method.The cross-linked multilayer N-CNSs films can effectively enhance the electrical conductivity of electrode and provide physical blocking“dams”toward the soluble long-chain polysulfides.Moreover,the doped N heteroatoms and superficial NiO layer on Ni layer can work synergistically to suppress the shuttle of lithium polysulfides by effective chemical interaction/adsorption.In virtue of the unique composite architecture and reinforced dual physical and chemical adsorption to the soluble polysulfides,the obtained Ni@N-CNSs/S electrode is demonstrated with enhanced rate performance(816 mAh g?1 at 2 C)and excellent long cycling life(87%after 200 cycles at 0.1 C),much better than N-CNSs/S electrode and other carbon/S counterparts.Our proposed design strategy offers a promising prospect for construction of advanced sulfur cathodes for applications in LSBs and other energy storage systems.
基金supported by the Natural Science Foundation of China(No.51772097)Hebei Natural Science Funds for Distinguished Young Scholar(No.E2017209079)Hebei Natural Science Fund(No.B2016209266).
基金supported by the National Natural Science Foundation of China(21808193,21878283,22022814,and 22002118)China Postdoctoral Science Foundation(2020TQ0245)+3 种基金the Science and Technology Innovation Development Plan of Yantai(2021XDHZ069)the Youth Innovation Promotion Association CAS(Y2021057)Dalian Science Foundation for Distinguished Young Scholars(2021RJ10)Taishan Scholars Program of Shandong province(tsqn202103051)。