Capabilities to assimilate Geostationary Operational Environmental Satellite “R-series ”(GOES-R) Geostationary Lightning Mapper(GLM) flash extent density(FED) data within the operational Gridpoint Statistical Interp...Capabilities to assimilate Geostationary Operational Environmental Satellite “R-series ”(GOES-R) Geostationary Lightning Mapper(GLM) flash extent density(FED) data within the operational Gridpoint Statistical Interpolation ensemble Kalman filter(GSI-EnKF) framework were previously developed and tested with a mesoscale convective system(MCS) case. In this study, such capabilities are further developed to assimilate GOES GLM FED data within the GSI ensemble-variational(EnVar) hybrid data assimilation(DA) framework. The results of assimilating the GLM FED data using 3DVar, and pure En3DVar(PEn3DVar, using 100% ensemble covariance and no static covariance) are compared with those of EnKF/DfEnKF for a supercell storm case. The focus of this study is to validate the correctness and evaluate the performance of the new implementation rather than comparing the performance of FED DA among different DA schemes. Only the results of 3DVar and pEn3DVar are examined and compared with EnKF/DfEnKF. Assimilation of a single FED observation shows that the magnitude and horizontal extent of the analysis increments from PEn3DVar are generally larger than from EnKF, which is mainly caused by using different localization strategies in EnFK/DfEnKF and PEn3DVar as well as the integration limits of the graupel mass in the observation operator. Overall, the forecast performance of PEn3DVar is comparable to EnKF/DfEnKF, suggesting correct implementation.展开更多
利用基于中尺度数值模式WRF(Weather Research and Forecast)的集合卡尔曼滤波(EnKF,Ensemble Kalman Filter)同化系统直接同化广东地区雷达反射率资料,对2017年台风“天鸽”(1713,Hato)近海发展以及降水预报效果进行数值模拟分析研究...利用基于中尺度数值模式WRF(Weather Research and Forecast)的集合卡尔曼滤波(EnKF,Ensemble Kalman Filter)同化系统直接同化广东地区雷达反射率资料,对2017年台风“天鸽”(1713,Hato)近海发展以及降水预报效果进行数值模拟分析研究。结果显示,直接同化雷达反射率资料后,台风的回波强度和范围有了明显改善,可更好地调整水汽场、水凝物和温度场。当台风风场和水汽场调整后,进入台风主体部分的水汽量显著增加,使得台风强度增强,台风中心最低海平面气压降低,与实况更接近。同化雷达反射率资料后,6 h和24 h降水强度和落区预报效果有显著改善,尤其是能提高大暴雨和特大暴雨量级的TS评分,此外地面2 m温度和2 m相对湿度的预报效果也有改进。展开更多
集合卡尔曼滤波(the Ensemble Kalman Filter,简称EnKF)中将预报集合的统计协方差作为预报误差协方差,但该估计可能严重偏离真实的预报误差协方差,影响同化精度。基于极大似然估计理论,发展了一种优化预报误差协方差矩阵的实时膨胀方法,...集合卡尔曼滤波(the Ensemble Kalman Filter,简称EnKF)中将预报集合的统计协方差作为预报误差协方差,但该估计可能严重偏离真实的预报误差协方差,影响同化精度。基于极大似然估计理论,发展了一种优化预报误差协方差矩阵的实时膨胀方法,即MLE(the Maximum Likelihood Estimation)方法。利用蒙古国基准站Delgertsgot(简称DGS站)观测资料,基于EnKF方法和MLE方法,在通用陆面模式(the Common Land Model,简称CoLM)中同化了地表温度和10 cm土壤温度观测资料,建立了土壤温度同化系统。结果表明:MLE方法对地表温度和各层土壤温度(尤其深层土壤温度)的估计比EnKF方法准确。考虑到浅层和深层土壤温度的差别,在实施MLE方法时对浅层和深层土壤温度采用了不同的膨胀因子。对比膨胀因子为单一标量时的结果,多因子膨胀能缓解深层土壤温度的不合理膨胀,改善同化效果。展开更多
基于前后张驰逼近(Back and Forth Nudging,简称BFN)和集合卡尔曼滤波(En KF)方法,构建了一种新的同化方法 HBFNEn KF(Hybrid Back and Forth Nudging En KF)混合同化方法,并将此同化系统分别与通道浅水模式(shallow water model)和全...基于前后张驰逼近(Back and Forth Nudging,简称BFN)和集合卡尔曼滤波(En KF)方法,构建了一种新的同化方法 HBFNEn KF(Hybrid Back and Forth Nudging En KF)混合同化方法,并将此同化系统分别与通道浅水模式(shallow water model)和全球浅水模式对接,检验了HBFNEn KF同化方法的有效性。同时,对比了集合均方根滤波(En SRF)、HNEn KF(Hybrid Nudging En KF)、HBFNEn KF三种方法在有误差模式中的同化效果。试验结果表明:HBFNEn KF同化方法保留了HNEn KF方法的同化连续性,解决了En KF同化不连续不平滑的问题,同时还有着更快的收敛速度;当采用单变量分析试验时,HBFNEn KF方法的优势最为明显,表明HBFNEn KF能够较好地保持不同模式变量间的平衡。此外,增量场尺度分析结果表明:相比En SRF,HBFNEn KF在大尺度范围有更好的同化效果,同时能够避免在中小尺度范围内出现大量的虚假增量。展开更多
基金supported by NOAA JTTI award via Grant #NA21OAR4590165, NOAA GOESR Program funding via Grant #NA16OAR4320115provided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement #NA11OAR4320072, U.S. Department of Commercesupported by the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Department of Commerce via Grant #NA18NWS4680063。
文摘Capabilities to assimilate Geostationary Operational Environmental Satellite “R-series ”(GOES-R) Geostationary Lightning Mapper(GLM) flash extent density(FED) data within the operational Gridpoint Statistical Interpolation ensemble Kalman filter(GSI-EnKF) framework were previously developed and tested with a mesoscale convective system(MCS) case. In this study, such capabilities are further developed to assimilate GOES GLM FED data within the GSI ensemble-variational(EnVar) hybrid data assimilation(DA) framework. The results of assimilating the GLM FED data using 3DVar, and pure En3DVar(PEn3DVar, using 100% ensemble covariance and no static covariance) are compared with those of EnKF/DfEnKF for a supercell storm case. The focus of this study is to validate the correctness and evaluate the performance of the new implementation rather than comparing the performance of FED DA among different DA schemes. Only the results of 3DVar and pEn3DVar are examined and compared with EnKF/DfEnKF. Assimilation of a single FED observation shows that the magnitude and horizontal extent of the analysis increments from PEn3DVar are generally larger than from EnKF, which is mainly caused by using different localization strategies in EnFK/DfEnKF and PEn3DVar as well as the integration limits of the graupel mass in the observation operator. Overall, the forecast performance of PEn3DVar is comparable to EnKF/DfEnKF, suggesting correct implementation.
文摘利用基于中尺度数值模式WRF(Weather Research and Forecast)的集合卡尔曼滤波(EnKF,Ensemble Kalman Filter)同化系统直接同化广东地区雷达反射率资料,对2017年台风“天鸽”(1713,Hato)近海发展以及降水预报效果进行数值模拟分析研究。结果显示,直接同化雷达反射率资料后,台风的回波强度和范围有了明显改善,可更好地调整水汽场、水凝物和温度场。当台风风场和水汽场调整后,进入台风主体部分的水汽量显著增加,使得台风强度增强,台风中心最低海平面气压降低,与实况更接近。同化雷达反射率资料后,6 h和24 h降水强度和落区预报效果有显著改善,尤其是能提高大暴雨和特大暴雨量级的TS评分,此外地面2 m温度和2 m相对湿度的预报效果也有改进。
文摘集合卡尔曼滤波(the Ensemble Kalman Filter,简称EnKF)中将预报集合的统计协方差作为预报误差协方差,但该估计可能严重偏离真实的预报误差协方差,影响同化精度。基于极大似然估计理论,发展了一种优化预报误差协方差矩阵的实时膨胀方法,即MLE(the Maximum Likelihood Estimation)方法。利用蒙古国基准站Delgertsgot(简称DGS站)观测资料,基于EnKF方法和MLE方法,在通用陆面模式(the Common Land Model,简称CoLM)中同化了地表温度和10 cm土壤温度观测资料,建立了土壤温度同化系统。结果表明:MLE方法对地表温度和各层土壤温度(尤其深层土壤温度)的估计比EnKF方法准确。考虑到浅层和深层土壤温度的差别,在实施MLE方法时对浅层和深层土壤温度采用了不同的膨胀因子。对比膨胀因子为单一标量时的结果,多因子膨胀能缓解深层土壤温度的不合理膨胀,改善同化效果。
文摘基于前后张驰逼近(Back and Forth Nudging,简称BFN)和集合卡尔曼滤波(En KF)方法,构建了一种新的同化方法 HBFNEn KF(Hybrid Back and Forth Nudging En KF)混合同化方法,并将此同化系统分别与通道浅水模式(shallow water model)和全球浅水模式对接,检验了HBFNEn KF同化方法的有效性。同时,对比了集合均方根滤波(En SRF)、HNEn KF(Hybrid Nudging En KF)、HBFNEn KF三种方法在有误差模式中的同化效果。试验结果表明:HBFNEn KF同化方法保留了HNEn KF方法的同化连续性,解决了En KF同化不连续不平滑的问题,同时还有着更快的收敛速度;当采用单变量分析试验时,HBFNEn KF方法的优势最为明显,表明HBFNEn KF能够较好地保持不同模式变量间的平衡。此外,增量场尺度分析结果表明:相比En SRF,HBFNEn KF在大尺度范围有更好的同化效果,同时能够避免在中小尺度范围内出现大量的虚假增量。