K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo...K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.展开更多
Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There i...Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There is limited literature and data-driven analysis about trends in transportation mode. This thesis delves into the operational challenges of vehicle performance management within logistics clusters, a critical aspect of efficient supply chain operations. It aims to address the issues faced by logistics organizations in optimizing their vehicle fleets’ performance, essential for seamless logistics operations. The study’s core design involves the development of a predictive logistics model based on regression, focused on forecasting, and evaluating vehicle performance in logistics clusters. It encompasses a comprehensive literature review, research methodology, data sources, variables, feature engineering, and model training and evaluation and F-test analysis was done to identify and verify the relationships between attributes and the target variable. The findings highlight the model’s efficacy, with a low mean squared error (MSE) value of 3.42, indicating its accuracy in predicting performance metrics. The high R-squared (R2) score of 0.921 emphasizes its ability to capture relationships between input characteristics and performance metrics. The model’s training and testing accuracy further attest to its reliability and generalization capabilities. In interpretation, this research underscores the practical significance of the findings. The regression-based model provides a practical solution for the logistics industry, enabling informed decisions regarding resource allocation, maintenance planning, and delivery route optimization. This contributes to enhanced overall logistics performance and customer service. By addressing performance gaps and embracing modern logistics technologies, the study supports the ongoing evolution of vehicle performance management in logistics clusters, fostering increased competitiveness and sustainability in the logistics sector.展开更多
Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis...Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm.展开更多
文摘K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.
文摘Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There is limited literature and data-driven analysis about trends in transportation mode. This thesis delves into the operational challenges of vehicle performance management within logistics clusters, a critical aspect of efficient supply chain operations. It aims to address the issues faced by logistics organizations in optimizing their vehicle fleets’ performance, essential for seamless logistics operations. The study’s core design involves the development of a predictive logistics model based on regression, focused on forecasting, and evaluating vehicle performance in logistics clusters. It encompasses a comprehensive literature review, research methodology, data sources, variables, feature engineering, and model training and evaluation and F-test analysis was done to identify and verify the relationships between attributes and the target variable. The findings highlight the model’s efficacy, with a low mean squared error (MSE) value of 3.42, indicating its accuracy in predicting performance metrics. The high R-squared (R2) score of 0.921 emphasizes its ability to capture relationships between input characteristics and performance metrics. The model’s training and testing accuracy further attest to its reliability and generalization capabilities. In interpretation, this research underscores the practical significance of the findings. The regression-based model provides a practical solution for the logistics industry, enabling informed decisions regarding resource allocation, maintenance planning, and delivery route optimization. This contributes to enhanced overall logistics performance and customer service. By addressing performance gaps and embracing modern logistics technologies, the study supports the ongoing evolution of vehicle performance management in logistics clusters, fostering increased competitiveness and sustainability in the logistics sector.
文摘Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm.