The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optima...The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optimal detector,which requires many processing channels.The structure of such optimal detector is complex.Therefore,a simpler quasi-optimal detector is then introduced.The quasi-optimal detector,called the strong scattering cells’ number dependent order statistics(SND-OS) detector,takes the form of an average of maximum strong scattering cells with a known number.If the number of strong scattering cells is unknown in real situation,the multi-channel order statistics(MC-OS) detector is used.In each channel,a various number of maximums scattered from target are averaged.Then,the false alarm probability analysis and thresholds sets for each channel are given,following the detection results presented by means of Monte Carlo simulation strategy based on simulated target model and three measured targets.In particular,the theoretical analysis and simulation results highlight that the MC-OS detector can efficiently detect range-spread targets in white Gaussian noise.展开更多
The influence of non-uniqueness in selecting statistical time ranges on seismicity parameters of b value and annual mean occurrence rate ν4 is widely analyzed and studied. The studied result states that the influence...The influence of non-uniqueness in selecting statistical time ranges on seismicity parameters of b value and annual mean occurrence rate ν4 is widely analyzed and studied. The studied result states that the influence of statistical time range on the b value is generally smaller than on the annual mean rate. Owing to the exponentially functional relation between the annual mean rate and b value, the variation of b value by varying statistical time range brings about decrease or increase in the annual mean rates of each magnitude interval with power progression law. These results will exert a synthetic effect on seismic safety evaluation results in various regions in our country.展开更多
Recent years have witnessed a proliferation of quantitative methods for biogeographic inference. In particular, novel parametric approaches represent exciting new opportunities for the study of range evolution. Here, ...Recent years have witnessed a proliferation of quantitative methods for biogeographic inference. In particular, novel parametric approaches represent exciting new opportunities for the study of range evolution. Here, we review a selection of current methods for biogeographic analysis and discuss their respective properties. These methods include generalized parsimony approaches, weighted ancestral area analysis, dispersal-vicariance analysis, the dispersal--extinction--cladogenesis model and other maximum likelihood approaches, and Bayesian stochastic mapping of ancestral ranges, including a novel approach to inferring range evolution in the context of island biogeography. Some of these methods were developed specifically for problems of ancestral range reconstruction, whereas others were designed for more general problems of character state reconstruction and subsequently applied to the study of ancestral ranges. Methods for reconstructing ancestral history on a phylogenetic tree differ not only in the types of ancestral range states that are allowed, but also in the various historical events that may change the ancestral ranges. We explore how the form of allowed ancestral ranges and allowed transitions can both affect the outcome of ancestral range estimation. Finally, we mention some promising avenues for future work in the development of model-based approaches to biogeographic analysis.展开更多
Integrated use of statistical process control (SPC) and engineering process control (EPC) has better performance than that by solely using SPC or EPC. But integrated scheme has resulted in the problem of “Window of O...Integrated use of statistical process control (SPC) and engineering process control (EPC) has better performance than that by solely using SPC or EPC. But integrated scheme has resulted in the problem of “Window of Opportunity” and autocorrelation. In this paper, advanced T2 statistics model and neural networks scheme are combined to solve the above problems: use T2 statistics technique to solve the problem of autocorrelation;adopt neural networks technique to solve the problem of “Window of Opportunity” and identification of disturbance causes. At the same time, regarding the shortcoming of neural network technique that its algorithm has a low speed of convergence and it is usually plunged into local optimum easily. Genetic algorithm was proposed to train samples in this paper. Results of the simulation ex-periments show that this method can detect the process disturbance quickly and accurately as well as identify the dis-turbance type.展开更多
A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix An, we discuss the stability properties of T. Chan’s preconditioner cU (An) from the viewpoint of the...A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix An, we discuss the stability properties of T. Chan’s preconditioner cU (An) from the viewpoint of the numerical range. An application in numerical ODEs is also given.展开更多
Selection of quantitative characteristics, division of their expression ranges, and selection of example varieties are key issues on developing DUS Test Guidelines, which are more crucial for quantitative characterist...Selection of quantitative characteristics, division of their expression ranges, and selection of example varieties are key issues on developing DUS Test Guidelines, which are more crucial for quantitative characteristics since their expressions vary in different degrees. Taking the development of DUS Test Guideline of Ranunculus asiaticus L. as an example, this paper applied statistic-based approaches for the analyses of quantitative characteristics. We selected 9 quantitative characteristics from 18 pre-selected characteristics, based on within-variety uniformity, stability between different growing cycles, and correlation among characteristics, by the analyses of coefficient of variation, paired-samples t-test and partial correlation. The expression ranges of the 9 selected quantitative characteristics were divided into different states using descriptive statistics and distribution frequency of varieties. Eight of the 9 selected quantitative characteristics were categorized as standard characteristics as they showed one peak in distribution frequency of 120 varieties in various expressions of the characteristics, whereas, plant height can be categorized as grouping characteristic since it gave two peaks, and can group the varieties into pot and cut varieties. Finally, box-plot was applied to visually select the example varieties, and varieties 7, 12, and 28 were determined as the example varieties for plant height. The methods described in this paper are effective for the selection of quantitative characteristics, division of expression ranges, and selection of example varieties in Ranunculus asiaticus L. for DUS test, and may also be interest for other plant genera.展开更多
In this paper, a novel statistical manifold algorithm is proposed for position estimation of sensor nodes in a wireless network, making full use of distance information available among unknown nodes and simultaneous l...In this paper, a novel statistical manifold algorithm is proposed for position estimation of sensor nodes in a wireless network, making full use of distance information available among unknown nodes and simultaneous localization of multiple unknown nodes. To begin, a ranging model including the distance information among unknown nodes is established. With the reparameterization of the natural parameter and natural statistic,the solution problem of the ranging model is transformed into a parameter estimation problem of the curved exponential family.Then, a natural gradient method is adopted to deal with the parameter estimation problem of the curved exponential family.To ensure the convergence of the proposed algorithm, a particle swarm optimization method is utilized to obtain initial values of the unknown nodes. Experimental results indicate that the proposed algorithm can improve the positioning accuracy, compared with the traditional algorithm.展开更多
The West Development Policy being implemented in China is causing significant land use and land cover (LULC) changes in West China. With the up-to-date satellite database of the Global Land Cover Characteristics Dat...The West Development Policy being implemented in China is causing significant land use and land cover (LULC) changes in West China. With the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) that characterizes the lower boundary conditions, the regional climate model RIEMS-TEA is used to simulate possible impacts of the significant LULC variation. The model was run for five continuous three-month periods from 1 June to 1 September of 1993, 1994, 1995, 1996, and 1997, and the results of the five groups are examined by means of a student t-test to identify the statistical significance of regional climate variation. The main results are: (1) The regional climate is affected by the LULC variation because the equilibrium of water and heat transfer in the air-vegetation interface is changed. (2) The integrated impact of the LULC variation on regional climate is not only limited to West China where the LULC varies, but also to some areas in the model domain where the LULC does not vary at all. (3) The East Asian monsoon system and its vertical structure are adjusted by the large scale LULC variation in western China, where the consequences are the enhancement of the westward water vapor transfer from the east oast and the relevant increase of wet-hydrostatic energy in the middle-upper atmospheric layers. (4) The ecological engineering in West China affects significantly the regional climate in Northwest China, North China and the middle-lower reaches of the Yangtze River; there are obvious effects in South, Northeast, and Southwest China, but minor effects in Tibet.展开更多
A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model ident...A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach.展开更多
The letter proposed a sound source localization method of digital hearing aids using wavelet based multivariate statistics with the Generalized Cross Correlation (GCC) algorithm. Haar wavelet is used to decompose GCC ...The letter proposed a sound source localization method of digital hearing aids using wavelet based multivariate statistics with the Generalized Cross Correlation (GCC) algorithm. Haar wavelet is used to decompose GCC sequences and extract four wavelet characteristics. And then, Hotelling T2 statistical method is used to fuse the four wavelet characteristics. The statistical value is used to judge the number of sound sources and obtain corresponding time delay estimation which is used to localize the position of sound source. The experimental results show that the proposed method has better robustness in an environment with severe noise and reverberation. Meanwhile, the complexity of al-gorithm is moderate, which is available for sound source localization of hearing aids.展开更多
Data of traffic flow, speed and density are required for planning, designing, and modelling of traffic stream for all parts of the road system. Specialized equipments such as stationary counts are used to record volum...Data of traffic flow, speed and density are required for planning, designing, and modelling of traffic stream for all parts of the road system. Specialized equipments such as stationary counts are used to record volume and speed;but they are expensive, difficult to set up, and require periodic maintenance. The moving observer method was proposed in 1954 by Wardrop and Charlesworth to estimate these variables inexpensively. Basically, the observer counts the number of vehicles overtaken, the number of vehicles passed, and the number of vehicles encountered while traveling in the opposite direction. The trip time is reported for both travel directions. Additionally, the length of road segment is measured. These variables are then used in estimating speeds and volumes. In a westbound direction from Interstate Highway 30 (I-30) in the DFW area, this study examined the accuracy and feasibility of this method by comparing it with stationary observer method as the standard method for such counts. The statistical tests were used to test the accuracy. Results show that this method provides accurate volume and speed estimates when compared to the stationary method for the road segment with three lanes per direction, especially when several runs are taken.展开更多
Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-...Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-1∑j=1^n(Xj -^-Xn)^2)^1/2 where ^-Xn = n^-1 ∑j=1^nXj. In this paper we show a law of iterated logarithm for rescaled range statistics Q(n) for AR(1) model.展开更多
基金supported by the Major Program of National Natural Science Foundation of China (10990012)the National Natural Science Foundation of China (61201296,61271024)+1 种基金the Fundamental Research Funds for the Central Universities (K5051202037)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (12205)
文摘The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optimal detector,which requires many processing channels.The structure of such optimal detector is complex.Therefore,a simpler quasi-optimal detector is then introduced.The quasi-optimal detector,called the strong scattering cells’ number dependent order statistics(SND-OS) detector,takes the form of an average of maximum strong scattering cells with a known number.If the number of strong scattering cells is unknown in real situation,the multi-channel order statistics(MC-OS) detector is used.In each channel,a various number of maximums scattered from target are averaged.Then,the false alarm probability analysis and thresholds sets for each channel are given,following the detection results presented by means of Monte Carlo simulation strategy based on simulated target model and three measured targets.In particular,the theoretical analysis and simulation results highlight that the MC-OS detector can efficiently detect range-spread targets in white Gaussian noise.
基金Chinese Joint Seismological Science Foundation (100110).
文摘The influence of non-uniqueness in selecting statistical time ranges on seismicity parameters of b value and annual mean occurrence rate ν4 is widely analyzed and studied. The studied result states that the influence of statistical time range on the b value is generally smaller than on the annual mean rate. Owing to the exponentially functional relation between the annual mean rate and b value, the variation of b value by varying statistical time range brings about decrease or increase in the annual mean rates of each magnitude interval with power progression law. These results will exert a synthetic effect on seismic safety evaluation results in various regions in our country.
基金support from the National Institute of Environmental Health Sciences (USA) training grant to the NCSU Bioinformatics Research Centersupported by National Institutes of Health (USA) grant no.GM070806
文摘Recent years have witnessed a proliferation of quantitative methods for biogeographic inference. In particular, novel parametric approaches represent exciting new opportunities for the study of range evolution. Here, we review a selection of current methods for biogeographic analysis and discuss their respective properties. These methods include generalized parsimony approaches, weighted ancestral area analysis, dispersal-vicariance analysis, the dispersal--extinction--cladogenesis model and other maximum likelihood approaches, and Bayesian stochastic mapping of ancestral ranges, including a novel approach to inferring range evolution in the context of island biogeography. Some of these methods were developed specifically for problems of ancestral range reconstruction, whereas others were designed for more general problems of character state reconstruction and subsequently applied to the study of ancestral ranges. Methods for reconstructing ancestral history on a phylogenetic tree differ not only in the types of ancestral range states that are allowed, but also in the various historical events that may change the ancestral ranges. We explore how the form of allowed ancestral ranges and allowed transitions can both affect the outcome of ancestral range estimation. Finally, we mention some promising avenues for future work in the development of model-based approaches to biogeographic analysis.
文摘Integrated use of statistical process control (SPC) and engineering process control (EPC) has better performance than that by solely using SPC or EPC. But integrated scheme has resulted in the problem of “Window of Opportunity” and autocorrelation. In this paper, advanced T2 statistics model and neural networks scheme are combined to solve the above problems: use T2 statistics technique to solve the problem of autocorrelation;adopt neural networks technique to solve the problem of “Window of Opportunity” and identification of disturbance causes. At the same time, regarding the shortcoming of neural network technique that its algorithm has a low speed of convergence and it is usually plunged into local optimum easily. Genetic algorithm was proposed to train samples in this paper. Results of the simulation ex-periments show that this method can detect the process disturbance quickly and accurately as well as identify the dis-turbance type.
基金The research is partially supported by the grant RG081/04-05S/JXQ/FST from University of Macao and thegrant 050/2005/A from FDCT.
文摘A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix An, we discuss the stability properties of T. Chan’s preconditioner cU (An) from the viewpoint of the numerical range. An application in numerical ODEs is also given.
基金supported by the Special Fund for Agroscientific Research in the Public Interest of Ministry of Agriculture,China(200903008-14)
文摘Selection of quantitative characteristics, division of their expression ranges, and selection of example varieties are key issues on developing DUS Test Guidelines, which are more crucial for quantitative characteristics since their expressions vary in different degrees. Taking the development of DUS Test Guideline of Ranunculus asiaticus L. as an example, this paper applied statistic-based approaches for the analyses of quantitative characteristics. We selected 9 quantitative characteristics from 18 pre-selected characteristics, based on within-variety uniformity, stability between different growing cycles, and correlation among characteristics, by the analyses of coefficient of variation, paired-samples t-test and partial correlation. The expression ranges of the 9 selected quantitative characteristics were divided into different states using descriptive statistics and distribution frequency of varieties. Eight of the 9 selected quantitative characteristics were categorized as standard characteristics as they showed one peak in distribution frequency of 120 varieties in various expressions of the characteristics, whereas, plant height can be categorized as grouping characteristic since it gave two peaks, and can group the varieties into pot and cut varieties. Finally, box-plot was applied to visually select the example varieties, and varieties 7, 12, and 28 were determined as the example varieties for plant height. The methods described in this paper are effective for the selection of quantitative characteristics, division of expression ranges, and selection of example varieties in Ranunculus asiaticus L. for DUS test, and may also be interest for other plant genera.
基金supported by the National Natural Science Foundation of China(61701286,61473179)Shandong Provincial Natural Science Foundation of China(ZR2017MF047)
文摘In this paper, a novel statistical manifold algorithm is proposed for position estimation of sensor nodes in a wireless network, making full use of distance information available among unknown nodes and simultaneous localization of multiple unknown nodes. To begin, a ranging model including the distance information among unknown nodes is established. With the reparameterization of the natural parameter and natural statistic,the solution problem of the ranging model is transformed into a parameter estimation problem of the curved exponential family.Then, a natural gradient method is adopted to deal with the parameter estimation problem of the curved exponential family.To ensure the convergence of the proposed algorithm, a particle swarm optimization method is utilized to obtain initial values of the unknown nodes. Experimental results indicate that the proposed algorithm can improve the positioning accuracy, compared with the traditional algorithm.
文摘The West Development Policy being implemented in China is causing significant land use and land cover (LULC) changes in West China. With the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) that characterizes the lower boundary conditions, the regional climate model RIEMS-TEA is used to simulate possible impacts of the significant LULC variation. The model was run for five continuous three-month periods from 1 June to 1 September of 1993, 1994, 1995, 1996, and 1997, and the results of the five groups are examined by means of a student t-test to identify the statistical significance of regional climate variation. The main results are: (1) The regional climate is affected by the LULC variation because the equilibrium of water and heat transfer in the air-vegetation interface is changed. (2) The integrated impact of the LULC variation on regional climate is not only limited to West China where the LULC varies, but also to some areas in the model domain where the LULC does not vary at all. (3) The East Asian monsoon system and its vertical structure are adjusted by the large scale LULC variation in western China, where the consequences are the enhancement of the westward water vapor transfer from the east oast and the relevant increase of wet-hydrostatic energy in the middle-upper atmospheric layers. (4) The ecological engineering in West China affects significantly the regional climate in Northwest China, North China and the middle-lower reaches of the Yangtze River; there are obvious effects in South, Northeast, and Southwest China, but minor effects in Tibet.
基金supported by National Natural Science Foundationof China (No. 60472065, No. 60774013).
文摘A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach.
基金Supported by the National Natural Science Foundation of China (No. 60472058, No. 60975017)Jiangsu Provincial Natural Science Foundation (No. BK2008291)
文摘The letter proposed a sound source localization method of digital hearing aids using wavelet based multivariate statistics with the Generalized Cross Correlation (GCC) algorithm. Haar wavelet is used to decompose GCC sequences and extract four wavelet characteristics. And then, Hotelling T2 statistical method is used to fuse the four wavelet characteristics. The statistical value is used to judge the number of sound sources and obtain corresponding time delay estimation which is used to localize the position of sound source. The experimental results show that the proposed method has better robustness in an environment with severe noise and reverberation. Meanwhile, the complexity of al-gorithm is moderate, which is available for sound source localization of hearing aids.
文摘Data of traffic flow, speed and density are required for planning, designing, and modelling of traffic stream for all parts of the road system. Specialized equipments such as stationary counts are used to record volume and speed;but they are expensive, difficult to set up, and require periodic maintenance. The moving observer method was proposed in 1954 by Wardrop and Charlesworth to estimate these variables inexpensively. Basically, the observer counts the number of vehicles overtaken, the number of vehicles passed, and the number of vehicles encountered while traveling in the opposite direction. The trip time is reported for both travel directions. Additionally, the length of road segment is measured. These variables are then used in estimating speeds and volumes. In a westbound direction from Interstate Highway 30 (I-30) in the DFW area, this study examined the accuracy and feasibility of this method by comparing it with stationary observer method as the standard method for such counts. The statistical tests were used to test the accuracy. Results show that this method provides accurate volume and speed estimates when compared to the stationary method for the road segment with three lanes per direction, especially when several runs are taken.
基金supported by NSFC(10071072) supported by SRFDP(200235090)+1 种基金support by the BK21 Project of the Department of Mathematics,Yonsei Universitythe Interdisciplinary Research Program of KOSEF 1999-2-103-001-5 and com2MaC in POSTECH
文摘Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-1∑j=1^n(Xj -^-Xn)^2)^1/2 where ^-Xn = n^-1 ∑j=1^nXj. In this paper we show a law of iterated logarithm for rescaled range statistics Q(n) for AR(1) model.