A contour shape descriptor based on discrete Fourier transform (DFT) and a K-means al- gorithm modified self-organizing feature map (SOFM) neural network are established for shape clus- tering. The given shape is ...A contour shape descriptor based on discrete Fourier transform (DFT) and a K-means al- gorithm modified self-organizing feature map (SOFM) neural network are established for shape clus- tering. The given shape is first sampled uniformly in the polar coordinate. Then the discrete series is transformed to frequency domain and constructed to a shape characteristics vector. Firstly, sample set is roughly clustered using SOFM neural network to reduce the scale of samples. K-means algo- rithm is then applied to improve the performance of SOFM neural network and process the accurate clustering. K-means algorithm also increases the controllability of the clustering. The K-means algo- rithm modified SOFM neural network is used to cluster the shape characteristics vectors which is previously constructed. With leaf shapes as an example, the simulation results show that this method is effective to cluster the contour shapes.展开更多
Contour is an important pattern descriptor in image processing and particularly in region description, registration and length estimation. In many applications where contour is used, a good segmentation and an efficie...Contour is an important pattern descriptor in image processing and particularly in region description, registration and length estimation. In many applications where contour is used, a good segmentation and an efficient smoothing method are needed. In X-ray images, such as mammograms, where object edge is not clearly discernible, estimating the object’s contour may yield substantial shift along the boundary due to noise or segmentation drawbacks. An appropriate smoothing is therefore required to reduce these effects. In this paper, an approach based on local adaptive threshold segmentation to extract contour and a new smoothing approach founded on Fourier descriptors are introduced. The experimental results of extraction obtained from a set of mammograms and compared with the breast regions delineated by radiologists yielded a percent overlap area of 98.7% ± 0.9% with false positive and negative rates of 0.36 ± 0.74 and 0.93 ± 0.44 respectively. The proposed method was tested on a set of images and improved the accuracy, leading to an average error of less than one pixel.展开更多
基金Supported by Guangdong Province Key Science and TechnologyItem(2011A010801005,2010A080402015)the National NaturalScience Foundation of China(61171142)
文摘A contour shape descriptor based on discrete Fourier transform (DFT) and a K-means al- gorithm modified self-organizing feature map (SOFM) neural network are established for shape clus- tering. The given shape is first sampled uniformly in the polar coordinate. Then the discrete series is transformed to frequency domain and constructed to a shape characteristics vector. Firstly, sample set is roughly clustered using SOFM neural network to reduce the scale of samples. K-means algo- rithm is then applied to improve the performance of SOFM neural network and process the accurate clustering. K-means algorithm also increases the controllability of the clustering. The K-means algo- rithm modified SOFM neural network is used to cluster the shape characteristics vectors which is previously constructed. With leaf shapes as an example, the simulation results show that this method is effective to cluster the contour shapes.
文摘Contour is an important pattern descriptor in image processing and particularly in region description, registration and length estimation. In many applications where contour is used, a good segmentation and an efficient smoothing method are needed. In X-ray images, such as mammograms, where object edge is not clearly discernible, estimating the object’s contour may yield substantial shift along the boundary due to noise or segmentation drawbacks. An appropriate smoothing is therefore required to reduce these effects. In this paper, an approach based on local adaptive threshold segmentation to extract contour and a new smoothing approach founded on Fourier descriptors are introduced. The experimental results of extraction obtained from a set of mammograms and compared with the breast regions delineated by radiologists yielded a percent overlap area of 98.7% ± 0.9% with false positive and negative rates of 0.36 ± 0.74 and 0.93 ± 0.44 respectively. The proposed method was tested on a set of images and improved the accuracy, leading to an average error of less than one pixel.