[ Objective ] The aim of the study was to construct associated DNA vaccine of PRRS (Porcine reproductive and respiratory syndrome) and PCV-2 (Porcine circovirus type 2) disease and study its immunogenicity. [ Meth...[ Objective ] The aim of the study was to construct associated DNA vaccine of PRRS (Porcine reproductive and respiratory syndrome) and PCV-2 (Porcine circovirus type 2) disease and study its immunogenicity. [ Method] In_ this study, the ORF5 gene of PRRSV isolated in Liaoning was cloned into plRES-neo expression vector, and the neo gene of plRES-neo expression vector was substituted by the ORF2 gene of the PCV-2 Mongolia strain to construct the recombinant expression vector. The expression in BHK cells was detected through Western blot and IFA. Then the ELISA antibody level and the number of spleen T lymphocytes were detected after Balb/c mice were immunized with this DNA vaccine. E Result] The recombinant plasmid plRES-ORF2-ORF5 was constructed successfully and could express the target proteins in BHK cells, as indicated by Western blot and IFA. There was no significant difference in ELISA antibody between plRES-ORF2-ORF5 immunized group and inactived vaccine immunized groups, while the number of spleen T lymphocytes induced by DNA vaccine was higher than that induced by inactived vaccine. [ Conclusion] The recombinant plasmid plRES-ORF2-ORF5 should induce good humoral immune response and cellular immune response in mice, providing the conditions for better prevention and control of PRRS and PCV-2 disease.展开更多
AIM: To construct a recombinant live attenuated Salmonella typhimurium DNA vaccine encoding H pylori ureB gene and mouse IL-2 gene and to detect its immunogenicity in vitro and in vivo. METHODS: Hpylori ureB and mou...AIM: To construct a recombinant live attenuated Salmonella typhimurium DNA vaccine encoding H pylori ureB gene and mouse IL-2 gene and to detect its immunogenicity in vitro and in vivo. METHODS: Hpylori ureB and mouse IL-2 gene fragments were amplified by polymerase chain reaction (PCR) and cloned into pUCmT vector. DNA sequence of the amplified ureB and IL-2 genes was assayed, then cloned into the eukaryotic expression vector pIRES through enzyme digestion and ligation reactions resulting in pIRES-ureB and pIRES-ureB-IL-2. The recombinant plasmids were used to transform competent E. co/i DH5α, and the positive clones were screened by PCR and restriction enzyme digestion. Then, the recombinant pIRES-ureB and pIRES-ureB-IL-2 were used to transform LB5000 and the recombinant plasmids extracted from LB5000 were finally introduced into the final host SL7207. After that, recombinant strains were grown in vitro repeatedly. In order to detect the immunogenicib/of the vaccine in vitro, pIRES-ureB and pIRES-ureB-IL-2 were transfected to COS-7 cells using LipofectamineTM2000, the immunogenicity of expressed UreB and IL-2 proteins was assayed with SDS-PAGE and Western blot. C57BL/6 mice were orally immunized with 1 × 10^8 recombinant attenuated Salmonella typhimurium DNA vaccine. Four weeks after vaccination, mice were challenged with 1 × 10^7 CFU of live Hpylori SS1. Mice were sacrificed and the stomach was isolated for examination of H pylon 4 wk post-challenge. RESULTS: The 1700 base pair ureB gene fragment amplified from the genomic DNA was consistent with the sequence of H pylori ureB by sequence analysis. The amplified 510 base pair fragment was consistent with the sequence of mouse IL-2 in gene bank. It was confirmed by PCR and restriction enzyme digestion that H pylori ureB and mouse IL-2 genes were inserted into the eukaryotic expression vector pIRES. The experiments in vitro showed that stable recombinant live attenuated Salmonella typhimurium DNA vaccine carrying ureB and IL-2 genes was successfully constructed and the specific strips of UreB and IL-2 expressed by recombinant plasmids were detected through Western blot. Study in vivo showed that the positive rate of rapid urease test of the immunized group including ureB and ureB-IL-2 was 37.5% and 12.5% respectively, and was significantly lower than that (100%) in the control group (P 〈 0.01). CONCLUSION: Recombinant attenuated Salmonella typhimurium DNA vaccine expressing UreB protein and IL-2 protein with immunogenicity can be constructed. It can protect mice against H pylori infection, which may help the development of a human-use H pylori DNA vaccine.展开更多
AIM: To investigate the immunogenidty of a novel DNA vacoine, pSW3891/HBc, based on HBV core gene in Balb/c mice. METHODS: A novel DNA vaccine, pSW3891/HBc, encoding HBV core gene was constructed using a vector plas...AIM: To investigate the immunogenidty of a novel DNA vacoine, pSW3891/HBc, based on HBV core gene in Balb/c mice. METHODS: A novel DNA vaccine, pSW3891/HBc, encoding HBV core gene was constructed using a vector plasmid pSW3891. Balb/c mice were immunized with either pSW3891/HBc or empty vector DNA via gene gun. IgG anti-HBc responses in mouse sera were demonstrated by ELISA. Specific cytotoxicity of cytotoxic T lymphocytes (CTLs) of mice was quantitatively measured by lactate dehydrogenase release assay. RESULTS: HBcAg was expressed effectively in 293T cell line transiently transfected with pSW3891/HBc. Strong IgG anti-HBc responses were elicited in mice immunized with pSW3891/HBc. The end-point titers of anti-HBc reached the highest 1:97 200, 4 wk after the third immunization. The specific CTL killing with the highest specific lysis reached 73.25% at effector:target ratio of 20:1 in mice that received pSW3891/HBc DNA vaccine. CONCLUSION: pSW3891/HBc vaccination elicits specific anti-HBc response and induces HBc-specific CTL response in immunized Balb/c mice.展开更多
AIM: To investigate a novel DNA vaccination based upon expression of the HBV e antigen fused to a heat shock protein (HSP) as a strategy to enhance DNA vaccine potency.METHODS: A pCMV-HBeAg-HSP DNA vaccine and a c...AIM: To investigate a novel DNA vaccination based upon expression of the HBV e antigen fused to a heat shock protein (HSP) as a strategy to enhance DNA vaccine potency.METHODS: A pCMV-HBeAg-HSP DNA vaccine and a control DNA vaccine were generated. Mice were immunized with these different construct. Immune responses were measured 2 wk after a second immunization by a T cell response assay, CTL cytotoxicity assay, and an antibody assay in C57BL/6 and BALB/c mice. CT26-HBeAg tumor cell challenge test in vivo was Performed in BALB/c mice to monitor anti-tumor immune responses.RESULTS: In the mice immunized with pCMV-HBe-HSP DNA, superior CTL activity to target HBV-positive target cells was observed in comparison with mice immunized with pCMV-HBeAg (44% ± 5% vs 30% ± 6% in E: T 〉 50:1, P 〈 0,05), ELISPOT assays showed a stronger T-cell response from mice immunized with pCMV-HBe- HSP than that from pCMV-HBeAg immunized animals when stimulated either with MHC class I or class Ⅱ epitopes derived from HBeAg (74% ± 9% vs 31% ± 6%, P 〈 0.01). ELISA assays revealed an enhanced HBeAg antibody response from mice immunized with pCMV- HBe-HSP than from those immunized with pCMV-HBeAg. The lowest tumor incidence and the slowest tumor growth were observed in mice immunized with pCMV- HBe-HSP when challenged with CT26-HBeAg.CONCLUSION: The results of this study demonstrate a broad enhancement of antigen-specific CD4^+ helper,CD8^+ cytotoxic T-cell, and B-cell responses by a novel DNA vaccination strategy. They also proved a stronger antigen-specific immune memory, which may be superior to currently described HBV DNA vaccination strategies for the treatment of chronic HBV infection.展开更多
Objective:To investigate the effect of interleukin-18 (IL-18) on immune response induced by plasmid encoding hepatitis B virus middle protein antigen and to explore new strategies for prophylactic and therapeutic HBV ...Objective:To investigate the effect of interleukin-18 (IL-18) on immune response induced by plasmid encoding hepatitis B virus middle protein antigen and to explore new strategies for prophylactic and therapeutic HBV DNA vaccines.Methods:BALB/c mice were immunized with pCMV-M alone or co-immunized with pcDNA3-18 and pCMV-M and then their sera were collected for analysing anti-HBsAg antibody by ELISA;splenocytes were isolated for detecting specific CTL response and cytokine assay in vitro.Results:The anti-HBs antibody level of mice co-immunized with pcDNA3-18 and pCMV-M was slightly higher than that of mice immunized with pCMV-M alone,but there was not significantly different (P>0.05).Compared with mice injected with pCMV-M, the specific CTL cytotoxity activity of mice immunized with pcDNA3-18 and pCMV-M was significantly enhanced (P<0.05) and the level of IFN-γ in supernatant of splenocytes cultured with HBsAg in vitro was significantly elevated (P<0.05) while the level of IL-4 had no significant difference (P>0.05).Conclusion:The plasmid encoding IL-18 together with HBV M gene DNA vaccines may enhance specific TH1 cells and CTL cellular immune response induced in mice, so that IL-18 is a promising immune adjuvant.展开更多
AIM: To detect the effects of DNA vaccines in combination with duck IFN-γ gene on the protection of ducks against duck hepatitis B virus (DHBV) infection. METHODS: DuIFN-γ cDNA was cloned and expressed in COS-γ...AIM: To detect the effects of DNA vaccines in combination with duck IFN-γ gene on the protection of ducks against duck hepatitis B virus (DHBV) infection. METHODS: DuIFN-γ cDNA was cloned and expressed in COS-γ cells, and the antiviral activity of DuIFN-γ was detected and neutralized by specific antibodies, Ducks were vaccinated with DHBpreS/S DNA alone or coimmunized with plasmid expressing DuIFN-γ. DuIFN-γ mRNA in peripheral blood mononuclear cells (PBMCs) from immunized ducks was detected by semi-quantitative competitive RT-PCR. Anti-DHBpreS was titrated by enzyme-linked immunosorbent assay (EUSA). DHBV DNA in sera and liver was detected by Southern blot hybridization, after ducks were challenged with high doses of DHBV. RESULTS: DuIFN-γ expressed by COS-γ was able to protect duck fibroblasts against vesicular stomatitis virus (VSV) infection in a dose-dependent fashion, and anti DuIFN-γ antibodies neutralized the antiviral effects. DuIFN-γ in the supernatant also inhibited the release of DHBV DNA from LMH-D2 cells. When ducks were co-immunized with DNA vaccine expressing DHBpreS/S and DuIFN-γ gene as an adjuvant, the level of DuIFN-γ mRNA in PBMCs was higher than that in ducks vaccinated with DHBpreS/S DNA alone. However, the titer of anti-DHBpreS elicited by DHBpreS/S DNA alone was higher than that co-immunized with DuIFN-γ gene and DHBpreS/S DNA. After being challenged with DHBV at high doses, the load of DHBV in sera dropped faster, and the amount of total DNA and cccDNA in the liver decreased more significantly in the group of ducks co-immunized with DuIFN-γ gene and DHBpreS/S DNA than in other groups.展开更多
AIM: To construct a recombinant attenuated Salmonella typhimurium DNA vaccine carrying Helicobacter pylori hpaA gene and to detect its immunogenicity. METHODS: Genomic DNA of the standard H pylori strain 17 874 was is...AIM: To construct a recombinant attenuated Salmonella typhimurium DNA vaccine carrying Helicobacter pylori hpaA gene and to detect its immunogenicity. METHODS: Genomic DNA of the standard H pylori strain 17 874 was isolated as the template, hpaA gene fragment was amplified by polymerase chain reaction (PCR) and cloned into pUCmT vector. DNA sequence of the amplified hpaA gene was assayed, then doned into the eukaryotic expression vector pIRES through enzyme digestion and ligation reactions. The recombinant plasmid was used to transform competent Escherichia coliDH5α, and the positive clones were screened by PCR and restriction enzyme digestion. Then, the recombinant pIRES-hpaA was used to transform LB5000 and the recombinant plasmid isolated from LB5000 was finally used to transform SL7207. After that, the recombinant strain was grown in vitro repeatedly. In order to identify the immunogenicity of the vaccine in vitro, the recombinant pIRES-hpaA was transfected to COS-7 cells using Lipofectamine^(TM)2000, the immunogenicity of expressed HpaA protein was detected with SDS-PAGE and Western blot. RESULTS: The 750-base pair hpaA gene fragment was amplified from the genomic DNA and was consistent with the sequence of H pylori hpaA by sequence analysis. It was confirmed by PCR and restriction enzyme digestion that H pylori hpaA gene was inserted into the eukaryotic expression vector pIRES and a stable recombinant live attenuated Salmonella typhimurium DNA vaccine carrying H pylori hpaA gene was successfully constructed and the specific strip of HpaA expressed by pIRES-hpaA was detected through Western blot. CONCLUSION: The recombinant attenuated Salmonella typhimurium DNA vaccine strain expressing HpaA protein with immunogenicity can be constructed and it may be helpful for further investigating the immune action of DNA vaccine in vivo.展开更多
Hepatitis C virus (HCV) chronic infection is a worldwide health problem, and numerous efforts have been invested to develop novel vaccines. An efficient vaccine requires broad immune response induction against viral p...Hepatitis C virus (HCV) chronic infection is a worldwide health problem, and numerous efforts have been invested to develop novel vaccines. An efficient vaccine requires broad immune response induction against viral proteins. To achieve this goal, we constructed a DNA vaccine expressing nonstructural 3 (NS3) gene (pcDNA3.1-HCV-NS3) and assessed the immune response in C57BL/6 mice. In this study, the NS3 gene was amplified with a nested-reverse transcriptase-polymerase chain reaction (RT-PCR) method using sera of HCV-infected patients with genotype 1a. The resulting NS3 gene was subcloned into a pcDNA3.1 eukaryotic expression vector, and gene expression was detected by western blot. The resultant DNA vaccine was co-administered with interleukin-12 (IL-12) as an adjuvant to female C57BL/6 mice. After the final immunizations, lymphocyte proliferation, cytotoxicity, and cytokine levels were assessed to measure immune responses. Our data suggest that co-administration of HCV NS3 DNA vaccine with IL-12 induces production of significant levels of both IL-4 and interferon (IFN)-γ (p<0.05). Cytotoxicity and lymphocyte proliferation responses of vaccinated mice were significantly increased compared to control (p<0.05). Collectively, our results demonstrated that co-administration of HCV NS3 and IL-12 displayed strong immunogenicity in a murine model.展开更多
Nucleic acid vaccine or DNA vaccine is a hopeful vac- cine to prevent and treat viral hepatitis. Problems exist in different DNA vaccines for HBV or HCV. Optimal animal model should be established study vaccine agains...Nucleic acid vaccine or DNA vaccine is a hopeful vac- cine to prevent and treat viral hepatitis. Problems exist in different DNA vaccines for HBV or HCV. Optimal animal model should be established study vaccine against hepatitis. Apart from the strategy to enhance the efficiency of DNA vaccine, combined use of cytokines or chemokines, different routes of inocu- lation, design of optimal vector, ISS insertion in the plasmid vectors, etc to enhance the efficiency of DNA vaccine are reviewed.展开更多
AIM To assess the efficacy and safety of in vivo electroporation(EP)-mediated dual-plasmid hepatitis B virus(HBV) DNA vaccine vs placebo for sequential combination therapy with lamivudine(LAM) in patients with chronic...AIM To assess the efficacy and safety of in vivo electroporation(EP)-mediated dual-plasmid hepatitis B virus(HBV) DNA vaccine vs placebo for sequential combination therapy with lamivudine(LAM) in patients with chronic hepatitis B. METHODS Two hundred and twenty-five patients were randomized to receive either LAM + vaccine(vaccine group, n = 109) or LAM + placebo(control group, n = 116). LAM treatment lasted 72 wk. Patients received the DNA vaccine or placebo by intramuscular injection mediated by EP at weeks 12(start of treatment with vaccine or placebo, SOT), 16, 24, and 36(end of treatment with vaccine or placebo, EOT). RESULTS In the modified intent-to-treat population, morepatients had a decrease in HBV DNA > 2 log10 IU/m L in the vaccine group at week 12 after EOT compared with the control group. A trend toward a difference in the number of patients with undetectable HBV DNA at week 28 after EOT was obtained. Adverse events were similar. In the dynamic per-protocol set, which excluded adefovir(ADV) add-on cases at each time point instantly after ADV administration due to LAM antiviral failure, more patients had a decrease in HBV DNA > 2 log10 IU/mL in the vaccine group at week 12 and 28 after EOT compared with the control group. More patients with undetectable HBV DNA at week 28 after EOT in the vaccine group were also observed. Among patients with a viral load < 1000 copies/mL at week 12, more patients achieved HBeA g seroconversion in the vaccine group than among controls at week 36 after EOT, as well as less virological breakthrough and YMDD mutations. CONCLUSION The primary endpoint was not achieved using the HBV DNA vaccine. The HBV DNA vaccine could only be beneficial in subjects that have achieved initial virological response under LAM chemotherapy.展开更多
To find a new preventive strategy for the infection of Schistosoma japonica, plasmid pIRES-Sj97-Sj 14-Sj26 that contains fatty binding protein (Sj 14), GST (Sj26) and paramyocin (Sj97) that are expressed on the ...To find a new preventive strategy for the infection of Schistosoma japonica, plasmid pIRES-Sj97-Sj 14-Sj26 that contains fatty binding protein (Sj 14), GST (Sj26) and paramyocin (Sj97) that are expressed on the membrane, was constructed. RT-PCR was used to detect the expression of Sj 14 mRNA, Sj26 mRNA and Sj97 mRNA in the Hela cells, the indirect immunofluorescent test was employed for the detection of the expression of trans-membrane Sj26 after the plasmid was transfected into Hela cells. Fifty BALB/c mice were randomly divided into 5 groups and plRES-Sj97-SjI4-Sj26 plasmid DNA, plRES-Sj 14-Sj26 plasmid DNA, plRES-Sj26 plasmid DNA, plRES blank vector and normal saline were respectively injected into the quadriceps muscles of thigh Eight weeks after the immunization the mice were killed and significantly higher level of IgG was detected in the plRES-Sj97-Sj 14-Sj26 group as compared with the plRES blank vector, normal saline and plRES-Sj26 groups (P〈 0.01) and the plRES-Sj 14-Sj26(P〈0.05). Single splenocyte suspension was prepared to detected the level of IFN-T by ELISA and the lymphocyte stimulating index (SI) by MTT. SI was significantly higher of in the plRES-Sj97-Sj 14-Sj26 group than in other groups (P〈 0.01), while the IFN-T level was significantly higher the plRES-Sj97-Sj 14-Sj26 group than in plRES blank vector and normal saline groups (P〈0.01), but no significant differences were found when compared with plRES-Sj 14-Sj26 and plRES-Sj26 groups. Flow cytometery showed that the percentages of CD4+ and CD8+ T cells were much higher in the plRES-Sj97-Sj 14-Sj26 group (P〈 0.01, P〈0.05). It was concluded that plRES-Sj97-Sj 14-Sj26 vaccine may induce stronger immune response in BALB/c mice.展开更多
To study the kinetics in vivo of a Hantaan virus DNA vaccine, we constructed a fusion DNA vaccine, pEGFP/S, by cloning the S segment of Hantavirus into the vector, pEGFP-C1, which encodes Green fluorescent protein EGF...To study the kinetics in vivo of a Hantaan virus DNA vaccine, we constructed a fusion DNA vaccine, pEGFP/S, by cloning the S segment of Hantavirus into the vector, pEGFP-C1, which encodes Green fluorescent protein EGFP. In this report, we provide evidence that pEGFP/S was distributed and persistently expressed for more than 60 days in several organs after inoculation. Our findings suggest that the persistent immune responses induced by a Hantaan virus DNA vaccine are likely due to the plasmid pEGFP/S deposited in vivo, which acts as a booster immunization.展开更多
Foot-and-mouth disease virus (FMDV) is highly contagious and responsible for huge outbreaks among cloven hoofed animals. The aim of the present study is to evaluate a plasmid DNA immunization system that expresses t...Foot-and-mouth disease virus (FMDV) is highly contagious and responsible for huge outbreaks among cloven hoofed animals. The aim of the present study is to evaluate a plasmid DNA immunization system that expresses the FMDV/OflRN/2007 VP1 gene and compare it with the conventional inactivated vaccine in an animal model. The VP1 gene was sub-cloned into the unique Kpn I and BamH I cloning sites of the peDNA3.1+ and pEGFP-N1 vectors to construct the VPI gene cassettes. The transfected BHKT7 cells with sub-cloned pEGFP-N1-VP1 vector expressed GFP-VP1 fusion protein and displayed more green fluorescence spots than the transfected BHKT7 cells with pEGFP-N1 vector, which solely expressed the GFP protein. Six mice groups were respectively immunized by the sub-cloned pcDNA3.1+-VP1 gene cassette as the DNA vaccine, DNA vaccine and PCMV-SPORT-GMCSF vector (as molecular adjuvant) together, conventional vaccine, PBS (as negative control), pcDNA3.1+ vector (as control group) and PCMV-SPORT vector that contained the GMCSF gene (as control group). Significant neutralizing antibody responses were induced in the mice which were immunized using plasmid vectors expressing the VP1 and GMCSF genes together, the DNA vaccine alone and the conventional inactivated vaccine (P〈0.05). Co-administration of DNA vaccine and GMCSF gene improved neutralizing antibody response in comparison with administration of the DNA vaccine alone, but this response was the most for the conventional vaccine group. However, induction of humeral immunity response in the conventional vaccine group was more protective than for the DNA vaccine, but T-cell proliferation and IFN-? concentration were the most in DNA vaccine with the GMCSF gene. Therefore the group that was vaccinated by DNA vaccine with the GMCSF gene, showed protective neutralizing antibody response and the most Thl cellular immunity.展开更多
BACKGROUND: The inoculation of plasmid DNA encod-ing tumor-associated antigens is a novel and powerful stra-tegy for antitumor vaccination. This study was designed toconstruct the DNA vaccine of mouse AFP and to obser...BACKGROUND: The inoculation of plasmid DNA encod-ing tumor-associated antigens is a novel and powerful stra-tegy for antitumor vaccination. This study was designed toconstruct the DNA vaccine of mouse AFP and to observethe specific cellular immunologic responses and the antitu-mor responses in mice induced by this vaccine.METHODS: The murine AFP gene was amplified by RT-PCR from total RNA extracted from Hepal-6 cells andcloned into the vector pcDNA3.1 to construct pmAFP.The DNA vaccine was identified by restriction enzymeanalysis, sequencing and expression. EL-4 ( mAFP) wasdeveloped by stable transfection of EL-4 cells with pmAFP.The frequency of cells producing IFN-γ in splenocytes har-vested from the mice immunized with the DNA vaccine byintramuscular injection was measured by enzyme linkedimmunospot (ELISPOT). The mice immunized with theDNA vaccine were inoculated with EL-4 (mAFP) cells inback to observe the inhibitory effect of the immunizationon tumor. On the other hand, blood samples were collect-ed from the immunized mice to check the functions of theliver and kidney.RESULTS: The murine AFP gene was successfully clonedby RT-PCR. Results from restriction enzyme analysis, se-quencing and expression showed that the DNA vaccine wassuccessfully constructed. The expression of mAFP mRNAin EL-4 (mAFP) was confirmed by RT-PCR. The resultsof ELISPOT showed that the number of IFN-γ-producingcells of the pmAFP vaccine group was significantly higherthan that of other groups (P <0.01). The tumor volume inthe pmAFP vaccine group (1042. 42 ± 123. 71 mm3 ) wassignificantly smaller than that in other groups (P<0.01).The function of mouse liver and kidney in each group wasunchanged.CONCLUSION: The successfully constructed DNA vaccineof AFP can induce specific cellular immunologic responsesand significant antitumor reponses in mouse and has no im-pact on the function of mouse liver and kindey.展开更多
Lymphocystis disease,caused by the lymphocystis disease virus (LCDV),is a significant worldwide problem in fish industry causing substantial economic losses.In this study,we aimed to develop the DNA vaccine against LC...Lymphocystis disease,caused by the lymphocystis disease virus (LCDV),is a significant worldwide problem in fish industry causing substantial economic losses.In this study,we aimed to develop the DNA vaccine against LCDV,using DNA vaccination technology.We evaluated plasmid pEGFP-N2-LCDV1.3 kb as a DNA vaccine candidate.The plasmid DNA was transiently expressed after liposome transfection into the eukaryotic COS 7 cell line.The distribution and expression of the DNA vaccine (pEGFP-N2-LCDV1.3kb) were also analyzed in tissues of the vaccinated Japanese flounder by PCR,RT-PCR and fluorescent microscopy.Results from PCR analysis indicated that the vaccine-containing plasmids were distributed in injected muscle,the muscle opposite the injection site,the hind intestine,gill,spleen,head,kidney and liver,6 and 25 days after vaccination.The vaccine plasmids disappeared 100 d post-vaccination.Fluorescent microscopy revealed green fluorescence in the injected muscle,the muscle opposite the injection site,the hind intestine,gill,spleen,head,kidney and liver of fish 48 h post-vaccination,green fluorescence did not appear in the control treated tissue.Green fluorescence became weak at 60 days post-vaccination.RT-PCR analysis indicated that the mcp gene was expressed in all tested tissues of vaccinated fish 6-50 days post-vaccination.These results demonstrate that the antigen encoded by the DNA vaccine is distributed and expressed in all of the tissues analyzed in the vaccinated fish.The antigen would therefore potentially initiate a specific immune response.The plasmid DNA was injected into Japanese flounder (Paralichthys olivaceus) intramuscularly and antibodies against LCDV were evaluated.The results indicate that the plasmid encoded DNA vaccine could induce an immune response to LCDV and would therefore offer immune protection against LCD.Further studies are required for the development and application of this promising DNA vaccine.展开更多
The DNA vaccine pCIHA5 encoding hemagglutinin can protect SPF chicken against lethal H5N1 avian influenza virus challenge. The more characters about its protection efficacity were studied. The protective rates in 10...The DNA vaccine pCIHA5 encoding hemagglutinin can protect SPF chicken against lethal H5N1 avian influenza virus challenge. The more characters about its protection efficacity were studied. The protective rates in 10, 40, 70, 100 and 150 μg groups immunized with pCIHA5 were 12.5 (1/8), 58.3 (7/12), 72.7 (8/11), 50.0 (6/12) and 66.7% (8/12), respectively. The protective rates in 5, 20, 35 and 50 μg groups were 145.5 (5/11), 58.3 (7/12), 58.3 (7/12) and 91.7% (11/12), respectively. The 70, 100 and 5 μg groups have virus shedding of 1/8, 2/6 and 1/5. Though the inactived oil-emulsion vaccine has high HI antibody titers and 100% protective rate, the AGP antibody could be detected after vaccination. Results show that the pCIHA5 is fit to boost by intramuscular injection. This would be useful to the study on gene engineering vaccine of avian influenza virus.展开更多
Using human papillomavirus type 16 (HPV16) E7 as an antigen and Heat Shock Protein 70 as adjuvant, we constructed a DNA vaccine by linking HSP70 gene to E7^C91G; gene. Mice, after being immunized with E7^C91G;-HSP70...Using human papillomavirus type 16 (HPV16) E7 as an antigen and Heat Shock Protein 70 as adjuvant, we constructed a DNA vaccine by linking HSP70 gene to E7^C91G; gene. Mice, after being immunized with E7^C91G;-HSP70, E7^C91G/HSP70, E7^C91G, and wild E7 DNA vaccines respectively, produced E7 specific CD8^+ T-cell precursor frequencies of 280.33±2.52, 144.34±4.04, 164.34±5.13 and 82.33±3.51 respectively within every 1 × 10^5 mouse splenocytes. This proves that E7^C91G-HSP70 fusion vaccine can significantly enhance the E7 specific cellular immunity within the mice body(p〈0. 01). After being immunized with E7^C91G-HSP70 fusion vaccine, tumor-bearing mice of the group being treated have significantly longer latency and survival periods, comparing with other three categories of E7 vaccines. Experiment shows that this vaccine has a significant effect on enhancing E7 positive tumor-treatment within mice body. After being immunized with E7^C91G-HSP70 vaccine, there were no pathological changes found in livers, kidneys and spleens of the mice, which proves that the vaccine is quite safe. After all, E7^C91G-HSP70 fusion vaccine has a much stronger tumor- treatment effect than thai of wild type E7 DNA vaccine.展开更多
The amyloid-β(Aβ)oligomer,rather than the Aβmonomer,is considered to be the primary initiator of Alzheimer’s disease.It was hypothesized that p(Aβ3-10)10-MT,the recombinant Aβ3-10 gene vaccine of the Aβoligomer...The amyloid-β(Aβ)oligomer,rather than the Aβmonomer,is considered to be the primary initiator of Alzheimer’s disease.It was hypothesized that p(Aβ3-10)10-MT,the recombinant Aβ3-10 gene vaccine of the Aβoligomer has the potential to treat Alzheimer’s disease.In this study,we intramuscularly injected the p(Aβ3-10)10-MT vaccine into the left hindlimb of APP/PS1/tau triple-transgenic mice,which are a model for Alzheimer’s disease.Our results showed that the p(Aβ3-10)10-MT vaccine effectively reduced Aβoligomer levels and plaque deposition in the cerebral cortex and hippocampus,decreased the levels tau protein variants,reduced synaptic loss,protected synaptic function,reduced neuron loss,and ameliorated memory impairment without causing any cerebral hemorrhaging.Therefore,this novel DNA vaccine,which is safe and highly effective in mouse models of Alzheimer’s disease,holds a lot of promise for the treatment of Alzheimer’s disease in humans.展开更多
The FlaA gene from Vibrio harveyi marker, was cloned into the eukaryotic expression with a short nucleotide sequence encoding the Flag vector pcDNA3.1(+) (designated as pcFlaA). Ninety grouper (Epinephelus awoar...The FlaA gene from Vibrio harveyi marker, was cloned into the eukaryotic expression with a short nucleotide sequence encoding the Flag vector pcDNA3.1(+) (designated as pcFlaA). Ninety grouper (Epinephelus awoara) were separated into three equal size groups. An experimental group was immunized with pcFlaA, Control I group was immunized with the vector pcDNA3.1(+), and Control 1I group was immunized with PBS. The expression of pcFlaA mRNA and protein was examined using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. We also evaluated the immunogenicity and protective efficacy of pcFlaA against V. harveyi by measuring the lymphocyte proliferation response and serum levels of specific antibody and conducting a bacterial challenge test. We successfully transfected the fish muscle with pcFlaA. The pcFlaA mRNA and protein was expressed in the muscle cells for up to one month following injection. The proliferation response of lymphocytes in fish immunized with pcFlaA was significantly higher than in control group II. Furthermore, the immunized fish generated specific antibody. The vaccination also resulted in significantly higher survival during the bacterial challenge test.展开更多
Human cytomegalovirus virions contain three major glycoprotein complexes (gC I, II, III), all of which are required for CMV infectivity. These complexes also represent major antigenic targets for anti-viral immune res...Human cytomegalovirus virions contain three major glycoprotein complexes (gC I, II, III), all of which are required for CMV infectivity. These complexes also represent major antigenic targets for anti-viral immune responses. The gC II complex consists of two glycoproteins, gM and gN. In the current study, DNA vaccines expressing the murine cytomegalovirus (MCMV) homologs of the gM and gN proteins were evaluated for protection against lethal MCMV infection in a mouse model. Humoral and cellular immune responses, spleen viral titers, and mice survival and body-weight changes were examined. The results showed that immunization with gM or gN DNA vaccine alone was not able to offer good protection, whereas co-immunization with both gM and gN induced an effective neutralizing antibody response and cellular immune response, and provided mice with complete protection against a lethal MCMV challenge. This study provides the first in vivo evidence that the gC II (gM-gN) complex may be able to serve as a protective subunit antigen for future HCMV vaccine development.展开更多
文摘[ Objective ] The aim of the study was to construct associated DNA vaccine of PRRS (Porcine reproductive and respiratory syndrome) and PCV-2 (Porcine circovirus type 2) disease and study its immunogenicity. [ Method] In_ this study, the ORF5 gene of PRRSV isolated in Liaoning was cloned into plRES-neo expression vector, and the neo gene of plRES-neo expression vector was substituted by the ORF2 gene of the PCV-2 Mongolia strain to construct the recombinant expression vector. The expression in BHK cells was detected through Western blot and IFA. Then the ELISA antibody level and the number of spleen T lymphocytes were detected after Balb/c mice were immunized with this DNA vaccine. E Result] The recombinant plasmid plRES-ORF2-ORF5 was constructed successfully and could express the target proteins in BHK cells, as indicated by Western blot and IFA. There was no significant difference in ELISA antibody between plRES-ORF2-ORF5 immunized group and inactived vaccine immunized groups, while the number of spleen T lymphocytes induced by DNA vaccine was higher than that induced by inactived vaccine. [ Conclusion] The recombinant plasmid plRES-ORF2-ORF5 should induce good humoral immune response and cellular immune response in mice, providing the conditions for better prevention and control of PRRS and PCV-2 disease.
基金the National Natural Science Foundation of China, No. 30170427
文摘AIM: To construct a recombinant live attenuated Salmonella typhimurium DNA vaccine encoding H pylori ureB gene and mouse IL-2 gene and to detect its immunogenicity in vitro and in vivo. METHODS: Hpylori ureB and mouse IL-2 gene fragments were amplified by polymerase chain reaction (PCR) and cloned into pUCmT vector. DNA sequence of the amplified ureB and IL-2 genes was assayed, then cloned into the eukaryotic expression vector pIRES through enzyme digestion and ligation reactions resulting in pIRES-ureB and pIRES-ureB-IL-2. The recombinant plasmids were used to transform competent E. co/i DH5α, and the positive clones were screened by PCR and restriction enzyme digestion. Then, the recombinant pIRES-ureB and pIRES-ureB-IL-2 were used to transform LB5000 and the recombinant plasmids extracted from LB5000 were finally introduced into the final host SL7207. After that, recombinant strains were grown in vitro repeatedly. In order to detect the immunogenicib/of the vaccine in vitro, pIRES-ureB and pIRES-ureB-IL-2 were transfected to COS-7 cells using LipofectamineTM2000, the immunogenicity of expressed UreB and IL-2 proteins was assayed with SDS-PAGE and Western blot. C57BL/6 mice were orally immunized with 1 × 10^8 recombinant attenuated Salmonella typhimurium DNA vaccine. Four weeks after vaccination, mice were challenged with 1 × 10^7 CFU of live Hpylori SS1. Mice were sacrificed and the stomach was isolated for examination of H pylon 4 wk post-challenge. RESULTS: The 1700 base pair ureB gene fragment amplified from the genomic DNA was consistent with the sequence of H pylori ureB by sequence analysis. The amplified 510 base pair fragment was consistent with the sequence of mouse IL-2 in gene bank. It was confirmed by PCR and restriction enzyme digestion that H pylori ureB and mouse IL-2 genes were inserted into the eukaryotic expression vector pIRES. The experiments in vitro showed that stable recombinant live attenuated Salmonella typhimurium DNA vaccine carrying ureB and IL-2 genes was successfully constructed and the specific strips of UreB and IL-2 expressed by recombinant plasmids were detected through Western blot. Study in vivo showed that the positive rate of rapid urease test of the immunized group including ureB and ureB-IL-2 was 37.5% and 12.5% respectively, and was significantly lower than that (100%) in the control group (P 〈 0.01). CONCLUSION: Recombinant attenuated Salmonella typhimurium DNA vaccine expressing UreB protein and IL-2 protein with immunogenicity can be constructed. It can protect mice against H pylori infection, which may help the development of a human-use H pylori DNA vaccine.
基金Supported by the 135 Project of Jiangsu Province, No. 044
文摘AIM: To investigate the immunogenidty of a novel DNA vacoine, pSW3891/HBc, based on HBV core gene in Balb/c mice. METHODS: A novel DNA vaccine, pSW3891/HBc, encoding HBV core gene was constructed using a vector plasmid pSW3891. Balb/c mice were immunized with either pSW3891/HBc or empty vector DNA via gene gun. IgG anti-HBc responses in mouse sera were demonstrated by ELISA. Specific cytotoxicity of cytotoxic T lymphocytes (CTLs) of mice was quantitatively measured by lactate dehydrogenase release assay. RESULTS: HBcAg was expressed effectively in 293T cell line transiently transfected with pSW3891/HBc. Strong IgG anti-HBc responses were elicited in mice immunized with pSW3891/HBc. The end-point titers of anti-HBc reached the highest 1:97 200, 4 wk after the third immunization. The specific CTL killing with the highest specific lysis reached 73.25% at effector:target ratio of 20:1 in mice that received pSW3891/HBc DNA vaccine. CONCLUSION: pSW3891/HBc vaccination elicits specific anti-HBc response and induces HBc-specific CTL response in immunized Balb/c mice.
文摘AIM: To investigate a novel DNA vaccination based upon expression of the HBV e antigen fused to a heat shock protein (HSP) as a strategy to enhance DNA vaccine potency.METHODS: A pCMV-HBeAg-HSP DNA vaccine and a control DNA vaccine were generated. Mice were immunized with these different construct. Immune responses were measured 2 wk after a second immunization by a T cell response assay, CTL cytotoxicity assay, and an antibody assay in C57BL/6 and BALB/c mice. CT26-HBeAg tumor cell challenge test in vivo was Performed in BALB/c mice to monitor anti-tumor immune responses.RESULTS: In the mice immunized with pCMV-HBe-HSP DNA, superior CTL activity to target HBV-positive target cells was observed in comparison with mice immunized with pCMV-HBeAg (44% ± 5% vs 30% ± 6% in E: T 〉 50:1, P 〈 0,05), ELISPOT assays showed a stronger T-cell response from mice immunized with pCMV-HBe- HSP than that from pCMV-HBeAg immunized animals when stimulated either with MHC class I or class Ⅱ epitopes derived from HBeAg (74% ± 9% vs 31% ± 6%, P 〈 0.01). ELISA assays revealed an enhanced HBeAg antibody response from mice immunized with pCMV- HBe-HSP than from those immunized with pCMV-HBeAg. The lowest tumor incidence and the slowest tumor growth were observed in mice immunized with pCMV- HBe-HSP when challenged with CT26-HBeAg.CONCLUSION: The results of this study demonstrate a broad enhancement of antigen-specific CD4^+ helper,CD8^+ cytotoxic T-cell, and B-cell responses by a novel DNA vaccination strategy. They also proved a stronger antigen-specific immune memory, which may be superior to currently described HBV DNA vaccination strategies for the treatment of chronic HBV infection.
文摘Objective:To investigate the effect of interleukin-18 (IL-18) on immune response induced by plasmid encoding hepatitis B virus middle protein antigen and to explore new strategies for prophylactic and therapeutic HBV DNA vaccines.Methods:BALB/c mice were immunized with pCMV-M alone or co-immunized with pcDNA3-18 and pCMV-M and then their sera were collected for analysing anti-HBsAg antibody by ELISA;splenocytes were isolated for detecting specific CTL response and cytokine assay in vitro.Results:The anti-HBs antibody level of mice co-immunized with pcDNA3-18 and pCMV-M was slightly higher than that of mice immunized with pCMV-M alone,but there was not significantly different (P>0.05).Compared with mice injected with pCMV-M, the specific CTL cytotoxity activity of mice immunized with pcDNA3-18 and pCMV-M was significantly enhanced (P<0.05) and the level of IFN-γ in supernatant of splenocytes cultured with HBsAg in vitro was significantly elevated (P<0.05) while the level of IL-4 had no significant difference (P>0.05).Conclusion:The plasmid encoding IL-18 together with HBV M gene DNA vaccines may enhance specific TH1 cells and CTL cellular immune response induced in mice, so that IL-18 is a promising immune adjuvant.
基金Supported by the Major State Basic Research Development Program of China, 973 Program, No. G2002CB512803the National Natural Science Foundation of China, No. 30070693the Science and Technology Foundation of Shanghai, No. 02DJ14002
文摘AIM: To detect the effects of DNA vaccines in combination with duck IFN-γ gene on the protection of ducks against duck hepatitis B virus (DHBV) infection. METHODS: DuIFN-γ cDNA was cloned and expressed in COS-γ cells, and the antiviral activity of DuIFN-γ was detected and neutralized by specific antibodies, Ducks were vaccinated with DHBpreS/S DNA alone or coimmunized with plasmid expressing DuIFN-γ. DuIFN-γ mRNA in peripheral blood mononuclear cells (PBMCs) from immunized ducks was detected by semi-quantitative competitive RT-PCR. Anti-DHBpreS was titrated by enzyme-linked immunosorbent assay (EUSA). DHBV DNA in sera and liver was detected by Southern blot hybridization, after ducks were challenged with high doses of DHBV. RESULTS: DuIFN-γ expressed by COS-γ was able to protect duck fibroblasts against vesicular stomatitis virus (VSV) infection in a dose-dependent fashion, and anti DuIFN-γ antibodies neutralized the antiviral effects. DuIFN-γ in the supernatant also inhibited the release of DHBV DNA from LMH-D2 cells. When ducks were co-immunized with DNA vaccine expressing DHBpreS/S and DuIFN-γ gene as an adjuvant, the level of DuIFN-γ mRNA in PBMCs was higher than that in ducks vaccinated with DHBpreS/S DNA alone. However, the titer of anti-DHBpreS elicited by DHBpreS/S DNA alone was higher than that co-immunized with DuIFN-γ gene and DHBpreS/S DNA. After being challenged with DHBV at high doses, the load of DHBV in sera dropped faster, and the amount of total DNA and cccDNA in the liver decreased more significantly in the group of ducks co-immunized with DuIFN-γ gene and DHBpreS/S DNA than in other groups.
基金Supported by the National Natural Science Foundation of China,No. 30170427
文摘AIM: To construct a recombinant attenuated Salmonella typhimurium DNA vaccine carrying Helicobacter pylori hpaA gene and to detect its immunogenicity. METHODS: Genomic DNA of the standard H pylori strain 17 874 was isolated as the template, hpaA gene fragment was amplified by polymerase chain reaction (PCR) and cloned into pUCmT vector. DNA sequence of the amplified hpaA gene was assayed, then doned into the eukaryotic expression vector pIRES through enzyme digestion and ligation reactions. The recombinant plasmid was used to transform competent Escherichia coliDH5α, and the positive clones were screened by PCR and restriction enzyme digestion. Then, the recombinant pIRES-hpaA was used to transform LB5000 and the recombinant plasmid isolated from LB5000 was finally used to transform SL7207. After that, the recombinant strain was grown in vitro repeatedly. In order to identify the immunogenicity of the vaccine in vitro, the recombinant pIRES-hpaA was transfected to COS-7 cells using Lipofectamine^(TM)2000, the immunogenicity of expressed HpaA protein was detected with SDS-PAGE and Western blot. RESULTS: The 750-base pair hpaA gene fragment was amplified from the genomic DNA and was consistent with the sequence of H pylori hpaA by sequence analysis. It was confirmed by PCR and restriction enzyme digestion that H pylori hpaA gene was inserted into the eukaryotic expression vector pIRES and a stable recombinant live attenuated Salmonella typhimurium DNA vaccine carrying H pylori hpaA gene was successfully constructed and the specific strip of HpaA expressed by pIRES-hpaA was detected through Western blot. CONCLUSION: The recombinant attenuated Salmonella typhimurium DNA vaccine strain expressing HpaA protein with immunogenicity can be constructed and it may be helpful for further investigating the immune action of DNA vaccine in vivo.
文摘Hepatitis C virus (HCV) chronic infection is a worldwide health problem, and numerous efforts have been invested to develop novel vaccines. An efficient vaccine requires broad immune response induction against viral proteins. To achieve this goal, we constructed a DNA vaccine expressing nonstructural 3 (NS3) gene (pcDNA3.1-HCV-NS3) and assessed the immune response in C57BL/6 mice. In this study, the NS3 gene was amplified with a nested-reverse transcriptase-polymerase chain reaction (RT-PCR) method using sera of HCV-infected patients with genotype 1a. The resulting NS3 gene was subcloned into a pcDNA3.1 eukaryotic expression vector, and gene expression was detected by western blot. The resultant DNA vaccine was co-administered with interleukin-12 (IL-12) as an adjuvant to female C57BL/6 mice. After the final immunizations, lymphocyte proliferation, cytotoxicity, and cytokine levels were assessed to measure immune responses. Our data suggest that co-administration of HCV NS3 DNA vaccine with IL-12 induces production of significant levels of both IL-4 and interferon (IFN)-γ (p<0.05). Cytotoxicity and lymphocyte proliferation responses of vaccinated mice were significantly increased compared to control (p<0.05). Collectively, our results demonstrated that co-administration of HCV NS3 and IL-12 displayed strong immunogenicity in a murine model.
文摘Nucleic acid vaccine or DNA vaccine is a hopeful vac- cine to prevent and treat viral hepatitis. Problems exist in different DNA vaccines for HBV or HCV. Optimal animal model should be established study vaccine against hepatitis. Apart from the strategy to enhance the efficiency of DNA vaccine, combined use of cytokines or chemokines, different routes of inocu- lation, design of optimal vector, ISS insertion in the plasmid vectors, etc to enhance the efficiency of DNA vaccine are reviewed.
基金Supported by Yigan Biological Products Co.,Ltd.of Guangzhou Pharmaceutical Holdings Ltd.(GPC,Guangzhou,China)Guangdong Provincial Sci.&Tech.Project,No.2012A080204009+2 种基金Guangdong Provincial Natural Science Fund,No.2014A030313 770Guangdong Provincial Public Benefit Foundation,No.2015A010107011National Key Program for Management of AIDS and Viral Hepatitis during the China "11~(th) 5-Year Plan" Period,No.2008ZX10002-003
文摘AIM To assess the efficacy and safety of in vivo electroporation(EP)-mediated dual-plasmid hepatitis B virus(HBV) DNA vaccine vs placebo for sequential combination therapy with lamivudine(LAM) in patients with chronic hepatitis B. METHODS Two hundred and twenty-five patients were randomized to receive either LAM + vaccine(vaccine group, n = 109) or LAM + placebo(control group, n = 116). LAM treatment lasted 72 wk. Patients received the DNA vaccine or placebo by intramuscular injection mediated by EP at weeks 12(start of treatment with vaccine or placebo, SOT), 16, 24, and 36(end of treatment with vaccine or placebo, EOT). RESULTS In the modified intent-to-treat population, morepatients had a decrease in HBV DNA > 2 log10 IU/m L in the vaccine group at week 12 after EOT compared with the control group. A trend toward a difference in the number of patients with undetectable HBV DNA at week 28 after EOT was obtained. Adverse events were similar. In the dynamic per-protocol set, which excluded adefovir(ADV) add-on cases at each time point instantly after ADV administration due to LAM antiviral failure, more patients had a decrease in HBV DNA > 2 log10 IU/mL in the vaccine group at week 12 and 28 after EOT compared with the control group. More patients with undetectable HBV DNA at week 28 after EOT in the vaccine group were also observed. Among patients with a viral load < 1000 copies/mL at week 12, more patients achieved HBeA g seroconversion in the vaccine group than among controls at week 36 after EOT, as well as less virological breakthrough and YMDD mutations. CONCLUSION The primary endpoint was not achieved using the HBV DNA vaccine. The HBV DNA vaccine could only be beneficial in subjects that have achieved initial virological response under LAM chemotherapy.
基金National Natural Sciences Foundation of China (No. 30471603).
文摘To find a new preventive strategy for the infection of Schistosoma japonica, plasmid pIRES-Sj97-Sj 14-Sj26 that contains fatty binding protein (Sj 14), GST (Sj26) and paramyocin (Sj97) that are expressed on the membrane, was constructed. RT-PCR was used to detect the expression of Sj 14 mRNA, Sj26 mRNA and Sj97 mRNA in the Hela cells, the indirect immunofluorescent test was employed for the detection of the expression of trans-membrane Sj26 after the plasmid was transfected into Hela cells. Fifty BALB/c mice were randomly divided into 5 groups and plRES-Sj97-SjI4-Sj26 plasmid DNA, plRES-Sj 14-Sj26 plasmid DNA, plRES-Sj26 plasmid DNA, plRES blank vector and normal saline were respectively injected into the quadriceps muscles of thigh Eight weeks after the immunization the mice were killed and significantly higher level of IgG was detected in the plRES-Sj97-Sj 14-Sj26 group as compared with the plRES blank vector, normal saline and plRES-Sj26 groups (P〈 0.01) and the plRES-Sj 14-Sj26(P〈0.05). Single splenocyte suspension was prepared to detected the level of IFN-T by ELISA and the lymphocyte stimulating index (SI) by MTT. SI was significantly higher of in the plRES-Sj97-Sj 14-Sj26 group than in other groups (P〈 0.01), while the IFN-T level was significantly higher the plRES-Sj97-Sj 14-Sj26 group than in plRES blank vector and normal saline groups (P〈0.01), but no significant differences were found when compared with plRES-Sj 14-Sj26 and plRES-Sj26 groups. Flow cytometery showed that the percentages of CD4+ and CD8+ T cells were much higher in the plRES-Sj97-Sj 14-Sj26 group (P〈 0.01, P〈0.05). It was concluded that plRES-Sj97-Sj 14-Sj26 vaccine may induce stronger immune response in BALB/c mice.
文摘To study the kinetics in vivo of a Hantaan virus DNA vaccine, we constructed a fusion DNA vaccine, pEGFP/S, by cloning the S segment of Hantavirus into the vector, pEGFP-C1, which encodes Green fluorescent protein EGFP. In this report, we provide evidence that pEGFP/S was distributed and persistently expressed for more than 60 days in several organs after inoculation. Our findings suggest that the persistent immune responses induced by a Hantaan virus DNA vaccine are likely due to the plasmid pEGFP/S deposited in vivo, which acts as a booster immunization.
文摘Foot-and-mouth disease virus (FMDV) is highly contagious and responsible for huge outbreaks among cloven hoofed animals. The aim of the present study is to evaluate a plasmid DNA immunization system that expresses the FMDV/OflRN/2007 VP1 gene and compare it with the conventional inactivated vaccine in an animal model. The VP1 gene was sub-cloned into the unique Kpn I and BamH I cloning sites of the peDNA3.1+ and pEGFP-N1 vectors to construct the VPI gene cassettes. The transfected BHKT7 cells with sub-cloned pEGFP-N1-VP1 vector expressed GFP-VP1 fusion protein and displayed more green fluorescence spots than the transfected BHKT7 cells with pEGFP-N1 vector, which solely expressed the GFP protein. Six mice groups were respectively immunized by the sub-cloned pcDNA3.1+-VP1 gene cassette as the DNA vaccine, DNA vaccine and PCMV-SPORT-GMCSF vector (as molecular adjuvant) together, conventional vaccine, PBS (as negative control), pcDNA3.1+ vector (as control group) and PCMV-SPORT vector that contained the GMCSF gene (as control group). Significant neutralizing antibody responses were induced in the mice which were immunized using plasmid vectors expressing the VP1 and GMCSF genes together, the DNA vaccine alone and the conventional inactivated vaccine (P〈0.05). Co-administration of DNA vaccine and GMCSF gene improved neutralizing antibody response in comparison with administration of the DNA vaccine alone, but this response was the most for the conventional vaccine group. However, induction of humeral immunity response in the conventional vaccine group was more protective than for the DNA vaccine, but T-cell proliferation and IFN-? concentration were the most in DNA vaccine with the GMCSF gene. Therefore the group that was vaccinated by DNA vaccine with the GMCSF gene, showed protective neutralizing antibody response and the most Thl cellular immunity.
文摘BACKGROUND: The inoculation of plasmid DNA encod-ing tumor-associated antigens is a novel and powerful stra-tegy for antitumor vaccination. This study was designed toconstruct the DNA vaccine of mouse AFP and to observethe specific cellular immunologic responses and the antitu-mor responses in mice induced by this vaccine.METHODS: The murine AFP gene was amplified by RT-PCR from total RNA extracted from Hepal-6 cells andcloned into the vector pcDNA3.1 to construct pmAFP.The DNA vaccine was identified by restriction enzymeanalysis, sequencing and expression. EL-4 ( mAFP) wasdeveloped by stable transfection of EL-4 cells with pmAFP.The frequency of cells producing IFN-γ in splenocytes har-vested from the mice immunized with the DNA vaccine byintramuscular injection was measured by enzyme linkedimmunospot (ELISPOT). The mice immunized with theDNA vaccine were inoculated with EL-4 (mAFP) cells inback to observe the inhibitory effect of the immunizationon tumor. On the other hand, blood samples were collect-ed from the immunized mice to check the functions of theliver and kidney.RESULTS: The murine AFP gene was successfully clonedby RT-PCR. Results from restriction enzyme analysis, se-quencing and expression showed that the DNA vaccine wassuccessfully constructed. The expression of mAFP mRNAin EL-4 (mAFP) was confirmed by RT-PCR. The resultsof ELISPOT showed that the number of IFN-γ-producingcells of the pmAFP vaccine group was significantly higherthan that of other groups (P <0.01). The tumor volume inthe pmAFP vaccine group (1042. 42 ± 123. 71 mm3 ) wassignificantly smaller than that in other groups (P<0.01).The function of mouse liver and kidney in each group wasunchanged.CONCLUSION: The successfully constructed DNA vaccineof AFP can induce specific cellular immunologic responsesand significant antitumor reponses in mouse and has no im-pact on the function of mouse liver and kindey.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (No. [0]2006AA100309)
文摘Lymphocystis disease,caused by the lymphocystis disease virus (LCDV),is a significant worldwide problem in fish industry causing substantial economic losses.In this study,we aimed to develop the DNA vaccine against LCDV,using DNA vaccination technology.We evaluated plasmid pEGFP-N2-LCDV1.3 kb as a DNA vaccine candidate.The plasmid DNA was transiently expressed after liposome transfection into the eukaryotic COS 7 cell line.The distribution and expression of the DNA vaccine (pEGFP-N2-LCDV1.3kb) were also analyzed in tissues of the vaccinated Japanese flounder by PCR,RT-PCR and fluorescent microscopy.Results from PCR analysis indicated that the vaccine-containing plasmids were distributed in injected muscle,the muscle opposite the injection site,the hind intestine,gill,spleen,head,kidney and liver,6 and 25 days after vaccination.The vaccine plasmids disappeared 100 d post-vaccination.Fluorescent microscopy revealed green fluorescence in the injected muscle,the muscle opposite the injection site,the hind intestine,gill,spleen,head,kidney and liver of fish 48 h post-vaccination,green fluorescence did not appear in the control treated tissue.Green fluorescence became weak at 60 days post-vaccination.RT-PCR analysis indicated that the mcp gene was expressed in all tested tissues of vaccinated fish 6-50 days post-vaccination.These results demonstrate that the antigen encoded by the DNA vaccine is distributed and expressed in all of the tissues analyzed in the vaccinated fish.The antigen would therefore potentially initiate a specific immune response.The plasmid DNA was injected into Japanese flounder (Paralichthys olivaceus) intramuscularly and antibodies against LCDV were evaluated.The results indicate that the plasmid encoded DNA vaccine could induce an immune response to LCDV and would therefore offer immune protection against LCD.Further studies are required for the development and application of this promising DNA vaccine.
文摘The DNA vaccine pCIHA5 encoding hemagglutinin can protect SPF chicken against lethal H5N1 avian influenza virus challenge. The more characters about its protection efficacity were studied. The protective rates in 10, 40, 70, 100 and 150 μg groups immunized with pCIHA5 were 12.5 (1/8), 58.3 (7/12), 72.7 (8/11), 50.0 (6/12) and 66.7% (8/12), respectively. The protective rates in 5, 20, 35 and 50 μg groups were 145.5 (5/11), 58.3 (7/12), 58.3 (7/12) and 91.7% (11/12), respectively. The 70, 100 and 5 μg groups have virus shedding of 1/8, 2/6 and 1/5. Though the inactived oil-emulsion vaccine has high HI antibody titers and 100% protective rate, the AGP antibody could be detected after vaccination. Results show that the pCIHA5 is fit to boost by intramuscular injection. This would be useful to the study on gene engineering vaccine of avian influenza virus.
基金Supported by the National Natural Science Foundation of China(30171042)
文摘Using human papillomavirus type 16 (HPV16) E7 as an antigen and Heat Shock Protein 70 as adjuvant, we constructed a DNA vaccine by linking HSP70 gene to E7^C91G; gene. Mice, after being immunized with E7^C91G;-HSP70, E7^C91G/HSP70, E7^C91G, and wild E7 DNA vaccines respectively, produced E7 specific CD8^+ T-cell precursor frequencies of 280.33±2.52, 144.34±4.04, 164.34±5.13 and 82.33±3.51 respectively within every 1 × 10^5 mouse splenocytes. This proves that E7^C91G-HSP70 fusion vaccine can significantly enhance the E7 specific cellular immunity within the mice body(p〈0. 01). After being immunized with E7^C91G-HSP70 fusion vaccine, tumor-bearing mice of the group being treated have significantly longer latency and survival periods, comparing with other three categories of E7 vaccines. Experiment shows that this vaccine has a significant effect on enhancing E7 positive tumor-treatment within mice body. After being immunized with E7^C91G-HSP70 vaccine, there were no pathological changes found in livers, kidneys and spleens of the mice, which proves that the vaccine is quite safe. After all, E7^C91G-HSP70 fusion vaccine has a much stronger tumor- treatment effect than thai of wild type E7 DNA vaccine.
基金supported by the National Nature Science Foundation of China,No.81870819(to YPC)the Natural Science Foundation of Liaoning Province of China,No.2019-MS-200(to XNX).
文摘The amyloid-β(Aβ)oligomer,rather than the Aβmonomer,is considered to be the primary initiator of Alzheimer’s disease.It was hypothesized that p(Aβ3-10)10-MT,the recombinant Aβ3-10 gene vaccine of the Aβoligomer has the potential to treat Alzheimer’s disease.In this study,we intramuscularly injected the p(Aβ3-10)10-MT vaccine into the left hindlimb of APP/PS1/tau triple-transgenic mice,which are a model for Alzheimer’s disease.Our results showed that the p(Aβ3-10)10-MT vaccine effectively reduced Aβoligomer levels and plaque deposition in the cerebral cortex and hippocampus,decreased the levels tau protein variants,reduced synaptic loss,protected synaptic function,reduced neuron loss,and ameliorated memory impairment without causing any cerebral hemorrhaging.Therefore,this novel DNA vaccine,which is safe and highly effective in mouse models of Alzheimer’s disease,holds a lot of promise for the treatment of Alzheimer’s disease in humans.
基金Supported by Fujian Science and Technology Innovation Foundation for Young Scientists (No.2006F3096)Scientific Research Foundation of Jimei University
文摘The FlaA gene from Vibrio harveyi marker, was cloned into the eukaryotic expression with a short nucleotide sequence encoding the Flag vector pcDNA3.1(+) (designated as pcFlaA). Ninety grouper (Epinephelus awoara) were separated into three equal size groups. An experimental group was immunized with pcFlaA, Control I group was immunized with the vector pcDNA3.1(+), and Control 1I group was immunized with PBS. The expression of pcFlaA mRNA and protein was examined using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. We also evaluated the immunogenicity and protective efficacy of pcFlaA against V. harveyi by measuring the lymphocyte proliferation response and serum levels of specific antibody and conducting a bacterial challenge test. We successfully transfected the fish muscle with pcFlaA. The pcFlaA mRNA and protein was expressed in the muscle cells for up to one month following injection. The proliferation response of lymphocytes in fish immunized with pcFlaA was significantly higher than in control group II. Furthermore, the immunized fish generated specific antibody. The vaccination also resulted in significantly higher survival during the bacterial challenge test.
基金supported by the Innovation Platform Open Fund of Hunan Provincial Education Department (11K010)a research fund from Hunan Provincial Science and Technology Development (2008TP4033-2)
文摘Human cytomegalovirus virions contain three major glycoprotein complexes (gC I, II, III), all of which are required for CMV infectivity. These complexes also represent major antigenic targets for anti-viral immune responses. The gC II complex consists of two glycoproteins, gM and gN. In the current study, DNA vaccines expressing the murine cytomegalovirus (MCMV) homologs of the gM and gN proteins were evaluated for protection against lethal MCMV infection in a mouse model. Humoral and cellular immune responses, spleen viral titers, and mice survival and body-weight changes were examined. The results showed that immunization with gM or gN DNA vaccine alone was not able to offer good protection, whereas co-immunization with both gM and gN induced an effective neutralizing antibody response and cellular immune response, and provided mice with complete protection against a lethal MCMV challenge. This study provides the first in vivo evidence that the gC II (gM-gN) complex may be able to serve as a protective subunit antigen for future HCMV vaccine development.