Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculate...Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost.展开更多
This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied ...This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O.展开更多
This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studi...This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed.展开更多
This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhiz...This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy were determined. For this purpose, the experiments were done at six levels of varied temperatures: 10°C, 20°C, 30°C, 40°C, 50°C and 60°C. The values of effective diffusion coefficients obtained in this work for the variously treated ginger rhizomes closely agreed with the average effective diffusion coefficients of other notable authors who determined the drying kinetics and convective heat transfer coefficients of ginger slices.展开更多
In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+- activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+- activated carbon were prepared. The model ...In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+- activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+- activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.展开更多
Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of thes...Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.展开更多
The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted t...The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments.展开更多
In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide c...In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.展开更多
Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformat...Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformation during the cooling process must be addressed.At present,frequently used semi-empirical kinetics models suffer from huge errors at the beginning of transformation,and most of them fail to exhibit the sigmoidal shape characteristic of transformation curves.To describe the martensitic transformation process accurately,based on the Magee model,we introduced the changes in the nucleation activation energy of martensite with temperature,which led to the varying nucleation rates of this model during martensitic transformation.According to the calculation results,the relative error of the modified model for the martensitic transformation kinetics curves of Fe-C-X(X = Ni,Cr,Mn,Si) alloys reached 9.5% compared with those measured via the thermal expansion method.The relative error was approximately reduced by two-thirds compared with that of the Magee model.The incorporation of nucleation activation energy into the kinetics model contributes to the improvement of its precision.展开更多
Atomic simulations are executed to investigate the creep responses of nano-polycrystalline(NC) niobium established by using the Voronoi algorithm. The effects of varying temperature, applied stress, and grain size(GS)...Atomic simulations are executed to investigate the creep responses of nano-polycrystalline(NC) niobium established by using the Voronoi algorithm. The effects of varying temperature, applied stress, and grain size(GS) on creep properties and mechanisms are investigated. Notably, the occurrence of tertiary creep is exclusively observed under conditions where the applied stress exceeds 4.5 GPa and the temperature is higher than 1100 K. This phenomenon can be attributed to the significant acceleration of grain boundary and lattice diffusion, driven by the elevated temperature and stress levels. It is found that the strain rate increases with both temperature and stress increasing. However, an interesting trend is observed in which the strain rate decreases as the grain size increases. The stress and temperature are crucial parameters governing the creep behavior. As these factors intensify, the creep mechanism undergoes a sequential transformation: initially from lattice diffusion under low stress and temperature conditions to a mixed mode combining grain boundaries(GBs) and lattice diffusion at moderate stress and mid temperature levels, and ultimately leading to the failure of power-law controlled creep behavior, inclusive of grain boundary recrystallization under high stress and temperature conditions. This comprehensive analysis provides in more detail an understanding of the intricate creep behavior of nano-polycrystalline niobium and its dependence on various physical parameters.展开更多
The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).Mg...The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.展开更多
In this study,the phase transformations,crystallization kinetics and dissolution mechanism ofβphase(Mg_(17)Al_(12))in magnesium alloy AZ91 were investigated by optical microscopy,X-ray diffraction,differential scanni...In this study,the phase transformations,crystallization kinetics and dissolution mechanism ofβphase(Mg_(17)Al_(12))in magnesium alloy AZ91 were investigated by optical microscopy,X-ray diffraction,differential scanning calorimetry and differential dilatometry.The results indicate that this AZ91 alloy undergoes a phase transformation during aging,a discontinuous precipitation of theβphase(Mg_(17)Al_(12))at 150℃at the grain boundaries and another continuous at 350℃within the grains.The activation energy of the dissolution reaction of theβphase(Mg_(17)Al_(12))under non-isothermal conditions is 116.781 kJ/mol,while it is 129.7383 kJ/mol under isothermal conditions.The Avrami coefficient,n,relevant for the dissolution kinetics of theβphase(Mg_(17)Al_(12))is 1.152 and 1.211 in the non-isothermal and isothermal conditions respectively.The numerical coefficients m and Avrami n are 0.993 and 1.152.展开更多
The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardn...The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardness tests,tensile tests,scanning electron microscopy and transmission electron microscopy.The softening temperature,hardness and tensile strength of the alloy prepared by Process 2 were 110°C,HV 15 and 114 MPa higher,respectively,than those of the alloy prepared by Process 1 after aging at 300°C.The recrystallization activation energy of the alloys prepared by Process 1 and Process 2 were 72.83 and 98.11 kJ/mol,respectively.The pinning effects of the precipitates of the two alloys on grain boundaries and dislocations were basically the same.The softening mechanism was mainly attributed to the loss of dislocation strengthening.The higher Fe fiber density inhibited the average free migration path of dislocations and grain boundary migration in the alloy,which was the main reason for higher softening temperature of the alloy prepared by Process 2.展开更多
The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehy...The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide.展开更多
This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carded out by impreg...This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carded out by impregnating activated carbon with organosilane/methanol-containing solutions. The breakthrough curves of formaldehyde in the packed beds of original and modified activated carbons were measured, respectively, at relative humidity of 30%, 60%, and 80%. Temperature-programmed desorption (TPD) experiments were used to estimate the activation energy for desorption of formaldehyde from the activated carbon. Results showed that the relative humidity had strongly influence on breakthrough curves of formaldehyde in the packed beds. The higher the relative humidity of gas mixtures through the packed beds was, the smaller the breakthrough time of formaldehyde became. The use of organosilane compounds to modify surfaces of the activated carbon can enhance the interaction between formaldehyde and the surfaces, and as a result, the breakthrough times of formaldehyde in the packed beds of the modified activated carbon were longer than that in the packed bed of the unmodified activated carbon.展开更多
To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 t...To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 thermomechanical simulation unit. The true stress-true strain curves obtained showed that the flow stress increased with the decrease in temperature and/or the increase in strain rate and the softening mechanism primarily proceeded via dynamic recovery. The modification on the conventional Arrhenius-type constitutive model approach was made, the material variables and activation energy were determined to be dependent on the deformation parameters. The modified flow stresses were found to be in close agreement with the experimental values. Furthermore, the activation energy obtained under different deformation conditions showed that it decreased with the rise in temperature and/or strain rate, and was also affected by the coupled effect of strain and strain rate.展开更多
The oxidation behaviors of AZ80,AZ8O-0.32 Y and AZ8O-0.38 Nd(wt.%)alloys were researched at 413℃,420℃,427v and 433℃for up to 6 h in air environment via a high precision analytical balance,a laser confocal microscop...The oxidation behaviors of AZ80,AZ8O-0.32 Y and AZ8O-0.38 Nd(wt.%)alloys were researched at 413℃,420℃,427v and 433℃for up to 6 h in air environment via a high precision analytical balance,a laser confocal microscope,differential scanning calorimeter(DSC)analysis,X-ray diffraction(XRD)analysis,scanning electron microscope(SEM)observation,and X-ray photoelectron spectroscopy(XPS)analysis.The results show that the weight gain and oxidation rate of AZ80 are reduced significantly,the initiation form and propagation of cracks in oxide layer are changed.Compact and protective oxide layer forms on alloy surface with Y or Nd addition.And the activation energies of AZ80,AZ80-0.32Y and AZ8O-0.38Nd alloys calculated via Arrhenius equation are 82.556 kJ/mol,177.148kJ/mol and 136.738 kJ/mol,respectively.展开更多
By analyzing previous studies on activation energy of coal oxidation at low temperatures, a theoretical calculation model of apparent activation energy is established. Yield of CO is measured by using the characterist...By analyzing previous studies on activation energy of coal oxidation at low temperatures, a theoretical calculation model of apparent activation energy is established. Yield of CO is measured by using the characteristic detector of coal oxidation at 30-90 ℃. The impact of parameters, such as airflow and particle size, on activation energies is analyzed. Finally, agreement was obtained between activation energies and the dynamic oxygen absorbed in order to test the accuracy of the model. The results show that: 1) a positive exponential relation between concentration of CO and temperature in the process of the experiment is obtained: increases are almost identical and the initial CO is low; 2) the apparent activation energies increase gradually with the sizes of particle at the same airflow, but the gradients increase at a decreasing rate; 3) the apparent activation energies increase linearly with airflow. For the five coal particles, the differences among the energies are relatively high when the airflow was low, but the differences were low when the airflow was high; 4) the optimum sizes of particle, 0.125-0.25 ram, and the optimum volume of airflow, 100 mL/min, are determined from the model; 5) the apparent activation energies decrease with an increase in oxygen absorbed. A negative exponential relation between the two is obtained,展开更多
Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate conditi...Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate condition combinations of temperature and relative humidity were used. Results indicate that changes of concrete carbonation rate with environmental temperature agree the Arrhenius law well, which suggests concrete carbonation rate has obvious dependence on temperature. The higher the temperature is, the more quickly the concrete carbonates, and at the same time it is also affected by environmental relative humidity. Thereafter, the apparent activation energy Ea of concrete carbonation reaction was obtained, ranging from 16.8 to 20.6 kJ/mol corresponding 0.35-0.74 water cement ratio, and lower water cement ratio will cause the apparent activation energy increase. Concrete carbonation rates will increase 1.1-1.69 times as temperature increase every 10 ℃ at the temperature range of 10 to 60 ℃.展开更多
The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-depend...The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed.展开更多
基金supported by Key Science and Technology Innovation Team of Shaanxi Province(No.2022TD-33)National Natural Science Foundation of China(Grant Nos.21373161,21504067)。
文摘Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost.
文摘This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O.
文摘This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed.
文摘This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy were determined. For this purpose, the experiments were done at six levels of varied temperatures: 10°C, 20°C, 30°C, 40°C, 50°C and 60°C. The values of effective diffusion coefficients obtained in this work for the variously treated ginger rhizomes closely agreed with the average effective diffusion coefficients of other notable authors who determined the drying kinetics and convective heat transfer coefficients of ginger slices.
基金The National Natural Scientific Foundation of China. (Project grant No. 29936100)
文摘In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+- activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+- activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.
基金National Natural Science Foundation of China (No. 20176012) PRA project (E01-01) the Natural Science Foundation of Guangdong Province
文摘Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.
基金funding by the Ministry of Culture and Science of the Federal State of North Rhine-Westphalia (NRW Return Grant)CRC/TRR247:"Heterogeneous Oxidation Catalysis in the Liquid Phase"(388390466-TRR247),the RESOLV Cluster of Excellence,funded by the Deutsche Forschungsgemeinschaft under Germany’s Excellence StrategyEXC 2033-390677874-RESOLV+1 种基金the Center for Nanointegration (CENIDE)supported by COST (European Cooperation in Science and Technology)。
文摘The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments.
基金Project (2006BAK04B03) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of ChinaProject (kjdb200902-7) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology Review, China+1 种基金Project (1960-71131100023) supported by Postgraduate Dissertation Innovation Foundation of Central South University, ChinaProject (ZKJ2009008) supported by Precious Apparatus Opening Center Foundation of Central South University, China
文摘In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.
基金financially supported by the National Natural Science Foundation of China(No.U2102212)the Shanghai Rising-Star Program(No.21QA1403200)。
文摘Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformation during the cooling process must be addressed.At present,frequently used semi-empirical kinetics models suffer from huge errors at the beginning of transformation,and most of them fail to exhibit the sigmoidal shape characteristic of transformation curves.To describe the martensitic transformation process accurately,based on the Magee model,we introduced the changes in the nucleation activation energy of martensite with temperature,which led to the varying nucleation rates of this model during martensitic transformation.According to the calculation results,the relative error of the modified model for the martensitic transformation kinetics curves of Fe-C-X(X = Ni,Cr,Mn,Si) alloys reached 9.5% compared with those measured via the thermal expansion method.The relative error was approximately reduced by two-thirds compared with that of the Magee model.The incorporation of nucleation activation energy into the kinetics model contributes to the improvement of its precision.
基金Project supported by the Doctoral Scientific Research Starting Foundation of Nanchang Hang Kong University,China(Grant No.EA201903209)。
文摘Atomic simulations are executed to investigate the creep responses of nano-polycrystalline(NC) niobium established by using the Voronoi algorithm. The effects of varying temperature, applied stress, and grain size(GS) on creep properties and mechanisms are investigated. Notably, the occurrence of tertiary creep is exclusively observed under conditions where the applied stress exceeds 4.5 GPa and the temperature is higher than 1100 K. This phenomenon can be attributed to the significant acceleration of grain boundary and lattice diffusion, driven by the elevated temperature and stress levels. It is found that the strain rate increases with both temperature and stress increasing. However, an interesting trend is observed in which the strain rate decreases as the grain size increases. The stress and temperature are crucial parameters governing the creep behavior. As these factors intensify, the creep mechanism undergoes a sequential transformation: initially from lattice diffusion under low stress and temperature conditions to a mixed mode combining grain boundaries(GBs) and lattice diffusion at moderate stress and mid temperature levels, and ultimately leading to the failure of power-law controlled creep behavior, inclusive of grain boundary recrystallization under high stress and temperature conditions. This comprehensive analysis provides in more detail an understanding of the intricate creep behavior of nano-polycrystalline niobium and its dependence on various physical parameters.
基金the National Natural Science Foundation of China(Nos.52101274,51731002)Natural Science Foundation of Shandong Province,China(Nos.ZR2020QE011,ZR2022ME089)+1 种基金Youth Top Talent Foundation of Yantai University,China(No.2219008)Graduate Innovation Foundation of Yantai University,China(No.GIFYTU2240).
文摘The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.
基金founded by Taif University,Taif,Saudi Arabia (TU-DSPP-2024-63).
文摘In this study,the phase transformations,crystallization kinetics and dissolution mechanism ofβphase(Mg_(17)Al_(12))in magnesium alloy AZ91 were investigated by optical microscopy,X-ray diffraction,differential scanning calorimetry and differential dilatometry.The results indicate that this AZ91 alloy undergoes a phase transformation during aging,a discontinuous precipitation of theβphase(Mg_(17)Al_(12))at 150℃at the grain boundaries and another continuous at 350℃within the grains.The activation energy of the dissolution reaction of theβphase(Mg_(17)Al_(12))under non-isothermal conditions is 116.781 kJ/mol,while it is 129.7383 kJ/mol under isothermal conditions.The Avrami coefficient,n,relevant for the dissolution kinetics of theβphase(Mg_(17)Al_(12))is 1.152 and 1.211 in the non-isothermal and isothermal conditions respectively.The numerical coefficients m and Avrami n are 0.993 and 1.152.
基金financial supports from the Department of Science and Technology and other Provincial and Ministerial Level Projects,China(No.204306800086)Science and Technology Projects of Ganzhou Science and Technology Bureau,China(No.204301000194)the Science and Technology Project of Jiangxi Provincial Department of Education,China(No.204201400853)。
文摘The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardness tests,tensile tests,scanning electron microscopy and transmission electron microscopy.The softening temperature,hardness and tensile strength of the alloy prepared by Process 2 were 110°C,HV 15 and 114 MPa higher,respectively,than those of the alloy prepared by Process 1 after aging at 300°C.The recrystallization activation energy of the alloys prepared by Process 1 and Process 2 were 72.83 and 98.11 kJ/mol,respectively.The pinning effects of the precipitates of the two alloys on grain boundaries and dislocations were basically the same.The softening mechanism was mainly attributed to the loss of dislocation strengthening.The higher Fe fiber density inhibited the average free migration path of dislocations and grain boundary migration in the alloy,which was the main reason for higher softening temperature of the alloy prepared by Process 2.
基金the financial support provided by the Natural Science Foundations in Hebei Province(No.E2018201235)Baoding Science and Technology Planning Project(No.2074P019)+2 种基金Higher Education in Hebei Province School Science and Technology Research Project(No.QN2019209)Horizontal project(horizontal 20230048)2022 Hebei Province and Hebei University College Students Innovation and Entrepreneurship Training Program(Nos.2022265 and 2022266)。
文摘The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide.
基金Supported by the National Natural Science Foundation of China (20576041) and the National High Technology Research and Development Program of China (2006AA06A310).
文摘This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carded out by impregnating activated carbon with organosilane/methanol-containing solutions. The breakthrough curves of formaldehyde in the packed beds of original and modified activated carbons were measured, respectively, at relative humidity of 30%, 60%, and 80%. Temperature-programmed desorption (TPD) experiments were used to estimate the activation energy for desorption of formaldehyde from the activated carbon. Results showed that the relative humidity had strongly influence on breakthrough curves of formaldehyde in the packed beds. The higher the relative humidity of gas mixtures through the packed beds was, the smaller the breakthrough time of formaldehyde became. The use of organosilane compounds to modify surfaces of the activated carbon can enhance the interaction between formaldehyde and the surfaces, and as a result, the breakthrough times of formaldehyde in the packed beds of the modified activated carbon were longer than that in the packed bed of the unmodified activated carbon.
基金Projects(U1637601,51405520,51327902) supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2017-06) supported by State Key Laboratory of High Performance Complex Manufacturing of Central South University,China
文摘To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 thermomechanical simulation unit. The true stress-true strain curves obtained showed that the flow stress increased with the decrease in temperature and/or the increase in strain rate and the softening mechanism primarily proceeded via dynamic recovery. The modification on the conventional Arrhenius-type constitutive model approach was made, the material variables and activation energy were determined to be dependent on the deformation parameters. The modified flow stresses were found to be in close agreement with the experimental values. Furthermore, the activation energy obtained under different deformation conditions showed that it decreased with the rise in temperature and/or strain rate, and was also affected by the coupled effect of strain and strain rate.
基金the National Key Research and Development Program of China(No.2016YFB0301104)Nation Natural Science Foundation of China(No.51771043)Foundation of State Key Laboratory of Baiyunobo Rare Earth researches and Comprehensive Utilization,and Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,No.BP0719037).
文摘The oxidation behaviors of AZ80,AZ8O-0.32 Y and AZ8O-0.38 Nd(wt.%)alloys were researched at 413℃,420℃,427v and 433℃for up to 6 h in air environment via a high precision analytical balance,a laser confocal microscope,differential scanning calorimeter(DSC)analysis,X-ray diffraction(XRD)analysis,scanning electron microscope(SEM)observation,and X-ray photoelectron spectroscopy(XPS)analysis.The results show that the weight gain and oxidation rate of AZ80 are reduced significantly,the initiation form and propagation of cracks in oxide layer are changed.Compact and protective oxide layer forms on alloy surface with Y or Nd addition.And the activation energies of AZ80,AZ80-0.32Y and AZ8O-0.38Nd alloys calculated via Arrhenius equation are 82.556 kJ/mol,177.148kJ/mol and 136.738 kJ/mol,respectively.
基金Project 50474067 supported by National Natural Science Foundation of China
文摘By analyzing previous studies on activation energy of coal oxidation at low temperatures, a theoretical calculation model of apparent activation energy is established. Yield of CO is measured by using the characteristic detector of coal oxidation at 30-90 ℃. The impact of parameters, such as airflow and particle size, on activation energies is analyzed. Finally, agreement was obtained between activation energies and the dynamic oxygen absorbed in order to test the accuracy of the model. The results show that: 1) a positive exponential relation between concentration of CO and temperature in the process of the experiment is obtained: increases are almost identical and the initial CO is low; 2) the apparent activation energies increase gradually with the sizes of particle at the same airflow, but the gradients increase at a decreasing rate; 3) the apparent activation energies increase linearly with airflow. For the five coal particles, the differences among the energies are relatively high when the airflow was low, but the differences were low when the airflow was high; 4) the optimum sizes of particle, 0.125-0.25 ram, and the optimum volume of airflow, 100 mL/min, are determined from the model; 5) the apparent activation energies decrease with an increase in oxygen absorbed. A negative exponential relation between the two is obtained,
基金Funded by National Natural Science Fundation of China(No.51178455)
文摘Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate condition combinations of temperature and relative humidity were used. Results indicate that changes of concrete carbonation rate with environmental temperature agree the Arrhenius law well, which suggests concrete carbonation rate has obvious dependence on temperature. The higher the temperature is, the more quickly the concrete carbonates, and at the same time it is also affected by environmental relative humidity. Thereafter, the apparent activation energy Ea of concrete carbonation reaction was obtained, ranging from 16.8 to 20.6 kJ/mol corresponding 0.35-0.74 water cement ratio, and lower water cement ratio will cause the apparent activation energy increase. Concrete carbonation rates will increase 1.1-1.69 times as temperature increase every 10 ℃ at the temperature range of 10 to 60 ℃.
文摘The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed.