期刊文献+
共找到424篇文章
< 1 2 22 >
每页显示 20 50 100
Software Coupling and Cohesion Model for Measuring the Quality of Software Components
1
作者 Zakarya Abdullah Alzamil 《Computers, Materials & Continua》 SCIE EI 2023年第12期3139-3161,共23页
Measuring software quality requires software engineers to understand the system’s quality attributes and their measurements.The quality attribute is a qualitative property;however,the quantitative feature is needed f... Measuring software quality requires software engineers to understand the system’s quality attributes and their measurements.The quality attribute is a qualitative property;however,the quantitative feature is needed for software measurement,which is not considered during the development of most software systems.Many research studies have investigated different approaches for measuring software quality,but with no practical approaches to quantify and measure quality attributes.This paper proposes a software quality measurement model,based on a software interconnection model,to measure the quality of software components and the overall quality of the software system.Unlike most of the existing approaches,the proposed approach can be applied at the early stages of software development,to different architectural design models,and at different levels of system decomposition.This article introduces a software measurement model that uses a heuristic normalization of the software’s internal quality attributes,i.e.,coupling and cohesion,for software quality measurement.In this model,the quality of a software component is measured based on its internal strength and the coupling it exhibits with other component(s).The proposed model has been experimented with nine software engineering teams that have agreed to participate in the experiment during the development of their different software systems.The experiments have shown that coupling reduces the internal strength of the coupled components by the amount of coupling they exhibit,which degrades their quality and the overall quality of the software system.The introduced model can help in understanding the quality of software design.In addition,it identifies the locations in software design that exhibit unnecessary couplings that degrade the quality of the software systems,which can be eliminated. 展开更多
关键词 Software coupling measurement software cohesion measurement quality attributes measurement software quality measurement software quality modeling
下载PDF
A Component Selection Framework of Cohesion and Coupling Metrics
2
作者 M.Iyyappan Arvind Kumar +3 位作者 Sultan Ahmad Sudan Jha Bader Alouffi Abdullah Alharbi 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期351-365,共15页
Component-based software engineering is concerned with the develop-ment of software that can satisfy the customer prerequisites through reuse or inde-pendent development.Coupling and cohesion measurements are primaril... Component-based software engineering is concerned with the develop-ment of software that can satisfy the customer prerequisites through reuse or inde-pendent development.Coupling and cohesion measurements are primarily used to analyse the better software design quality,increase the reliability and reduced system software complexity.The complexity measurement of cohesion and coupling component to analyze the relationship between the component module.In this paper,proposed the component selection framework of Hexa-oval optimization algorithm for selecting the suitable components from the repository.It measures the interface density modules of coupling and cohesion in a modular software sys-tem.This cohesion measurement has been taken into two parameters for analyz-ing the result of complexity,with the help of low cohesion and high cohesion.In coupling measures between the component of inside parameters and outside parameters.Thefinal process of coupling and cohesion,the measured values were used for the average calculation of components parameter.This paper measures the complexity of direct and indirect interaction among the component as well as the proposed algorithm selecting the optimal component for the repository.The better result is observed for high cohesion and low coupling in compo-nent-based software engineering. 展开更多
关键词 Component-based software system coupling metric cohesion metric complexity component interface module density
下载PDF
Effect of Family Cohesion on Depression of Chinese College Students in the COVID-19 Pandemic: Chain Mediation Effect of Perceived Social Support and Intentional Self-Regulation
3
作者 Jingjing Wang Xiangli Guan +4 位作者 Yue Zhang Yang Li Md Zahir Ahmed Mary CJobe Oli Ahmed 《International Journal of Mental Health Promotion》 2023年第2期223-235,共13页
Individuals’perceptions,attitudes,and patterns of getting along with family members are important factors influencing Chinese people’s self-evaluation.The aim of this study was to investigate the effect of family co... Individuals’perceptions,attitudes,and patterns of getting along with family members are important factors influencing Chinese people’s self-evaluation.The aim of this study was to investigate the effect of family cohesion on depression and the role of perceived social support and intentional self-regulation in this association.A hypothesized model of the association of family cohesion,perceived social support,intentional self-regulation,and depression was examined.A convenience sampling method was used to survey 1,180 college students in Yunnan Province using self-report.Data were collected using the Family Cohesion Scale,the Perceived Social Support Scale,the Intentional Self-Regulation Scale,and the Center for Epidemiological Studies Depression Scale.The findings revealed low to moderate correlation between the variables studied.College students’family cohesion was a negative predictor of their depression.This association was also mediated by the knock-on effect of perceived social support and intentional self-regulation.These findings show how family cohesion affects college students’depressive status.Specifically,these results help demonstrate the importance of family cohesion,perceived social support,and intentional self-regulation in optimizing students’depression,which in turn can promote better psychological states. 展开更多
关键词 DEPRESSION family cohesion perceived social support intentional self-regulation
下载PDF
Relationship between family cohesion/adaptability and postpartum depressive symptoms:A single-center retrospective study
4
作者 Guo-Rong Zhang Peng-Sheng Li Yan-Bin Jia 《World Journal of Psychiatry》 SCIE 2023年第2期50-59,共10页
BACKGROUND Depression is the most common mental illness in postpartum mothers,and the etiology of postpartum depression remains poorly understood.Over the past several decades,studies have reported that postpartum dep... BACKGROUND Depression is the most common mental illness in postpartum mothers,and the etiology of postpartum depression remains poorly understood.Over the past several decades,studies have reported that postpartum depression is caused by multiple factors,such as genetic,psychological,pregnancy,and environmental factors,with the family environment being an important environmental factor.The theory of family cohesion and adaptability put forward by Olson is a classic model that describes the level of family function.However,to date,this model has not been examined regarding its applicability to patients with postpartum depression.AIM To investigate the relationship between family cohesion and adaptability and the risk of postpartum depressive symptoms.METHODS We retrospectively analyzed 1446 patients admitted to the postpartum healthcare clinic of the Affiliated Foshan Maternity and Child Healthcare Hospital from April 2021 to December 2021.Patients were grouped according to whether postpartum depression symptoms were reported(symptoms,n=454;no symptoms,n=992).All patients completed the Edinburgh Postpartum Depression Scale and the Chinese version of the Family Cohesion and Adaptability Assessment Scale II.Baseline and clinical data were compared between groups.Univariate regression analysis was used to investigate the association between different types of family cohesion and postpartum depressive symptoms and the association between different family adaptability types and postpartum depressive symptoms.RESULTS After adjusting for age,education,occupation,gravidity,parity,and mode of delivery,disengaged[adjusted odds ratio(AOR)=3.36,95%CI:1.91-5.91],and separated(AOR=1.97,95%CI:1.34-2.90)family cohesion types showed a higher risk of postpartum depression than the connection type,whereas the enmeshed type(AOR=0.38,95%CI:0.28-0.51)protected against postpartum depressive symptoms.Rigid(AOR=4.41,95%CI:3.02-6.43)and structured families(AOR=1.88,95%CI:1.34-2.63)had a higher risk of postpartum depressive symptoms than flexible families,whereas chaotic families(AOR=0.35,95%CI:0.24-0.51)protected against postpartum depressive symptoms.CONCLUSION Family cohesion and adaptability are influencing factors for postpartum depressive symptoms,with higher family cohesion and adaptability being associated with a lower risk of postpartum depressive symptoms. 展开更多
关键词 Family cohesion ADAPTABILITY Postpartum depressive symptoms Cross-sectional study
下载PDF
UHPC-RC节段组合梁的抗弯性能分析
5
作者 严靖 陈亮 黄润钺 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第2期207-213,共7页
为研究低预应力度条件下,不同节段接缝的超高性能混凝土-钢筋混凝土(ultra-high performance concrete-reinforced concrete,UHPC-RC)组合梁的抗弯性能,文章基于ABAQUS有限元软件,建立UHPC-RC节段组合梁的基准有限元模型,并利用已有的... 为研究低预应力度条件下,不同节段接缝的超高性能混凝土-钢筋混凝土(ultra-high performance concrete-reinforced concrete,UHPC-RC)组合梁的抗弯性能,文章基于ABAQUS有限元软件,建立UHPC-RC节段组合梁的基准有限元模型,并利用已有的试验数据验证该模型的合理性。节段接缝分别为平面干接缝、平面胶接缝、齿键干接缝和齿键胶接缝,在基准有限元模型的基础上,进一步研究节段接缝类型对组合梁抗弯性能的影响。研究发现,在四点受弯加载方式下,接缝的几何特征(平面或齿键)对组合梁的极限荷载和开裂荷载影响较小,环氧树脂胶的使用对组合梁的抗弯性能影响较大。 展开更多
关键词 桥梁工程 超高性能混凝土-钢筋混凝土(UHPC-RC) 节段组合梁 节段接缝 ABAQUS有限元软件 cohesive behavior模型
下载PDF
An extended micromechanical-based plastic damage model for understanding water effects on quasi-brittle rocks
6
作者 Qiaojuan Yu Shigui Du +3 位作者 Qizhi Zhu Zhanyou Luo Sili Liu Lunyang Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期289-304,共16页
Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechani... Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water. 展开更多
关键词 Water MICRO-CRACK DAMAGE MICRO-MECHANICS Constitutive model Cohesive force
下载PDF
Anisotropic shearing mechanism of Kangding slate:Experimental investigation and numerical analysis
7
作者 Ping Liu Quansheng Liu +4 位作者 Penghai Deng Yucong Pan Yiming Lei Chenglei Du Xianqi Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1487-1504,共18页
The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly ... The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly affected by the foliation angles.Direct shear tests were conducted on cubic slate samples with foliation angles of 0°,30°,45°,60°,and 90°.The effect of foliation angles on failure patterns,acoustic emission(AE)characteristics,and shear strength parameters was analyzed.Based on AE characteristics,the slate failure process could be divided into four stages:quiet period,step-like increasing period,dramatic increasing period,and remission period.A new empirical expression of cohesion for layered rock was proposed,which was compared with linear and sinusoidal cohesion expressions based on the results made by this paper and previous experiments.The comparative analysis demonstrated that the new expression has better prediction ability than other expressions.The proposed empirical equation was used for direct shear simulations with the combined finite-discrete element method(FDEM),and it was found to align well with the experimental results.Considering both computational efficiency and accuracy,it was recommended to use a shear rate of 0.01 m/s for FDEM to carry out direct shear simulations.To balance the relationship between the number of elements and the simulation results in the direct shear simulations,the recommended element size is 1 mm. 展开更多
关键词 ANISOTROPY Empirical expression of cohesion foliation angles Combined finite-discrete element method(FDEM) Shear rate Element size
下载PDF
Progressive fragmentation of granular assemblies within rockslides: Insights from discrete-continuous numerical modeling
8
作者 JIANG Hui ZHOU Yuande +2 位作者 WANG Jinting DU Xiuli HUANG Hailong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1174-1189,共16页
Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive... Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios. 展开更多
关键词 Rock fragmentation ROCKSLIDE Numerical modelling Discrete-continuous modelling RUNOUT Cohesive zone model
下载PDF
Evolution of mechanical parameters of Shuangjiangkou granite under different loading cycles and stress paths
9
作者 Liangjie Gu Xia-Ting Feng +2 位作者 Rui Kong Chengxiang Yang Yuelin Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1113-1126,共14页
Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock und... Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed. 展开更多
关键词 Triaxial cyclic loading and unloading test Stress path Deformation modulus and elastic deformation increment ratios Fracture degree cohesion and internal friction angle
下载PDF
基于LCEM-GFEM方法爆炸载荷作用下含缺陷岩体损伤机理研究
10
作者 陈勇 王应朋 +2 位作者 杨玉贵 孙文凯 孟宁康 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第2期496-510,共15页
在爆破作业过程中,岩体缺陷对裂纹扩展具有显著影响。本研究基于全局有限元方法的局部黏结单元(LCEM-GFEM)方法构建数值模拟模型,研究爆破作用下含缺陷岩体的损伤演化和裂纹扩展模式。通过引入能量传递系数,定量分析了缺陷形态对应力波... 在爆破作业过程中,岩体缺陷对裂纹扩展具有显著影响。本研究基于全局有限元方法的局部黏结单元(LCEM-GFEM)方法构建数值模拟模型,研究爆破作用下含缺陷岩体的损伤演化和裂纹扩展模式。通过引入能量传递系数,定量分析了缺陷形态对应力波传播和衰减的影响。结果表明,缺陷形态对岩体的损伤特性和裂纹扩展具有显著影响。随着平行缺陷夹角的增加,爆破诱发的裂缝与衍生裂缝的合并路径从缺陷末端转移到了缺陷中间,能量传递系数增加,分形维度减小。随着平行缺陷之间的水平距离增加,平行缺陷之间的裂缝数目和能量传递系数相应减少。随着垂直缺陷之间的垂直距离增加,穿过缺陷C的主水平裂缝长度增加,能量传递系数和分形维度也增加。研究结果可为受到爆破荷载作用下含缺陷岩体的损伤特征提供指导。 展开更多
关键词 缺陷岩体 LCEM-GFEM方法 裂纹扩展 Cohesive单元 分形理论
下载PDF
Finite Element Simulations of the Localized Failure and Fracture Propagation in Cohesive Materials with Friction
11
作者 Chengbao Hu Shilin Gong +3 位作者 Bin Chen Zhongling Zong Xingwang Bao Xiaojian Ru 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期997-1015,共19页
Strain localization frequently occurs in cohesive materials with friction(e.g.,composites,soils,rocks)and is widely recognized as a fundamental cause of progressive structural failure.Nonetheless,achieving high-fideli... Strain localization frequently occurs in cohesive materials with friction(e.g.,composites,soils,rocks)and is widely recognized as a fundamental cause of progressive structural failure.Nonetheless,achieving high-fidelity simulation for this issue,particularly concerning strong discontinuities and tension-compression-shear behaviors within localized zones,remains significantly constrained.In response,this study introduces an integrated algorithmwithin the finite element framework,merging a coupled cohesive zone model(CZM)with the nonlinear augmented finite elementmethod(N-AFEM).The coupledCZMcomprehensively describes tension-compression and compressionshear failure behaviors in cohesive,frictional materials,while the N-AFEM allows nonlinear coupled intraelement discontinuities without necessitating extra nodes or nodal DoFs.Following CZM validation using existing experimental data,this integrated algorithm was utilized to analyze soil slope failure mechanisms involving a specific tensile strength and to assess the impact of mechanical parameters(e.g.,tensile strength,weighting factor,modulus)in soils. 展开更多
关键词 FEM analysis strong discontinuity nonlinear soil rupture cohesive zone model tension-compression-shear coupling
下载PDF
Constitutive Behavior of the Interface between UHPC and Steel Plate without Shear Connector:From Experimental to Numerical Study
12
作者 Zihan Wang Boshan Zhang +2 位作者 Hui Wang Qing Ai Xingchun Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1863-1888,共26页
The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,... The application of ultra-high performance concrete(UHPC)as a covering layer for steel bridge decks has gained widespread popularity.By employing a connection without a shear connector between the steel plate and UHPC,namely,the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface,the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated.This study develops constitutive models for these two interfaces without shear connectors,based on the interfacial pull-off and push-out tests.For validation,three-point bending tests on the steel-UHPC composite plates are conducted.The results indicated that the proposed bilinear traction-separation model for the sandblasted interface and the trapezoidal traction-separation model for the epoxy adhesive with sprinkled basalt aggregate interface can generally calibrate the interfacial behavior.However,the utilization of the experimentally determined pure shear strength underestimates the load-carrying capacity of the composite plates in the case of three-point bending tests.By recalling the Mohr-Coulomb criterion,this underestimation is attributed to the enhancement of the interface shear strength by the presence of normal stress. 展开更多
关键词 Cohesive zone model interfacial behavior finite element simulation UHPC steel plate
下载PDF
基于内聚力单元法的船舶与重叠冰碰撞数值模拟研究
13
作者 倪宝玉 王亚婷 +1 位作者 徐莹 陈绾绶 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第1期127-136,共10页
The gradual increase in shipping and drilling activities in the Arctic regions has resulted in the increased importance of studying the structural safety of polar ships in various ice conditions.Rafted ice refers to a... The gradual increase in shipping and drilling activities in the Arctic regions has resulted in the increased importance of studying the structural safety of polar ships in various ice conditions.Rafted ice refers to a type of accumulated and overlapped sea ice;it is driven by external forces,such as wind and waves,and may exert high loads on ships and threaten their structural safety.Therefore,the properties of rafted ice and the construction of numerical models should be studied before exploring the interaction and collision between ships and rafted ice.Based on the nonlinear finite-element method,this paper introduces the cohesive element model for the simulation of rafted ice.The interaction between ships and rafted ice is studied,and the ice force of the hull is obtained.Numerical simulation results are compared with model test findings,and the effectiveness of the cohesive element method in the construction of the model of rafted ice materials is verified.On this basis,a multilayer rafted ice model is constructed,and its interaction with the ship is studied.The research unveils that rafted ice parts impede crack generation and slow down crack propagation to a certain extent. 展开更多
关键词 Cohesive element method Rafted ice Rafting length Ship-ice collisions Finite element model Numerical simulation
下载PDF
Effect of intermittent joint distribution on the mechanical and acoustic behavior of rock masses
14
作者 Shuaiyang Fu Haibo Li +2 位作者 Liwang Liu Di Wu Ben Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1231-1244,共14页
The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers an... The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers and dip angles were produced using the finite element method(FEM)with the intrinsic cohesive zone model(ICZM).Then,the uniaxial compressive and wave propagation simulations were performed.The results indicate that the joint number and dip angle can affect the mechanical and acoustic properties of the models.The uniaxial compressive strength(UCS)and wave velocity of rock masses decrease monotonically as the joint number increases.However,the wave velocity grows monotonically as the joint dip angle increases.When the joint dip angle is 45°–60°,the UCS of the rock mass is lower than that of other dip angles.The wave velocity parallel to the joints is greater than that perpendicular to the joints.When the dip angle of joints remains unchanged,the UCS and wave velocity are positively related.When the joint dip angle increases,the variation amplitude of the UCS regarding the wave velocity increases.To reveal the effect of the joint distribution on the velocity,a theoretical model was also proposed.According to the theoretical wave velocity,the change in wave velocity of models with various joint numbers and dip angles was consistent with the simulation results.Furthermore,a theoretical indicator(i.e.fabric tensor)was adopted to analyze the variation of the wave velocity and UCS. 展开更多
关键词 Stochastic joints Intrinsic cohesive zone model Uniaxial compressive strength(UCS) Wave propagation Fabric tensor
下载PDF
Fracture propagation and evolution law of indirect fracturing in the roof of broken soft coal seams
15
作者 Haifeng Zhao Pengyue Li +1 位作者 Xuejiao Li Wenjie Yao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期78-102,共25页
Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings ... Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method,a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established,the fracture morphology propagation and evolution law under different conditions was investigated,and analysis of main controlling factors of fracture parameters was conducted with the combination weight method,which was based on grey incidence,analytic hierarchy process and entropy weight method.The results show that“士”-shaped fractures,T-shaped fractures,cross fractures,H-shaped fractures,and“干”-shaped fractures dominated by horizontal fractures were formed.Different parameter combinations can form different fracture morphologies.When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger,it tends to form“士”-shaped fractures.When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate,cross fractures are easily generated.Different fracture parameters have different main controlling factors.Engineering factors of perforation location,fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters.This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams. 展开更多
关键词 Indirect fracturing Roof of coal seam Fracture propagation and evolution Coalbed methane Cohesive element method Combination weight method
下载PDF
Impact Analysis of Microscopic Defect Types on the Macroscopic Crack Propagation in Sintered Silver Nanoparticles
16
作者 Zhongqing Zhang Bo Wan +4 位作者 Guicui Fu Yutai Su Zhaoxi Wu Xiangfen Wang Xu Long 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期441-458,共18页
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t... Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs. 展开更多
关键词 Sintered silver nanoparticles defect types microscopic defect evolution macroscopic crack propagation molecular dynamics simulation cohesive zone model
下载PDF
基于晶体塑性模型与内聚力单元模拟的接触疲劳亚表面原奥晶界裂纹萌生
17
作者 韩鑫琦 李淑欣 +2 位作者 余丰 鲁思渊 金永生 《力学季刊》 CAS CSCD 北大核心 2024年第2期319-328,共10页
材料在接触疲劳载荷下亚表面裂纹的萌生是其主要损伤模式之一.采用晶体塑性模型耦合内聚力单元,模拟高强钢在滚动接触疲劳载荷下亚表面原奥氏体晶界处的疲劳裂纹萌生.基于内聚力模型的损伤起始准则和疲劳损伤演化规律,并利用USDFLD子程... 材料在接触疲劳载荷下亚表面裂纹的萌生是其主要损伤模式之一.采用晶体塑性模型耦合内聚力单元,模拟高强钢在滚动接触疲劳载荷下亚表面原奥氏体晶界处的疲劳裂纹萌生.基于内聚力模型的损伤起始准则和疲劳损伤演化规律,并利用USDFLD子程序将内聚力单元的疲劳损伤与晶体塑性模型结合,计算了滚动接触疲劳加载下的损伤随循环次数的累积.对Voronoi模型下的疲劳裂纹萌生进行了模拟,研究了晶体取向对裂纹萌生的影响.结果表明,裂纹的萌生受剪切应力主导,萌生位置在最大剪切应力范围内,模拟结果和试验观察一致.晶粒取向对裂纹萌生位置与萌生寿命有显著影响. 展开更多
关键词 晶体塑性有限元 Cohesive单元 滚动接触疲劳 亚表面裂纹萌生
下载PDF
Systematic review of risk factors,prognosis,and management of colorectal signet-ring cell carcinoma
18
作者 Frederiek Nuytens Vincent Drubay +2 位作者 Clarisse Eveno Florence Renaud Guillaume Piessen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第5期2141-2158,共18页
BACKGROUND Colorectal signet-ring cell carcinoma(CSRCC)is a rare clinical entity which accounts for approximately 1%of all colorectal cancers.Although multiple studies concerning this specific topic have been publishe... BACKGROUND Colorectal signet-ring cell carcinoma(CSRCC)is a rare clinical entity which accounts for approximately 1%of all colorectal cancers.Although multiple studies concerning this specific topic have been published in the past decades,the pathogenesis,associated risk factors,and potential implications on treatment are still poorly understood.Besides the low incidence,historically confusing histological criteria have resulted in confusing data.Nevertheless,the rising incidence of CSRCC along with relatively young age at presentation and associated dismal prognosis,highlight the actual interest to synthesize the known literature regarding CSRCC.AIM To provide an updated overview of risk factors,prognosis,and management of CSRCC.METHODS A literature search in the MEDLINE/PubMed database was conducted with the following search terms used:‘Signet ring cell carcinoma’and‘colorectal’.Studies in English language,published after January 1980,were included.Studies included in the qualitative synthesis were evaluated for content concerning epidemiology,risk factors,and clinical,diagnostic,histological,and molecular features,as well as metastatic pattern and therapeutic management.If possible,presented data was extracted in order to present a more detailed overview of the literature.RESULTS In total,67 articles were included for qualitative analysis,of which 54 were eligible for detailed data extraction.CSRCC has a reported incidence between 0.1%-2.4%and frequently presents with advanced disease stage at the time of diagnosis.CSRCC is associated with an impaired overall survival(5-year OS:0%-46%)and a worse stagecorrected outcome compared to mucinous and not otherwise specified adenocarcinoma.The systematic use of exploratory laparoscopy to determine the presence of peritoneal metastases has been advised.Surgery is the mainstay of treatment,although the rates of curative resection in CSRCC(21%-82%)are lower compared to those in other histological types.In case of peritoneal metastasis,cytoreductive surgery with hyperthermic intraperitoneal chemotherapy should only be proposed in selected patients.CONCLUSION CSRCC is a rare clinical entity most often characterized by young age and advanced disease at presentation.As such,diagnostic modalities and therapeutic approach should be tailored accordingly. 展开更多
关键词 Colorectal cancer Signet-ring cell histology Poorly cohesive cells Systematic review Risk factors PROGNOSIS Therapeutic management
下载PDF
Investigation of FRP and SFRC Technologies for Efficient Tunnel Reinforcement Using the Cohesive Zone Model
19
作者 Gang Niu Zhaoyang Jin +1 位作者 Wei Zhang Yiqun Huang 《Structural Durability & Health Monitoring》 EI 2024年第2期161-179,共19页
Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economi... Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economical,and robust tunnel reinforcement techniques.This paper explores fiber reinforced polymer(FRP)and steel fiber reinforced concrete(SFRC)technologies,which have emerged as viable solutions for enhancing tunnel structures.FRP is celebrated for its lightweight and high-strength attributes,effectively augmenting load-bearing capacity and seismic resistance,while SFRC’s notable crack resistance and longevity potentially enhance the performance of tunnel segments.Nonetheless,current research predominantly focuses on experimental analysis,lacking comprehensive theoretical models.To bridge this gap,the cohesive zone model(CZM),which utilizes cohesive elements to characterize the potential fracture surfaces of concrete/SFRC,the rebar-concrete interface,and the FRP-concrete interface,was employed.A modeling approach was subsequently proposed to construct a tunnel segment model reinforced with either SFRC or FRP.Moreover,the corresponding mixed-mode constitutive models,considering interfacial friction,were integrated into the proposed model.Experimental validation and numerical simulations corroborated the accuracy of the proposed model.Additionally,this study examined the reinforcement design of tunnel segments.Through a numerical evaluation,the effectiveness of innovative reinforcement schemes,such as substituting concrete with SFRC and externally bonding FRP sheets,was assessed utilizing a case study from the Fuzhou Metro Shield Tunnel Construction Project. 展开更多
关键词 Tunnel segment FRP SFRC cohesive zone model constitutive model fracture process
下载PDF
Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade
20
作者 Haixia Kou Bowen Yang +2 位作者 Xuyao Zhang Xiaobo Yang Haibo Zhao 《Structural Durability & Health Monitoring》 EI 2024年第3期277-297,共21页
Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectio... Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade. 展开更多
关键词 Composite laminate wind turbine blade sub-structure progressive damage analysis user material subroutine cohesive zone model
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部