期刊文献+
共找到334,004篇文章
< 1 2 250 >
每页显示 20 50 100
基于re3data的中英科学数据仓储平台对比研究 被引量:1
1
作者 袁烨 陈媛媛 《数字图书馆论坛》 CSSCI 2024年第2期13-23,共11页
以re3data为数据获取源,选取中英两国406个科学数据仓储为研究对象,从分布特征、责任类型、仓储许可、技术标准及质量标准等5个方面、11个指标对两国科学数据仓储的建设情况进行对比分析,试图为我国数据仓储的可持续发展提出建议:广泛... 以re3data为数据获取源,选取中英两国406个科学数据仓储为研究对象,从分布特征、责任类型、仓储许可、技术标准及质量标准等5个方面、11个指标对两国科学数据仓储的建设情况进行对比分析,试图为我国数据仓储的可持续发展提出建议:广泛联结国内外异质机构,推进多学科领域的交流与合作,有效扩充仓储许可权限与类型,优化技术标准的应用现况,提高元数据使用的灵活性。 展开更多
关键词 科学数据 数据仓储平台 re3data 中国 英国
下载PDF
Data Secure Storage Mechanism for IIoT Based on Blockchain 被引量:2
2
作者 Jin Wang Guoshu Huang +2 位作者 R.Simon Sherratt Ding Huang Jia Ni 《Computers, Materials & Continua》 SCIE EI 2024年第3期4029-4048,共20页
With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapi... With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapid development of IIoT.Blockchain technology has immutability,decentralization,and autonomy,which can greatly improve the inherent defects of the IIoT.In the traditional blockchain,data is stored in a Merkle tree.As data continues to grow,the scale of proofs used to validate it grows,threatening the efficiency,security,and reliability of blockchain-based IIoT.Accordingly,this paper first analyzes the inefficiency of the traditional blockchain structure in verifying the integrity and correctness of data.To solve this problem,a new Vector Commitment(VC)structure,Partition Vector Commitment(PVC),is proposed by improving the traditional VC structure.Secondly,this paper uses PVC instead of the Merkle tree to store big data generated by IIoT.PVC can improve the efficiency of traditional VC in the process of commitment and opening.Finally,this paper uses PVC to build a blockchain-based IIoT data security storage mechanism and carries out a comparative analysis of experiments.This mechanism can greatly reduce communication loss and maximize the rational use of storage space,which is of great significance for maintaining the security and stability of blockchain-based IIoT. 展开更多
关键词 Blockchain IIoT data storage cryptographic commitment
下载PDF
基于自主研发ACU&MOX-DATA平台探索腧穴功效特点研究
3
作者 李思慧 刘书庆 +8 位作者 唐强 张瑞斌 陈伟 洪浩 朱冰梅 蓝勋 王勇 余曙光 吴巧凤 《中国中医药信息杂志》 CAS CSCD 2024年第2期64-69,共6页
目的基于ACU&MOX-DATA平台,初步明确不同腧穴、不同靶器官及不同刺灸法对腧穴功效的影响,并可视化展示相关结果是否存在腧穴功效“特性”“共性”的特点。方法以原创组学数据和公共组学数据整合后获得的多源异构数据作为数据源,经... 目的基于ACU&MOX-DATA平台,初步明确不同腧穴、不同靶器官及不同刺灸法对腧穴功效的影响,并可视化展示相关结果是否存在腧穴功效“特性”“共性”的特点。方法以原创组学数据和公共组学数据整合后获得的多源异构数据作为数据源,经标准化处理后,利用ACU&MOX-DATA平台中Batch Search、Stimulation Mode等模块对不同腧穴、不同靶器官、不同刺灸法的数据进行差异基因分析、疾病病理网络分析和富集分析。结果在同一疾病状态、同一干预措施下,不同腧穴间存在效应差异;在同一疾病状态、同一腧穴及干预措施下,不同靶器官产生的应答不完全一致;在同一疾病状态、同一腧穴下,不同干预措施间存在效应差异。结论基于ACU&MOX-DATA平台,初步明确腧穴、靶器官、刺灸法是影响腧穴功效的关键因素,上述结果间存在腧穴功效的特异性或共性调节特点。将ACU&MOX-DATA平台应用于针灸学领域关键科学问题的分析和可视化解读,可为深化腧穴认知、指导临床选穴、提高针灸临床疗效等提供参考。 展开更多
关键词 腧穴功效 针灸干预方式 靶器官响应 多组学数据 异源数据分析
下载PDF
An adaptive physics-informed deep learning method for pore pressure prediction using seismic data 被引量:2
4
作者 Xin Zhang Yun-Hu Lu +2 位作者 Yan Jin Mian Chen Bo Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期885-902,共18页
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g... Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data. 展开更多
关键词 Pore pressure prediction Seismic data 1D convolution pyramid pooling Adaptive physics-informed loss function High generalization capability
下载PDF
Hadoop-based secure storage solution for big data in cloud computing environment 被引量:1
5
作者 Shaopeng Guan Conghui Zhang +1 位作者 Yilin Wang Wenqing Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期227-236,共10页
In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose... In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average. 展开更多
关键词 Big data security data encryption HADOOP Parallel encrypted storage Zookeeper
下载PDF
A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data 被引量:2
6
作者 Yunping Chen Jie Hu +6 位作者 Zhiwen Cai Jingya Yang Wei Zhou Qiong Hu Cong Wang Liangzhi You Baodong Xu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1164-1178,共15页
Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while r... Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities. 展开更多
关键词 ratoon rice phenology-based ratoon rice vegetation index(PRVI) phenological phase feature selection Harmonized Landsat Sentinel-2 data
下载PDF
Defect Detection Model Using Time Series Data Augmentation and Transformation 被引量:1
7
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 Defect detection time series deep learning data augmentation data transformation
下载PDF
Enhanced prediction of anisotropic deformation behavior using machine learning with data augmentation 被引量:1
8
作者 Sujeong Byun Jinyeong Yu +3 位作者 Seho Cheon Seong Ho Lee Sung Hyuk Park Taekyung Lee 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期186-196,共11页
Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary w... Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys. 展开更多
关键词 Plastic anisotropy Compression ANNEALING Machine learning data augmentation
下载PDF
Reliability evaluation of IGBT power module on electric vehicle using big data 被引量:1
9
作者 Li Liu Lei Tang +5 位作者 Huaping Jiang Fanyi Wei Zonghua Li Changhong Du Qianlei Peng Guocheng Lu 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期50-60,共11页
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction... There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system. 展开更多
关键词 IGBT junction temperature neural network electric vehicles big data
下载PDF
Spatiotemporal deformation characteristics of Outang landslide and identification of triggering factors using data mining 被引量:1
10
作者 Beibei Yang Zhongqiang Liu +1 位作者 Suzanne Lacasse Xin Liang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4088-4104,共17页
Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landsli... Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas. 展开更多
关键词 LANDSLIDE Deformation characteristics Triggering factor data mining Three gorges reservoir
下载PDF
Benchmark experiment on slab^(238)U with D-T neutrons for validation of evaluated nuclear data 被引量:1
11
作者 Yan-Yan Ding Yang-Bo Nie +9 位作者 Yue Zhang Zhi-Jie Hu Qi Zhao Huan-Yu Zhang Kuo-Zhi Xu Shi-Yu Zhang Xin-Yi Pan Chang-Lin Lan Jie Ren Xi-Chao Ruan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期145-159,共15页
A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°an... A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°and 120°were measured using the time-of-flight method.The samples were prepared as rectangular slabs with a 30 cm square base and thicknesses of 3,6,and 9 cm.The leakage neutron spectra were also calculated using the MCNP-4C program based on the latest evaluated files of^(238)U evaluated neutron data from CENDL-3.2,ENDF/B-Ⅷ.0,JENDL-5.0,and JEFF-3.3.Based on the comparison,the deficiencies and improvements in^(238)U evaluated nuclear data were analyzed.The results showed the following.(1)The calculated results for CENDL-3.2 significantly overestimated the measurements in the energy interval of elastic scattering at 60°and 120°.(2)The calculated results of CENDL-3.2 overestimated the measurements in the energy interval of inelastic scattering at 120°.(3)The calculated results for CENDL-3.2 significantly overestimated the measurements in the 3-8.5 MeV energy interval at 60°and 120°.(4)The calculated results with JENDL-5.0 were generally consistent with the measurement results. 展开更多
关键词 Leakage neutron spectra URANIUM D-T neutron source Evaluated nuclear data
下载PDF
An Imbalanced Data Classification Method Based on Hybrid Resampling and Fine Cost Sensitive Support Vector Machine 被引量:1
12
作者 Bo Zhu Xiaona Jing +1 位作者 Lan Qiu Runbo Li 《Computers, Materials & Continua》 SCIE EI 2024年第6期3977-3999,共23页
When building a classification model,the scenario where the samples of one class are significantly more than those of the other class is called data imbalance.Data imbalance causes the trained classification model to ... When building a classification model,the scenario where the samples of one class are significantly more than those of the other class is called data imbalance.Data imbalance causes the trained classification model to be in favor of the majority class(usually defined as the negative class),which may do harm to the accuracy of the minority class(usually defined as the positive class),and then lead to poor overall performance of the model.A method called MSHR-FCSSVM for solving imbalanced data classification is proposed in this article,which is based on a new hybrid resampling approach(MSHR)and a new fine cost-sensitive support vector machine(CS-SVM)classifier(FCSSVM).The MSHR measures the separability of each negative sample through its Silhouette value calculated by Mahalanobis distance between samples,based on which,the so-called pseudo-negative samples are screened out to generate new positive samples(over-sampling step)through linear interpolation and are deleted finally(under-sampling step).This approach replaces pseudo-negative samples with generated new positive samples one by one to clear up the inter-class overlap on the borderline,without changing the overall scale of the dataset.The FCSSVM is an improved version of the traditional CS-SVM.It considers influences of both the imbalance of sample number and the class distribution on classification simultaneously,and through finely tuning the class cost weights by using the efficient optimization algorithm based on the physical phenomenon of rime-ice(RIME)algorithm with cross-validation accuracy as the fitness function to accurately adjust the classification borderline.To verify the effectiveness of the proposed method,a series of experiments are carried out based on 20 imbalanced datasets including both mildly and extremely imbalanced datasets.The experimental results show that the MSHR-FCSSVM method performs better than the methods for comparison in most cases,and both the MSHR and the FCSSVM played significant roles. 展开更多
关键词 Imbalanced data classification Silhouette value Mahalanobis distance RIME algorithm CS-SVM
下载PDF
Detection of Turbulence Anomalies Using a Symbolic Classifier Algorithm in Airborne Quick Access Record(QAR)Data Analysis 被引量:1
13
作者 Zibo ZHUANG Kunyun LIN +1 位作者 Hongying ZHANG Pak-Wai CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1438-1449,共12页
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ... As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards. 展开更多
关键词 turbulence detection symbolic classifier quick access recorder data
下载PDF
A Blind Batch Encryption and Public Ledger-Based Protocol for Sharing Sensitive Data 被引量:1
14
作者 Zhiwei Wang Nianhua Yang +2 位作者 Qingqing Chen Wei Shen Zhiying Zhang 《China Communications》 SCIE CSCD 2024年第1期310-322,共13页
For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and all... For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and allows privacy information to be preserved.Data owners can tightly manage their data with efficient revocation and only grant one-time adaptive access for the fulfillment of the requester.We prove that our protocol is semanticallly secure,blind,and secure against oblivious requesters and malicious file keepers.We also provide security analysis in the context of four typical attacks. 展开更多
关键词 blind batch encryption data sharing onetime adaptive access public ledger security and privacy
下载PDF
A landslide monitoring method using data from unmanned aerial vehicle and terrestrial laser scanning with insufficient and inaccurate ground control points 被引量:1
15
作者 Jiawen Zhou Nan Jiang +1 位作者 Congjiang Li Haibo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4125-4140,共16页
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These... Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources. 展开更多
关键词 Landslide monitoring data fusion Terrestrial laser scanning(TLS) Unmanned aerial vehicle(UAV) Model reconstruction
下载PDF
ST-Map:an Interactive Map for Discovering Spatial and Temporal Patterns in Bibliographic Data 被引量:1
16
作者 ZUO Chenyu XU Yifan +1 位作者 DING Lingfang MENG Liqiu 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第1期3-15,共13页
Getting insight into the spatiotemporal distribution patterns of knowledge innovation is receiving increasing attention from policymakers and economic research organizations.Many studies use bibliometric data to analy... Getting insight into the spatiotemporal distribution patterns of knowledge innovation is receiving increasing attention from policymakers and economic research organizations.Many studies use bibliometric data to analyze the popularity of certain research topics,well-adopted methodologies,influential authors,and the interrelationships among research disciplines.However,the visual exploration of the patterns of research topics with an emphasis on their spatial and temporal distribution remains challenging.This study combined a Space-Time Cube(STC)and a 3D glyph to represent the complex multivariate bibliographic data.We further implemented a visual design by developing an interactive interface.The effectiveness,understandability,and engagement of ST-Map are evaluated by seven experts in geovisualization.The results suggest that it is promising to use three-dimensional visualization to show the overview and on-demand details on a single screen. 展开更多
关键词 space-time cube bibliographic data spatiotemporal analysis user study interactive map
下载PDF
数据空间建设的实践进展与运营模式分析——基于Data Spaces Radar的案例
17
作者 夏义堃 程铄 +1 位作者 王雪 钱锦琳 《图书与情报》 CSSCI 北大核心 2024年第2期18-32,共15页
数据空间建设为数据要素的价值实现提供了可资借鉴的实践经验,全面解析其实践进展与运营模式,有助于破解数据流通的现实堵点、拓展数据利用的发展思路。文章首先将结构主义分析方法中的案例研究法作为主要研究方法,综合运用文献调研、... 数据空间建设为数据要素的价值实现提供了可资借鉴的实践经验,全面解析其实践进展与运营模式,有助于破解数据流通的现实堵点、拓展数据利用的发展思路。文章首先将结构主义分析方法中的案例研究法作为主要研究方法,综合运用文献调研、比较分析等方法,以Data Spaces Radar为案例来源,从实践进展、运营模式、核心要素等维度提炼数据空间建设特征。其次,在制度与技术的双轮驱动下,数据空间建设秉持制度规范统一性、技术设计整体性和治理模式协同性的架构原则,并按照产业思维、底线思维、信任思维、链式思维、集约思维的底层逻辑,形成较为完整的运营体系。未来应着力探索和解决数据空间视域下的数据资源价值化开发路径,针对数据流通堵点、利用痛点及信任难点问题,从体制机制、政策框架与技术应用等角度为推进我国的数据要素流通利用提供有益参考。 展开更多
关键词 数据空间 数据流通利用 数据自主权 运营模式 数据信任
下载PDF
Data Component:An Innovative Framework for Information Value Metrics in the Digital Economy
18
作者 Tao Xiaoming Wang Yu +5 位作者 Peng Jieyang Zhao Yuelin Wang Yue Wang Youzheng Hu Chengsheng Lu Zhipeng 《China Communications》 SCIE CSCD 2024年第5期17-35,共19页
The increasing dependence on data highlights the need for a detailed understanding of its behavior,encompassing the challenges involved in processing and evaluating it.However,current research lacks a comprehensive st... The increasing dependence on data highlights the need for a detailed understanding of its behavior,encompassing the challenges involved in processing and evaluating it.However,current research lacks a comprehensive structure for measuring the worth of data elements,hindering effective navigation of the changing digital environment.This paper aims to fill this research gap by introducing the innovative concept of“data components.”It proposes a graphtheoretic representation model that presents a clear mathematical definition and demonstrates the superiority of data components over traditional processing methods.Additionally,the paper introduces an information measurement model that provides a way to calculate the information entropy of data components and establish their increased informational value.The paper also assesses the value of information,suggesting a pricing mechanism based on its significance.In conclusion,this paper establishes a robust framework for understanding and quantifying the value of implicit information in data,laying the groundwork for future research and practical applications. 展开更多
关键词 data component data element data governance data science information theory
下载PDF
Data-Driven Decision-Making for Bank Target Marketing Using Supervised Learning Classifiers on Imbalanced Big Data
19
作者 Fahim Nasir Abdulghani Ali Ahmed +2 位作者 Mehmet Sabir Kiraz Iryna Yevseyeva Mubarak Saif 《Computers, Materials & Continua》 SCIE EI 2024年第10期1703-1728,共26页
Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making.However,imbalanced target variables within big data present technical challen... Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making.However,imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics,limiting their overall effectiveness.This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers(SLCs)and evaluates their performance in data-driven decision-making.The evaluation uses various metrics,with a particular focus on the Harmonic Mean Score(F-1 score)on an imbalanced real-world bank target marketing dataset.The findings indicate that grid-search random forest and random-search random forest excel in Precision and area under the curve,while Extreme Gradient Boosting(XGBoost)outperforms other traditional classifiers in terms of F-1 score.Employing oversampling methods to address the imbalanced data shows significant performance improvement in XGBoost,delivering superior results across all metrics,particularly when using the SMOTE variant known as the BorderlineSMOTE2 technique.The study concludes several key factors for effectively addressing the challenges of supervised learning with imbalanced datasets.These factors include the importance of selecting appropriate datasets for training and testing,choosing the right classifiers,employing effective techniques for processing and handling imbalanced datasets,and identifying suitable metrics for performance evaluation.Additionally,factors also entail the utilisation of effective exploratory data analysis in conjunction with visualisation techniques to yield insights conducive to data-driven decision-making. 展开更多
关键词 Big data machine learning data mining data visualization label encoding imbalanced dataset sampling techniques
下载PDF
Data complexity-based batch sanitization method against poison in distributed learning
20
作者 Silv Wang Kai Fan +2 位作者 Kuan Zhang Hui Li Yintang Yang 《Digital Communications and Networks》 SCIE CSCD 2024年第2期416-428,共13页
The security of Federated Learning(FL)/Distributed Machine Learning(DML)is gravely threatened by data poisoning attacks,which destroy the usability of the model by contaminating training samples,so such attacks are ca... The security of Federated Learning(FL)/Distributed Machine Learning(DML)is gravely threatened by data poisoning attacks,which destroy the usability of the model by contaminating training samples,so such attacks are called causative availability indiscriminate attacks.Facing the problem that existing data sanitization methods are hard to apply to real-time applications due to their tedious process and heavy computations,we propose a new supervised batch detection method for poison,which can fleetly sanitize the training dataset before the local model training.We design a training dataset generation method that helps to enhance accuracy and uses data complexity features to train a detection model,which will be used in an efficient batch hierarchical detection process.Our model stockpiles knowledge about poison,which can be expanded by retraining to adapt to new attacks.Being neither attack-specific nor scenario-specific,our method is applicable to FL/DML or other online or offline scenarios. 展开更多
关键词 Distributed machine learning security Federated learning data poisoning attacks data sanitization Batch detection data complexity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部