期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
Preserving Data Secrecy and Integrity for Cloud Storage Using Smart Contracts and Cryptographic Primitives
1
作者 Maher Alharby 《Computers, Materials & Continua》 SCIE EI 2024年第5期2449-2463,共15页
Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various benefits.However,the adoption of cloud storage poses significant risks to data secrecy and integrity.This a... Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various benefits.However,the adoption of cloud storage poses significant risks to data secrecy and integrity.This article presents an effective mechanism to preserve the secrecy and integrity of data stored on the public cloud by leveraging blockchain technology,smart contracts,and cryptographic primitives.The proposed approach utilizes a Solidity-based smart contract as an auditor for maintaining and verifying the integrity of outsourced data.To preserve data secrecy,symmetric encryption systems are employed to encrypt user data before outsourcing it.An extensive performance analysis is conducted to illustrate the efficiency of the proposed mechanism.Additionally,a rigorous assessment is conducted to ensure that the developed smart contract is free from vulnerabilities and to measure its associated running costs.The security analysis of the proposed system confirms that our approach can securely maintain the confidentiality and integrity of cloud storage,even in the presence of malicious entities.The proposed mechanism contributes to enhancing data security in cloud computing environments and can be used as a foundation for developing more secure cloud storage systems. 展开更多
关键词 Cloud storage data secrecy data integrity smart contracts CRYPTOGRAPHY
下载PDF
Sec-Auditor:A Blockchain-Based Data Auditing Solution for Ensuring Integrity and Semantic Correctness
2
作者 Guodong Han Hecheng Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2121-2137,共17页
Currently,there is a growing trend among users to store their data in the cloud.However,the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks.Additionally,when ... Currently,there is a growing trend among users to store their data in the cloud.However,the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks.Additionally,when users perform file operations,the semantic integrity of the data can be compromised.Ensuring both data integrity and semantic correctness has become a critical issue that requires attention.We introduce a pioneering solution called Sec-Auditor,the first of its kind with the ability to verify data integrity and semantic correctness simultaneously,while maintaining a constant communication cost independent of the audited data volume.Sec-Auditor also supports public auditing,enabling anyone with access to public information to conduct data audits.This feature makes Sec-Auditor highly adaptable to open data environments,such as the cloud.In Sec-Auditor,users are assigned specific rules that are utilized to verify the accuracy of data semantic.Furthermore,users are given the flexibility to update their own rules as needed.We conduct in-depth analyses of the correctness and security of Sec-Auditor.We also compare several important security attributes with existing schemes,demonstrating the superior properties of Sec-Auditor.Evaluation results demonstrate that even for time-consuming file upload operations,our solution is more efficient than the comparison one. 展开更多
关键词 Provable data possession public auditing cloud storage data integrity semantic correctness
下载PDF
An Efficient Method for Checking the Integrity of Data in the Cloud 被引量:2
3
作者 TAN Shuang TAN Lin +1 位作者 LI Xiaoling JIA Yan 《China Communications》 SCIE CSCD 2014年第9期68-81,共14页
Cloud computing and storage services allow clients to move their data center and applications to centralized large data centers and thus avoid the burden of local data storage and maintenance.However,this poses new ch... Cloud computing and storage services allow clients to move their data center and applications to centralized large data centers and thus avoid the burden of local data storage and maintenance.However,this poses new challenges related to creating secure and reliable data storage over unreliable service providers.In this study,we address the problem of ensuring the integrity of data storage in cloud computing.In particular,we consider methods for reducing the burden of generating a constant amount of metadata at the client side.By exploiting some good attributes of the bilinear group,we can devise a simple and efficient audit service for public verification of untrusted and outsourced storage,which can be important for achieving widespread deployment of cloud computing.Whereas many prior studies on ensuring remote data integrity did not consider the burden of generating verification metadata at the client side,the objective of this study is to resolve this issue.Moreover,our scheme also supports data dynamics and public verifiability.Extensive security and performance analysis shows that the proposed scheme is highly efficient and provably secure. 展开更多
关键词 cloud computing storage security public auditability provable data integrity
下载PDF
Data Integrity and Risk 被引量:1
4
作者 Sasidhar Duggineni 《Open Journal of Optimization》 2023年第2期25-33,共9页
Data Integrity is a critical component of Data lifecycle management. Its importance increases even more in a complex and dynamic landscape. Actions like unauthorized access, unauthorized modifications, data manipulati... Data Integrity is a critical component of Data lifecycle management. Its importance increases even more in a complex and dynamic landscape. Actions like unauthorized access, unauthorized modifications, data manipulations, audit tampering, data backdating, data falsification, phishing and spoofing are no longer restricted to rogue individuals but in fact also prevalent in systematic organizations and states as well. Therefore, data security requires strong data integrity measures and associated technical controls in place. Without proper customized framework in place, organizations are prone to high risk of financial, reputational, revenue losses, bankruptcies, and legal penalties which we shall discuss further throughout this paper. We will also explore some of the improvised and innovative techniques in product development to better tackle the challenges and requirements of data security and integrity. 展开更多
关键词 data Governance data integrity data Management data Security Technical Controls REGULATIONS
下载PDF
PIR-based data integrity verification method in sensor network
5
作者 Yong-Ki Kim Kwangnam Choi +1 位作者 Jaesoo Kim JungHo Seok 《Journal of Central South University》 SCIE EI CAS 2014年第10期3883-3888,共6页
Since a sensor node handles wireless communication in data transmission and reception and is installed in poor environment, it is easily exposed to certain attacks such as data transformation and sniffing. Therefore, ... Since a sensor node handles wireless communication in data transmission and reception and is installed in poor environment, it is easily exposed to certain attacks such as data transformation and sniffing. Therefore, it is necessary to verify data integrity to properly respond to an adversary's ill-intentioned data modification. In sensor network environment, the data integrity verification method verifies the final data only, requesting multiple communications. An energy-efficient private information retrieval(PIR)-based data integrity verification method is proposed. Because the proposed method verifies the integrity of data between parent and child nodes, it is more efficient than the existing method which verifies data integrity after receiving data from the entire network or in a cluster. Since the number of messages for verification is reduced, in addition, energy could be used more efficiently. Lastly, the excellence of the proposed method is verified through performance evaluation. 展开更多
关键词 data integrity VERIFICATION private information retrieval sensor network
下载PDF
Blockchain and Data Integrity Authentication Technique for Secure Cloud Environment
6
作者 A.Ramachandran P.Ramadevi +1 位作者 Ahmed Alkhayyat Yousif Kerrar Yousif 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2055-2070,共16页
Nowadays,numerous applications are associated with cloud and user data gets collected globally and stored in cloud units.In addition to shared data storage,cloud computing technique offers multiple advantages for the ... Nowadays,numerous applications are associated with cloud and user data gets collected globally and stored in cloud units.In addition to shared data storage,cloud computing technique offers multiple advantages for the user through different distribution designs like hybrid cloud,public cloud,community cloud and private cloud.Though cloud-based computing solutions are highly con-venient to the users,it also brings a challenge i.e.,security of the data shared.Hence,in current research paper,blockchain with data integrity authentication technique is developed for an efficient and secure operation with user authentica-tion process.Blockchain technology is utilized in this study to enable efficient and secure operation which not only empowers cloud security but also avoids threats and attacks.Additionally,the data integrity authentication technique is also uti-lized to limit the unwanted access of data in cloud storage unit.The major objec-tive of the projected technique is to empower data security and user authentication in cloud computing environment.To improve the proposed authentication pro-cess,cuckoofilter and Merkle Hash Tree(MHT)are utilized.The proposed meth-odology was validated using few performance metrics such as processing time,uploading time,downloading time,authentication time,consensus time,waiting time,initialization time,in addition to storage overhead.The proposed method was compared with conventional cloud security techniques and the outcomes establish the supremacy of the proposed method. 展开更多
关键词 Blockchain SECURITY data integrity AUTHENTICATION cloud computing SIGNATURE hash tree
下载PDF
Utilizing Machine Learning with Unique Pentaplet Data Structure to Enhance Data Integrity
7
作者 Abdulwahab Alazeb 《Computers, Materials & Continua》 SCIE EI 2023年第12期2995-3014,共20页
Data protection in databases is critical for any organization,as unauthorized access or manipulation can have severe negative consequences.Intrusion detection systems are essential for keeping databases secure.Advance... Data protection in databases is critical for any organization,as unauthorized access or manipulation can have severe negative consequences.Intrusion detection systems are essential for keeping databases secure.Advancements in technology will lead to significant changes in the medical field,improving healthcare services through real-time information sharing.However,reliability and consistency still need to be solved.Safeguards against cyber-attacks are necessary due to the risk of unauthorized access to sensitive information and potential data corruption.Dis-ruptions to data items can propagate throughout the database,making it crucial to reverse fraudulent transactions without delay,especially in the healthcare industry,where real-time data access is vital.This research presents a role-based access control architecture for an anomaly detection technique.Additionally,the Structured Query Language(SQL)queries are stored in a new data structure called Pentaplet.These pentaplets allow us to maintain the correlation between SQL statements within the same transaction by employing the transaction-log entry information,thereby increasing detection accuracy,particularly for individuals within the company exhibiting unusual behavior.To identify anomalous queries,this system employs a supervised machine learning technique called Support Vector Machine(SVM).According to experimental findings,the proposed model performed well in terms of detection accuracy,achieving 99.92%through SVM with One Hot Encoding and Principal Component Analysis(PCA). 展开更多
关键词 database intrusion detection system data integrity machine learning pentaplet data structure
下载PDF
DEEPNOISE:Learning Sensor and Process Noise to Detect Data Integrity Attacks in CPS
8
作者 Yuan Luo Long Cheng +2 位作者 Yu Liang Jianming Fu Guojun Peng 《China Communications》 SCIE CSCD 2021年第9期192-209,共18页
Cyber-physical systems(CPS)have been widely deployed in critical infrastructures and are vulnerable to various attacks.Data integrity attacks manipulate sensor measurements and cause control systems to fail,which are ... Cyber-physical systems(CPS)have been widely deployed in critical infrastructures and are vulnerable to various attacks.Data integrity attacks manipulate sensor measurements and cause control systems to fail,which are one of the prominent threats to CPS.Anomaly detection methods are proposed to secure CPS.However,existing anomaly detection studies usually require expert knowledge(e.g.,system model-based)or are lack of interpretability(e.g.,deep learning-based).In this paper,we present DEEPNOISE,a deep learning-based anomaly detection method for CPS with interpretability.Specifically,we utilize the sensor and process noise to detect data integrity attacks.Such noise represents the intrinsic characteristics of physical devices and the production process in CPS.One key enabler is that we use a robust deep autoencoder to automatically extract the noise from measurement data.Further,an LSTM-based detector is designed to inspect the obtained noise and detect anomalies.Data integrity attacks change noise patterns and thus are identified as the root cause of anomalies by DEEPNOISE.Evaluated on the SWaT testbed,DEEPNOISE achieves higher accuracy and recall compared with state-of-the-art model-based and deep learningbased methods.On average,when detecting direct attacks,the precision is 95.47%,the recall is 96.58%,and F_(1) is 95.98%.When detecting stealthy attacks,precision,recall,and F_(1) scores are between 96% and 99.5%. 展开更多
关键词 cyber-physical systems anomaly detection data integrity attacks
下载PDF
Towards Public Integrity Audition for Cloud-IoT Data Based on Blockchain
9
作者 Hao Yan Yanan Liu +3 位作者 Shuo Qiu Shengzhou Hu Weijian Zhang Jinyue Xia 《Computer Systems Science & Engineering》 SCIE EI 2022年第6期1129-1142,共14页
With the rapidly developing of Internet of Things (IoT), the volume ofdata generated by IoT systems is increasing quickly. To release the pressure ofdata management and storage, more and more enterprises and individua... With the rapidly developing of Internet of Things (IoT), the volume ofdata generated by IoT systems is increasing quickly. To release the pressure ofdata management and storage, more and more enterprises and individuals preferto integrate cloud service with IoT systems, in which the IoT data can be outsourced to cloud server. Since cloud service provider (CSP) is not fully trusted,a variety of methods have been proposed to deal with the problem of data integritychecking. In traditional data integrity audition schemes, the task of data auditing isusually performed by Third Party Auditor (TPA) which is assumed to be trustful.However, in real-life TPA is not trusted as people thought. Therefore, theseschemes suffer from the underlying problem of single-point failure. Moreover,most of the traditional schemes are designed by RSA or bilinear map techniqueswhich consume heavy computation and communication cost. To overcome theseshortcomings, we propose a novel data integrity checking scheme for cloud-IoTdata based on blockchain technique and homomorphic hash. In our scheme, thetags of all data blocks are computed by a homomorphic hash function and storedin blockchain. Moreover, each step within the process of data integrity checking issigned by the performer, and the signatures are stored in blockchain through smartcontracts. As a result, each behavior for data integrity checking in our scheme canbe traced and audited which improves the security of the scheme greatly. Furthermore, batch-audition for multiple data challenges is also supported in our scheme.We formalize the system model of our scheme and give the concrete construction.Detailed performance analyses demonstrate that our proposed scheme is efficientand practical without the trust-assumption of TPA. 展开更多
关键词 Blockchain cloud-IoT data integrity checking homomorphic hash function batch audition
下载PDF
Redundant Data Detection and Deletion to Meet Privacy Protection Requirements in Blockchain-Based Edge Computing Environment
10
作者 Zhang Lejun Peng Minghui +6 位作者 Su Shen Wang Weizheng Jin Zilong Su Yansen Chen Huiling Guo Ran Sergey Gataullin 《China Communications》 SCIE CSCD 2024年第3期149-159,共11页
With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for clou... With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis. 展开更多
关键词 blockchain data integrity edge computing privacy protection redundant data
下载PDF
Leveraging the potential of big genomic and phenotypic data for genome-wide association mapping in wheat
11
作者 Moritz Lell Yusheng Zhao Jochen C.Reif 《The Crop Journal》 SCIE CSCD 2024年第3期803-813,共11页
Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-s... Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-sized populations of several hundred individuals have been studied is rapidly increasing.Combining these data and using them in GWAS could increase both the power of QTL discovery and the accuracy of estimation of underlying genetic effects,but is hindered by data heterogeneity and lack of interoperability.In this study,we used genomic and phenotypic data sets,focusing on Central European winter wheat populations evaluated for heading date.We explored strategies for integrating these data and subsequently the resulting potential for GWAS.Establishing interoperability between data sets was greatly aided by some overlapping genotypes and a linear relationship between the different phenotyping protocols,resulting in high quality integrated phenotypic data.In this context,genomic prediction proved to be a suitable tool to study relevance of interactions between genotypes and experimental series,which was low in our case.Contrary to expectations,fewer associations between markers and traits were found in the larger combined data than in the individual experimental series.However,the predictive power based on the marker-trait associations of the integrated data set was higher across data sets.Therefore,the results show that the integration of medium-sized to Big Data is an approach to increase the power to detect QTL in GWAS.The results encourage further efforts to standardize and share data in the plant breeding community. 展开更多
关键词 Big data Genome-wide association study data integration Genomic prediction WHEAT
下载PDF
Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification
12
作者 Shanni Cao Xue Zhao +6 位作者 Zhuojin Li Ranran Yu Yuqi Li Xinkai Zhou Wenhao Yan Dijun Chen Chao He 《Plant Diversity》 SCIE CAS CSCD 2024年第3期372-385,共14页
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we... Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings.This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets,addressing batch effects and conserving biological variance.This integration spans a broad spectrum of tissues,including both below-and above-ground parts.Utilizing a rigorous approach for cell type annotation,we identified 47 distinct cell types or states,largely expanding our current view of plant cell compositions.We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression.Taken together,our study not only offers extensive plant cell atlas exploration that serves as a valuable resource,but also provides molecular insights into gene-regulatory programs that varies from different cell types. 展开更多
关键词 ARABIDOPSIS Single cell transcriptome Gene regulatory network data integration Plant cell atlas
下载PDF
Block Level Data Integrity Assurance Using Matrix Dialing Method towards High Performance Data Security on Cloud Storage
13
作者 P. Premkumar D. Shanthi 《Circuits and Systems》 2016年第11期3626-3644,共19页
Data outsourcing through cloud storage enables the users to share on-demand resources with cost effective IT services but several security issues arise like confidentiality, integrity and authentication. Each of them ... Data outsourcing through cloud storage enables the users to share on-demand resources with cost effective IT services but several security issues arise like confidentiality, integrity and authentication. Each of them plays an important role in the successful achievement of the other. In cloud computing data integrity assurance is one of the major challenges because the user has no control over the security mechanism to protect the data. Data integrity insures that data received are the same as data stored. It is a result of data security but data integrity refers to validity and accuracy of data rather than protect the data. Data security refers to protection of data against unauthorized access, modification or corruption and it is necessary to ensure data integrity. This paper proposed a new approach using Matrix Dialing Method in block level to enhance the performance of both data integrity and data security without using Third Party Auditor (TPA). In this approach, the data are partitioned into number of blocks and each block converted into a square matrix. Determinant factor of each matrix is generated dynamically to ensure data integrity. This model also implements a combination of AES algorithm and SHA-1 algorithm for digital signature generation. Data coloring on digital signature is applied to ensure data security with better performance. The performance analysis using cloud simulator shows that the proposed scheme is highly efficient and secure as it overcomes the limitations of previous approaches of data security using encryption and decryption algorithms and data integrity assurance using TPA due to server computation time and accuracy. 展开更多
关键词 Cloud Computing data integrity data Security SHA-1 Digital Signature AES Encryption and Decryption
下载PDF
Machine Learning Security Defense Algorithms Based on Metadata Correlation Features
14
作者 Ruchun Jia Jianwei Zhang Yi Lin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2391-2418,共28页
With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The networ... With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The network security environment in the era of big data presents the characteristics of large amounts of data,high diversity,and high real-time requirements.Traditional security defense methods and tools have been unable to cope with the complex and changing network security threats.This paper proposes a machine-learning security defense algorithm based on metadata association features.Emphasize control over unauthorized users through privacy,integrity,and availability.The user model is established and the mapping between the user model and the metadata of the data source is generated.By analyzing the user model and its corresponding mapping relationship,the query of the user model can be decomposed into the query of various heterogeneous data sources,and the integration of heterogeneous data sources based on the metadata association characteristics can be realized.Define and classify customer information,automatically identify and perceive sensitive data,build a behavior audit and analysis platform,analyze user behavior trajectories,and complete the construction of a machine learning customer information security defense system.The experimental results show that when the data volume is 5×103 bit,the data storage integrity of the proposed method is 92%.The data accuracy is 98%,and the success rate of data intrusion is only 2.6%.It can be concluded that the data storage method in this paper is safe,the data accuracy is always at a high level,and the data disaster recovery performance is good.This method can effectively resist data intrusion and has high air traffic control security.It can not only detect all viruses in user data storage,but also realize integrated virus processing,and further optimize the security defense effect of user big data. 展开更多
关键词 data-oriented architecture METAdata correlation features machine learning security defense data source integration
下载PDF
Performance Analysis and Optimization of Energy Harvesting Modulation for Multi-User Integrated Data and Energy Transfer
15
作者 Yizhe Zhao Yanliang Wu +1 位作者 Jie Hu Kun Yang 《China Communications》 SCIE CSCD 2024年第1期148-162,共15页
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ... Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance. 展开更多
关键词 energy harvesting modulation(EHM) integrated data and energy transfer(IDET) performance analysis wireless data transfer(WDT) wireless energy transfer(WET)
下载PDF
A Semantic-Sensitive Approach to Indoor and Outdoor 3D Data Organization
16
作者 Youchen Wei 《Journal of World Architecture》 2024年第1期1-6,共6页
Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data... Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data models are studied,and the characteristics of building information modeling standards(IFC),city geographic modeling language(CityGML),indoor modeling language(IndoorGML),and other models are compared and analyzed.CityGML and IndoorGML models face challenges in satisfying diverse application scenarios and requirements due to limitations in their expression capabilities.It is proposed to combine the semantic information of the model objects to effectively partition and organize the indoor and outdoor spatial 3D model data and to construct the indoor and outdoor data organization mechanism of“chunk-layer-subobject-entrances-area-detail object.”This method is verified by proposing a 3D data organization method for indoor and outdoor space and constructing a 3D visualization system based on it. 展开更多
关键词 Integrated data organization Indoor and outdoor 3D data models Semantic models Spatial segmentation
下载PDF
Semantic-based query processing for relational data integration 被引量:1
17
作者 苗壮 张亚非 +2 位作者 王进鹏 陆建江 周波 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期22-25,共4页
To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,al... To solve the query processing correctness problem for semantic-based relational data integration,the semantics of SAPRQL(simple protocol and RDF query language) queries is defined.In the course of query rewriting,all relative tables are found and decomposed into minimal connectable units.Minimal connectable units are joined according to semantic queries to produce the semantically correct query plans.Algorithms for query rewriting and transforming are presented.Computational complexity of the algorithms is discussed.Under the worst case,the query decomposing algorithm can be finished in O(n2) time and the query rewriting algorithm requires O(nm) time.And the performance of the algorithms is verified by experiments,and experimental results show that when the length of query is less than 8,the query processing algorithms can provide satisfactory performance. 展开更多
关键词 data integration relational database simple protocol and RDF query language(SPARQL) minimal connectable unit query processing
下载PDF
Integrating multisource RS data and GIS techniques to assist the evaluation of resource-environment carrying capacity in karst mountainous area 被引量:8
18
作者 PU Jun-wei ZHAO Xiao-qing +4 位作者 MIAO Pei-pei LI Si-nan TAN Kun WANG Qian TANG Wei 《Journal of Mountain Science》 SCIE CSCD 2020年第10期2528-2547,共20页
The karst mountainous area is an ecologically fragile region with prominent humanland contradictions.The resource-environment carrying capacity(RECC)of this region needs to be further clarified.The development of remo... The karst mountainous area is an ecologically fragile region with prominent humanland contradictions.The resource-environment carrying capacity(RECC)of this region needs to be further clarified.The development of remote sensing(RS)and geographic information system(GIS)provides data sources and processing platform for RECC monitoring.This study analyzed and established the evaluation index system of RECC by considering particularity in the karst mountainous area of Southwest China;processed multisource RS data(Sentinel-2,Aster-DEM and Landsat-8)to extract the spatial distributions of nine key indexes by GIS techniques(information classification,overlay analysis and raster calculation);proposed the methods of index integration and fuzzy comprehensive evaluation of the RECC by GIS;and took a typical area,Guangnan County in Yunnan Province of China,as an experimental area to explore the effectiveness of the indexes and methods.The results showed that:(1)The important indexes affecting the RECC of karst mountainous area are water resources,tourism resources,position resources,geographical environment and soil erosion environment.(2)Data on cultivated land,construction land,minerals,transportation,water conservancy,ecosystem services,topography,soil erosion and rocky desertification can be obtained from RS data.GIS techniques integrate the information into the RECC results.The data extraction and processing methods are feasible on evaluating RECC.(3)The RECC of Guangnan County was in the mid-carrying level in 2018.The midcarrying and low-carrying levels were the main types,accounting for more than 80.00%of the total study area.The areas with high carrying capacity were mainly distributed in the northern regions of the northwest-southeast line of the county,and other areas have a low carrying capacity comparatively.The coordination between regional resource-environment status and socioeconomic development is the key to improve RECC.This study explores the evaluation index system of RECC in karst mountainous area and the application of multisource RS data and GIS techniques in the comprehensive evaluation.The methods can be applied in related fields to provide suggestions for data/information extraction and integration,and sustainable development. 展开更多
关键词 Carrying capacity Multisource RS data GIS techniques Evaluation index system data Integration Karst mountainous area Fuzzy comprehensive evaluation method
下载PDF
Enable Data Dynamics for Algebraic Signatures Based Remote Data Possession Checking in the Cloud Storage 被引量:4
19
作者 LUO Yuchuan FU Shaojing +1 位作者 XU Ming WANG Dongsheng 《China Communications》 SCIE CSCD 2014年第11期114-124,共11页
Cloud storage is one of the main application of the cloud computing.With the data services in the cloud,users is able to outsource their data to the cloud,access and share their outsourced data from the cloud server a... Cloud storage is one of the main application of the cloud computing.With the data services in the cloud,users is able to outsource their data to the cloud,access and share their outsourced data from the cloud server anywhere and anytime.However,this new paradigm of data outsourcing services also introduces new security challenges,among which is how to ensure the integrity of the outsourced data.Although the cloud storage providers commit a reliable and secure environment to users,the integrity of data can still be damaged owing to the carelessness of humans and failures of hardwares/softwares or the attacks from external adversaries.Therefore,it is of great importance for users to audit the integrity of their data outsourced to the cloud.In this paper,we first design an auditing framework for cloud storage and proposed an algebraic signature based remote data possession checking protocol,which allows a third-party to auditing the integrity of the outsourced data on behalf of the users and supports unlimited number of verifications.Then we extends our auditing protocol to support data dynamic operations,including data update,data insertion and data deletion.The analysis and experiment results demonstrate that our proposed schemes are secure and efficient. 展开更多
关键词 cloud computing cloud storage data integrity algebraic signatures datadynamics
下载PDF
A Distributed Intrusion Detection Model via Nondestructive Partitioning and Balanced Allocation for Big Data 被引量:4
20
作者 Xiaonian Wu Chuyun Zhang +2 位作者 Runlian Zhang Yujue Wang Jinhua Cui 《Computers, Materials & Continua》 SCIE EI 2018年第7期61-72,共12页
There are two key issues in distributed intrusion detection system,that is,maintaining load balance of system and protecting data integrity.To address these issues,this paper proposes a new distributed intrusion detec... There are two key issues in distributed intrusion detection system,that is,maintaining load balance of system and protecting data integrity.To address these issues,this paper proposes a new distributed intrusion detection model for big data based on nondestructive partitioning and balanced allocation.A data allocation strategy based on capacity and workload is introduced to achieve local load balance,and a dynamic load adjustment strategy is adopted to maintain global load balance of cluster.Moreover,data integrity is protected by using session reassemble and session partitioning.The simulation results show that the new model enjoys favorable advantages such as good load balance,higher detection rate and detection efficiency. 展开更多
关键词 Distributed intrusion detection data allocation load balancing data integrity big data
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部