Several new sufficient conditions are given for the global attractivity of solutions of a kind of delay difference equations. They either include or improve some known results and put the study of Ladas' conjectur...Several new sufficient conditions are given for the global attractivity of solutions of a kind of delay difference equations. They either include or improve some known results and put the study of Ladas' conjecture forward.展开更多
Sufficient conditions are obtained which guarantee the uniform persistence and global attractivity of solutions for the model of hematopoiesis. Then some criteria are established for the existence, uniqueness and glob...Sufficient conditions are obtained which guarantee the uniform persistence and global attractivity of solutions for the model of hematopoiesis. Then some criteria are established for the existence, uniqueness and global attractivity of almost periodic solutions of almost periodic system.展开更多
Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constru...Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constructing suitable Liapunov function, some simpler criteria for global attractivity and global exponential stability for Hopfield continuous neural network,; with time delays are presented.展开更多
In this paper the global attractivity of the nonlinear difference equationis investigated, where a,b, A ∈ (0,∞), k is an positive integer and the initial conditions x- k, …, x-1 and x0 are arbitrary positive number...In this paper the global attractivity of the nonlinear difference equationis investigated, where a,b, A ∈ (0,∞), k is an positive integer and the initial conditions x- k, …, x-1 and x0 are arbitrary positive numbers. It is shown that the unique positive equilibrium of the equation is global attractive. As a corollary, the result gives a positive confirmation on the conjecture presented by Kocic and Ladas [1,p154].展开更多
A neutral difference equation with positive and negative coefficientsΔ(x n-c nx n-k )+p nx n-l -q nx n-r =0, n=0,1,2,...,is considered and a sufficient condition for the global attractivity of the ze...A neutral difference equation with positive and negative coefficientsΔ(x n-c nx n-k )+p nx n-l -q nx n-r =0, n=0,1,2,...,is considered and a sufficient condition for the global attractivity of the zero solution of this equation is obtained, which improves and extends the all known results in the literature.展开更多
We investigate a stage-structured delayed predator-prey model with impulsive stocking on prey and continuous harvesting on predator. According to the fact of biological resource management, we improve the assumption o...We investigate a stage-structured delayed predator-prey model with impulsive stocking on prey and continuous harvesting on predator. According to the fact of biological resource management, we improve the assumption of a predator-prey model with stage structure for predator population that each individual predator has the same ability to capture prey. It is assumed that the immature and mature individuals of the predator population are divided by a fixed age, and immature predator population does not have the ability to attach prey. Sufficient conditions are obtained, which guarantee the global attractivity of predator-extinction periodic solution and the permanence of the system. Our results show that the behavior of impulsive stocking on prey plays an important role for the permanence of the system, and provide tactical basis for the biological resource management. Numerical analysis is presented to illuminate the dynamics of the system.展开更多
In this paper we further study the delay differential equation N .(t)=-δN(t)+pN(t-τ)e -aN(t-τ) , t0(*) used in describing the dynamics of Nicholson’s blowflies. When p】δ ,we establish new su...In this paper we further study the delay differential equation N .(t)=-δN(t)+pN(t-τ)e -aN(t-τ) , t0(*) used in describing the dynamics of Nicholson’s blowflies. When p】δ ,we establish new sufficient conditions for the positive equilibrium N * of (*) which is a global attractor.展开更多
The global attractivity of the delay difference equation Deltax(n) + a(n)x(n) + f(n, Sigma(s = -k)(0)(q) over bar (s), (n) x(s + n)) = 0, which includes the discrete type of many mathematical ecological equations, was...The global attractivity of the delay difference equation Deltax(n) + a(n)x(n) + f(n, Sigma(s = -k)(0)(q) over bar (s), (n) x(s + n)) = 0, which includes the discrete type of many mathematical ecological equations, was discussed. The sufficient conditions that guarantee every solution to converge to zero are obtained. Many known results are improved and generated.展开更多
In this paper, the qualitative properties of general nonautonomous Lotka-Volterran-species competitive systems with impulsive e?ects are studied. Some new criteria on thepermanence, extinction and global attractivity...In this paper, the qualitative properties of general nonautonomous Lotka-Volterran-species competitive systems with impulsive e?ects are studied. Some new criteria on thepermanence, extinction and global attractivity of partial species are established by used themethods of inequalities estimate and Liapunov functions. As applications, nonautonomous twospecies Lotka-Volterra systems with impulses are discussed.展开更多
This paper studies the global attractivity of the positive equilibrium 1 of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n=0,1,2,...,(*)where {p n} is a sequence of positive real n...This paper studies the global attractivity of the positive equilibrium 1 of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n=0,1,2,...,(*)where {p n} is a sequence of positive real numbers, {τ(n)} is a nondecreasing sequence of integers, τ(n)<n and lim n→∞τ(n)=∞ .It is proved that ifnj=τ(n)p j≤54 for sufficiently large n and ∞j=0p j=∞,then all positive solutions of Eq.(*) tend to 1 as n→∞ .The results improve the existing results in literature.展开更多
Consider the discrete Lasota Wazewska modelN n+1 -N n =-μN n +pe -rN n-k , n=0,1,2,...(*)where μ∈(0,1),r,p∈(0,∞) and k ∈N.A sufficient condition for all positive solutions of (*) to...Consider the discrete Lasota Wazewska modelN n+1 -N n =-μN n +pe -rN n-k , n=0,1,2,...(*)where μ∈(0,1),r,p∈(0,∞) and k ∈N.A sufficient condition for all positive solutions of (*) to be attracted to its equilibrium N is obtained.It improves correspondent result obtained by Chen and Yu in 1999.展开更多
By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters ...By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters α=1/29 and 1/29<α<2/29,respectively,which extends some related results of Li,et al. [Li DM,Lu JA,Wu XQ,Chen GR,Estimating the global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Applications,2006,323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.展开更多
A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical syst...A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical system determined by the stroboscopic map, an ‘infection-free' periodic solution is obtained, further, it is shown that the ‘infection-free' periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using the theory on delay functional and impulsive differential equation, the sufficient condition with time delay for the permanence of the system is obtained, and it is proved that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is ‘profitless’.展开更多
In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results c...In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results completely solve an open problem and some conjectures proposed in[1,2,3,4].展开更多
We study a generalized Cauchy problem associated with a class of impulsive fractional differential inclusions of Sobolev type in Banach spaces. Our aim is to prove the existence of a compact set of globally attracting...We study a generalized Cauchy problem associated with a class of impulsive fractional differential inclusions of Sobolev type in Banach spaces. Our aim is to prove the existence of a compact set of globally attracting solutions to the problem in question. An application to fractional partial differential equations subject to impulsive effects is given to illustrate our results.展开更多
In this paper, a stochastic two-prey one-predator model with <em>S</em>-type distributed time delays and Lévy noises is considered. Using the comparison theorem and Ito’s formula, sufficient conditio...In this paper, a stochastic two-prey one-predator model with <em>S</em>-type distributed time delays and Lévy noises is considered. Using the comparison theorem and Ito’s formula, sufficient conditions of persistence in the mean and extinct for each population are established. Then, conditions of global attractivity and stability in distribution by Barbalat’s conclusion are also obtained. Furthermore, Euler numerical simulation method is given to demonstrate our conclusions.展开更多
This paper is intended to investigate a class of Nicholson's blowflies system with patch structure and multiple pairs of distinct time-varying delays,we are interested in finding the infuence of the distinct time-...This paper is intended to investigate a class of Nicholson's blowflies system with patch structure and multiple pairs of distinct time-varying delays,we are interested in finding the infuence of the distinct time-varying delays in the same reproductive function on its asymptotic behavior.By using the theory of functional differential equations,the fluctuation lemma,and the technique of differential inequalities,some new delay-dependent criteria on the global attractivity of the positive equilibrium point are established.In addition,the effectiveness and feasibility of the theoretical achievements are illustrated by some numerical simulations.展开更多
A new sufficient condition is given for the global attractivity of solutions ofthe delay difference equation xn+1= xnf(xn, zn-1), n = 0,1…,As an application, ourresults partly confirm a conjecture of G. Ladas.
This paper discusses a randomized Logistic equation $\dot N(t) = (r + \alpha \dot B(t))N(t)[1 - \frac{{N(t)}}{K}]$ with an initial value N(0) = N 0, and N 0 is a random variable satisfying 0 < N 0 < K. The exist...This paper discusses a randomized Logistic equation $\dot N(t) = (r + \alpha \dot B(t))N(t)[1 - \frac{{N(t)}}{K}]$ with an initial value N(0) = N 0, and N 0 is a random variable satisfying 0 < N 0 < K. The existence, uniqueness and global attractivity of positive solutions and maximum likelihood estimate (MLE) of the parameters of the equation are studied.展开更多
In this paper, we consider a nonautonomous competitive model with dispersion and a finite number of discrete delays. The system, which consists of two Lotka-Volterra patches, has two competitors: one can disperse betw...In this paper, we consider a nonautonomous competitive model with dispersion and a finite number of discrete delays. The system, which consists of two Lotka-Volterra patches, has two competitors: one can disperse between the two patches, but the other is confined to one patch and cannot disperse. Our purpose is to demonstrate that the dispersion rates have no effect on the uniform persistence of the solutions of the system. Furthermore, we establish the conditions under which the system admits a positive periodic solution which attracts all solutions.展开更多
文摘Several new sufficient conditions are given for the global attractivity of solutions of a kind of delay difference equations. They either include or improve some known results and put the study of Ladas' conjecture forward.
基金Supported by the NNSF of China(10671021)the SRF of Hunan Provincial Education Department(09C388)
文摘Sufficient conditions are obtained which guarantee the uniform persistence and global attractivity of solutions for the model of hematopoiesis. Then some criteria are established for the existence, uniqueness and global attractivity of almost periodic solutions of almost periodic system.
文摘Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constructing suitable Liapunov function, some simpler criteria for global attractivity and global exponential stability for Hopfield continuous neural network,; with time delays are presented.
文摘In this paper the global attractivity of the nonlinear difference equationis investigated, where a,b, A ∈ (0,∞), k is an positive integer and the initial conditions x- k, …, x-1 and x0 are arbitrary positive numbers. It is shown that the unique positive equilibrium of the equation is global attractive. As a corollary, the result gives a positive confirmation on the conjecture presented by Kocic and Ladas [1,p154].
基金the Science Foundation of Educational Committee of Hunan Provinc
文摘A neutral difference equation with positive and negative coefficientsΔ(x n-c nx n-k )+p nx n-l -q nx n-r =0, n=0,1,2,...,is considered and a sufficient condition for the global attractivity of the zero solution of this equation is obtained, which improves and extends the all known results in the literature.
基金the National Natural Science Foundation of China(No.10771179)the Emphasis Subject of Guizhou Province of China
文摘We investigate a stage-structured delayed predator-prey model with impulsive stocking on prey and continuous harvesting on predator. According to the fact of biological resource management, we improve the assumption of a predator-prey model with stage structure for predator population that each individual predator has the same ability to capture prey. It is assumed that the immature and mature individuals of the predator population are divided by a fixed age, and immature predator population does not have the ability to attach prey. Sufficient conditions are obtained, which guarantee the global attractivity of predator-extinction periodic solution and the permanence of the system. Our results show that the behavior of impulsive stocking on prey plays an important role for the permanence of the system, and provide tactical basis for the biological resource management. Numerical analysis is presented to illuminate the dynamics of the system.
文摘In this paper we further study the delay differential equation N .(t)=-δN(t)+pN(t-τ)e -aN(t-τ) , t0(*) used in describing the dynamics of Nicholson’s blowflies. When p】δ ,we establish new sufficient conditions for the positive equilibrium N * of (*) which is a global attractor.
文摘The global attractivity of the delay difference equation Deltax(n) + a(n)x(n) + f(n, Sigma(s = -k)(0)(q) over bar (s), (n) x(s + n)) = 0, which includes the discrete type of many mathematical ecological equations, was discussed. The sufficient conditions that guarantee every solution to converge to zero are obtained. Many known results are improved and generated.
基金Supported by The National Natural Science Foundation of P.R. China [60764003]The Scientific Research Programmes of Colleges in Xinjiang [XJEDU2007G01, XJEDU2006I05]+1 种基金The National Key Technologies R & D Program of China [2008BAI68B01]The Natural Science Foundation of Jiangxi Province [2008GZS0027]
文摘In this paper, the qualitative properties of general nonautonomous Lotka-Volterran-species competitive systems with impulsive e?ects are studied. Some new criteria on thepermanence, extinction and global attractivity of partial species are established by used themethods of inequalities estimate and Liapunov functions. As applications, nonautonomous twospecies Lotka-Volterra systems with impulses are discussed.
文摘This paper studies the global attractivity of the positive equilibrium 1 of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n=0,1,2,...,(*)where {p n} is a sequence of positive real numbers, {τ(n)} is a nondecreasing sequence of integers, τ(n)<n and lim n→∞τ(n)=∞ .It is proved that ifnj=τ(n)p j≤54 for sufficiently large n and ∞j=0p j=∞,then all positive solutions of Eq.(*) tend to 1 as n→∞ .The results improve the existing results in literature.
基金Supported by the Science Foundation of Educational Committee of Hunan Province
文摘Consider the discrete Lasota Wazewska modelN n+1 -N n =-μN n +pe -rN n-k , n=0,1,2,...(*)where μ∈(0,1),r,p∈(0,∞) and k ∈N.A sufficient condition for all positive solutions of (*) to be attracted to its equilibrium N is obtained.It improves correspondent result obtained by Chen and Yu in 1999.
文摘By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters α=1/29 and 1/29<α<2/29,respectively,which extends some related results of Li,et al. [Li DM,Lu JA,Wu XQ,Chen GR,Estimating the global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Applications,2006,323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.
基金the National Natural Science Foundation of China(No.10471117)
文摘A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical system determined by the stroboscopic map, an ‘infection-free' periodic solution is obtained, further, it is shown that the ‘infection-free' periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using the theory on delay functional and impulsive differential equation, the sufficient condition with time delay for the permanence of the system is obtained, and it is proved that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is ‘profitless’.
基金the National Natural Science Foundation of China(61473340)the Distinguished Professor Foundation of Qianjiang Scholar in Zhejiang Province+1 种基金the National Natural Science Foundation of Zhejiang Province(LQ13A010019)the National Natural Science Foundation of Zhejiang University of Science and Technology(F701108G14).
文摘In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results completely solve an open problem and some conjectures proposed in[1,2,3,4].
基金supported by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number 101.02-2015.18
文摘We study a generalized Cauchy problem associated with a class of impulsive fractional differential inclusions of Sobolev type in Banach spaces. Our aim is to prove the existence of a compact set of globally attracting solutions to the problem in question. An application to fractional partial differential equations subject to impulsive effects is given to illustrate our results.
文摘In this paper, a stochastic two-prey one-predator model with <em>S</em>-type distributed time delays and Lévy noises is considered. Using the comparison theorem and Ito’s formula, sufficient conditions of persistence in the mean and extinct for each population are established. Then, conditions of global attractivity and stability in distribution by Barbalat’s conclusion are also obtained. Furthermore, Euler numerical simulation method is given to demonstrate our conclusions.
基金This work was supposed by Jiaxing public welfare research program(2022AD30113).
文摘This paper is intended to investigate a class of Nicholson's blowflies system with patch structure and multiple pairs of distinct time-varying delays,we are interested in finding the infuence of the distinct time-varying delays in the same reproductive function on its asymptotic behavior.By using the theory of functional differential equations,the fluctuation lemma,and the technique of differential inequalities,some new delay-dependent criteria on the global attractivity of the positive equilibrium point are established.In addition,the effectiveness and feasibility of the theoretical achievements are illustrated by some numerical simulations.
基金Supported by the NNSFC(10071022),Mathematical Tianyuan Foundation of China(Ty10026002-01-05-03)Shanghai Priority Academic Discipline.
文摘A new sufficient condition is given for the global attractivity of solutions ofthe delay difference equation xn+1= xnf(xn, zn-1), n = 0,1…,As an application, ourresults partly confirm a conjecture of G. Ladas.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.10431010 and 10571021)the Key Laboratory for Applied Statistics of Ministry of Education of China(KLAS)
文摘This paper discusses a randomized Logistic equation $\dot N(t) = (r + \alpha \dot B(t))N(t)[1 - \frac{{N(t)}}{K}]$ with an initial value N(0) = N 0, and N 0 is a random variable satisfying 0 < N 0 < K. The existence, uniqueness and global attractivity of positive solutions and maximum likelihood estimate (MLE) of the parameters of the equation are studied.
基金This research is supported by the National Natural Science Foundation of China the Natural Science Foundation of Henan Province.
文摘In this paper, we consider a nonautonomous competitive model with dispersion and a finite number of discrete delays. The system, which consists of two Lotka-Volterra patches, has two competitors: one can disperse between the two patches, but the other is confined to one patch and cannot disperse. Our purpose is to demonstrate that the dispersion rates have no effect on the uniform persistence of the solutions of the system. Furthermore, we establish the conditions under which the system admits a positive periodic solution which attracts all solutions.