Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-...Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.展开更多
In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epice...In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epicenter,and caudal penumbra of the injury site initiates a cellularmolecular interplay that acts as a rewiring mechanism leading to central neuropathic pain.Sprouting can lead to the formation of new connections triggering abnormal sensory transmission.The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity.Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen.In this study,we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury.We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters,leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting.Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control(placebo).We used von Frey monofilaments and the“up-down method”to evaluate mechanical allodynia.Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sexdependent effect.The expression profile of glutamatergic transporters(excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1)revealed a sexual dimorphism in the rostral,epicenter,and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes.Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents.Analyses of peptidergic(calcitonin gene-related peptide-α)and non-peptidergic(isolectin B4)fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/isolectin B4 ratio in comparison with sham,suggesting increased receptive fields in the dorsal horn.Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats,this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury.Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord.The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain,an area with a critical need for treatment.展开更多
The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arth...The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arthritis,and managing inflammatory cytokine storms.Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma,the exact mechanism by which it enhances functional recovery after spinal cord injury,particularly its effect on astrocytes,remains unclear.To address this gap,we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury.Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury,restored EAAT2 expression,reduced glutamate levels,and alleviated excitatory toxicity.Furthermore,ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1β,interleukin-6,and tumor necrosis factor-α.Additionally,in glutamate-induced excitotoxicity astrocytes,ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3,thereby reducing glutamate-induced neurotoxicity,calcium influx,oxidative stress,and cell apoptosis,and increasing the complexity of dendritic branching.Collectively,these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes,reduces neurotoxicity,and effectively alleviates inflammatory and immune responses after spinal cord injury,thereby promoting functional recovery after spinal cord injury.展开更多
Glutamate excitotoxicity has been shown to play an important role in glaucoma, and glutamate can induce ferroptosis. The p38 mitogenactivated protein kinase(MAPK) pathway inhibitor SB202190 has a potential ability to ...Glutamate excitotoxicity has been shown to play an important role in glaucoma, and glutamate can induce ferroptosis. The p38 mitogenactivated protein kinase(MAPK) pathway inhibitor SB202190 has a potential ability to suppress ferroptosis, and its downstream targets, such as p53, have been shown to be associated with ferroptosis. However, whether ferroptosis also occurs in retinal ganglion cells in response to glutamate excitotoxicity and whether inhibition of ferroptosis reduces the loss of retinal ganglion cells induced by glutamate excitotoxicity remain unclear. This study investigated ferroptosis in a glutamate-induced glaucoma rat model and explored the effects and molecular mechanisms of SB202190 on retinal ganglion cells. A glutamate-induced excitotoxicity model in R28 cells and an N-methyl-D-aspartate-induced glaucoma model in rats were used. In vitro experiments showed that glutamate induced the accumulation of iron and lipid peroxide and morphological changes of mitochondria in R28 cells, and SB202190 inhibited these changes. Glutamate induced the levels of p-p38 MAPK/p38 MAPK and SAT1 and decreased the expression levels of ferritin light chain, SLC7A11, and GPX4. SB202190 inhibited the expression of iron death-related proteins induced by glutamate. In vivo experiments showed that SB202190 attenuated N-methyl-D-aspartate-induced damage to rat retinal ganglion cells and improved visual function. These results suggest that SB202190 can inhibit ferroptosis and protect retinal ganglion cells by regulating ferritin light chain, SAT1, and SLC7A11/Gpx4 pathways and may represent a potential retina protectant.展开更多
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta...Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.展开更多
Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Cal...Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Calcium(Ca),as a signaling molecule,is involved in the regulation of plant root development.However,the detailed underlying regulatory mechanism is elusive.In this study,we analyzed the morphological and transcriptomic variations of 84K poplar(Populus alba×P.glandulosa)in response to different calcium concentrations and found that low Ca^(2+)(1 mmol·L^(-1))promoted lateral root development,while deficiency(0.1 mmol·L^(-1)Ca^(2+))inhibited lateral root development.Co-expression analysis showed that Ca^(2+)channel glutamate receptors(GLRs)were present in various modules with significance for root development.Two GLR paralogous genes,PagGLR3.3a and Pag GLR3.3b,were mainly expressed in roots and up-regulated under Ca^(2+)deficiency.The CRISPR/Cas9-mediated signal gene(crispr-PagGLR3.3a,PagGLR3.3b)and double gene(crispr-PagGLR3.3ab)mutants presented more and longer lateral roots.Anatomical analysis showed that crispr-PagGLR3.3ab plants had more xylem cells and promoted the development of secondary vascular tissues.Further transcriptomic analysis suggested that knockout of PagGLR3.3a and PagGLR3.3b led to the up-regulation of several genes related to protein phosphorylation,auxin efflux,lignin and hemicellulose biosynthesis as well as transcriptional regulation,which might contribute to lateral root growth.This study not only provides novel insight into how the Ca^(2+)channels mediated root growth and development in trees,but also provides a directive breeding of new poplar species for biofuel and bioenergy production.展开更多
Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral sub...Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral subiculum, which play a critical role in the reinstatement of drug-seeking behavior induced by environmental cues. Methods Conditioning place preference (CPP) and conditioning place aversion (CPA) models were used to establish environment associated with rewarding and aversive properties of morphine respectively. Microdialysis and high performance liquid chromatography were used to measure the extracelluar level of glutamate and GABA in the ventral subiculum under these environmental cues. Results Exposure to the environmental cues associated with rewarding properties of morphine resulted in a decrease (approximately 11%) of extracellular level of GABA in ventral subiculum, and exposure to the environmental cues associated with aversive properties of morphine resulted in an increase (approximately 230%) of extracellular level of glutamate in ventral subiculum. Conclusion Environmental cues associated with different properties of morphine modulate the release of distinct neurotransmitters in the hippocampal ventral subiculum possibly through different neural circuit.展开更多
A full_length cDNA has been cloned encoding nicotinamide adenine dinucleotide phosphate_specific glutamate dehydrogenase (NADP_GDH) from Chlorella sorokiniana with the RT_PCR method. The complete nucleotide sequence o...A full_length cDNA has been cloned encoding nicotinamide adenine dinucleotide phosphate_specific glutamate dehydrogenase (NADP_GDH) from Chlorella sorokiniana with the RT_PCR method. The complete nucleotide sequence of NADP_GDH gene had 94% homology to the previously reported one . The NADP_GDH gene was constructed into a vector highly expressed in plants. The specific activity of NADP_GDH in transformants was detected, but not in the control plants. All transformed shoots on MS medium containing lower concentration of nitrogen and the transformed seedlings grown in lower concentration of nitrogen vermiculite had higher growth rate and more leaves than the control plants. Transformed leaf discs cultured on MS medium containing different nitrogen concentrations had more chlorophyll contents compared to the controls. These results suggested that exogenous NADP_GDH may enhance the absorption and utilization to ammonium in plants. The increased weight of transformed leaf discs cultured on medium supplemented with different concentrations of phosphinothricin (PPT) was more than that of control discs. 0.5 μg/mL PPT could be used as a selecting drug instead of kanamycin to develop the transformants. These results suggested that the NADP_GDH gene might be used as a new selecting gene in the future research of plant gene engineering.展开更多
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo...The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.展开更多
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio...The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.展开更多
Aim In order to improve the solubility of azithromycin, the objectives of the present study were to screen an appropriate salt for azithromycin by comparing acute hepatic and renal toxicities in animals, and study the...Aim In order to improve the solubility of azithromycin, the objectives of the present study were to screen an appropriate salt for azithromycin by comparing acute hepatic and renal toxicities in animals, and study the pharmacokinetics of final chosen azithromycin salt. Methods Various salts of azithromycin, such as glutamate, citrate, hydrochloride, sulphate, dihydrogen phosphate, lactobionate, tartrate, and aspartate were given intravenously to Sprague Dawley rats at a dose of 10 mg once daily for 14 consecutive days via tail vein. The acute hepatic and renal indicators were measured before and after administration. A pharmacokinetic study was performed on 12 healthy human volunteers. The subjects were equally divided into two groups by a randomized crossover design. Azithromycin glutamate injection was administered by intravenous infusion or intramuscular injection at a single dose of 500 mg, respectively. Azithromycin concentrations in plasma were determined by microbial inhibition zone assay, and the pharmacokinetic parameters were calculated using a practical pharmacokinetic software 3P87 program. Results Azithromycin glutamate was least toxic to the liver and kidney of the rats, thus being selected as a final salt for parenteral preparation of azithromycin. Pharmacokinetic results showed that the area under the plasma concentration-time curves (AUC0-120h) were 21.47 ± 1.57 h·μg·mL^-1 for intravenous infusion, and 19.36 ± 2.44 h·μg·mL^-1 for intramuscular injection. The absolute bioavailability of intramuscular injection was 92.59%. Conclusion Azithromycin glutamate is suitable for the future clinical application, and its pharmacokinetics is characterized in human volunteers in the present study.展开更多
A Lactobacillus brevis CGMCC 1306 isolated from fresh milk without pasteurization was found to have higher glutamate decarboxylase (GAD) activity. An effective isolation and purification procedure of GAD from a cell...A Lactobacillus brevis CGMCC 1306 isolated from fresh milk without pasteurization was found to have higher glutamate decarboxylase (GAD) activity. An effective isolation and purification procedure of GAD from a cell-free extract of Lactobacillus brevis was developed, and the procedure included four steps: 30%-90% saturation (NH4)2SO4 fractional precipitation, Q sepharose FF anion-exchange chromatography, sephacryl S-200 gel filtration, and resource Q anion-exchange chromatography. Using this protocol, the purified GAD was demonstrated to possess electrophoretic homogeneity via SDS-PAGE. The purification fold and activity recovery of GAD were 43.78 and 16.95%, respectively. The molecular weight of the purified GAD was estimated to be approximately 62 kDa via SDS-PAGE. The optimum pH and temperature of the purified GAD were 4.4 and 37℃, respectively. The purified GAD had a half-life of 50rain at 45℃ and the Km value of the enzyme from Lineweaver-Burk plot was found to be 8.22.5'-pyridoxal phosphate (PLP) had little effect on the regulation of its activity.展开更多
Objective To examine the vesicular glutamate transporters (VGluTs: VGluT 1-VGluT3) in the peripheral vestibular system. Methods The vestibular structures, including Scarpa's ganglion (vestibular ganglion, VG), m...Objective To examine the vesicular glutamate transporters (VGluTs: VGluT 1-VGluT3) in the peripheral vestibular system. Methods The vestibular structures, including Scarpa's ganglion (vestibular ganglion, VG), maculae of utricle and saccule, and ampullary cristae, from normal Sprague-Dawley rats were processed immunohistochemically for VGluTs, by avidin-biotinylated peroxidase complex method, with 3-3'-diaminobenzidine (DAB) as chromogen. Results (1) VGluT 1 was localized to partial neurons of VG and to the putative primary afferent fibers innervating vestibular end-organs. (2) Intense VGluT3 immunoreactivity was detected in large number of sensory epithelia cells, and weak labeling of VGluT3- positive afferent fibers was in the maculae and ampullary cristae. (3) No or very weak VGluT2 immunoreactivity was observed in the VG and acoustic maculae. Conclusion These results provide the morphological support that glutamate exists in the peripheral vestibular system, and it may play an important role in the centripetal vestibular transmission.展开更多
Arginine (ARG) exerts many beneficial effects on animal body and enhanced angiogenesis, lactogenesis, which finally leads to the improvement in nitrogen (N) metabolism, reproduction, lactation, immunity and growth...Arginine (ARG) exerts many beneficial effects on animal body and enhanced angiogenesis, lactogenesis, which finally leads to the improvement in nitrogen (N) metabolism, reproduction, lactation, immunity and growth. Unfortunately, unprotected ARG will be degraded in the rumen and its price is high, thus feeding rumen-protected ARG seems to be uneconomical. Alternatively, N-carbamoyl glutamate (NCG) is structural analogue of N-acetyl glutamate, cofactor of cabamoyl phosphate synthetasel, is lower in rumen degradation compared to ARG. Additionally, rumen epithelial and duodenal cells have potentially utilized the NCG for ureagenesis. Supplementation of NCG to high yielding dairy cows increased plasma concentration of ARG and nitric oxide, decreased the plasma ammonia N and improved lactation performance and N utilization. Supplementation of NCG enhanced pregnancy rates in rats, improved litter size and fetal survival rate, thereby improved the reproductive performance of sows. Oral NCG supplementation increases plasma ARG and somatotropin levels, and increased growth rate and muscle protein synthesis in nursing piglets. The NCG is potential a relatively cheaper source of feed additive to offer vital compensation over oral administration of ARG, resulting in improved ruminant animal health and production. In this article, we reviewed the mechanism of AfiG biosynthesis by NCG and their significance in growth, reproduction, milk production and N utilization in ruminant animals.展开更多
Mounting evidence suggests that synaptic plasticity provides the cellular biological basis of learning and memory, and plasticity deficits play a key role in dementia caused by Alzheimer's disease. However, the me...Mounting evidence suggests that synaptic plasticity provides the cellular biological basis of learning and memory, and plasticity deficits play a key role in dementia caused by Alzheimer's disease. However, the mechanisms by which synaptic dysfunction contributes to the pathogenesis of Alzheimer's disease remain unclear. In the present study, Alzheimer's disease transgenic mice were used to determine the relationship between decreased hippocampal synaptic plasticity and pathological changes and cognitive-behavioral deterioration, as well as possible mechanisms underlying decreased synaptic plasticity in the early stages of Alzheimer's disease-like diseases. APP/PS1 double transgenic(5 XFAD; Jackson Laboratory) mice and their littermates(wild-type, controls) were used in this study. Additional 6-weekold and 10-week-old 5 XFAD mice and wild-type mice were used for electrophysiological recording of hippocampal dentate gyrus. For10-week-old 5 XFAD mice and wild-type mice, the left hippocampus was used for electrophysiological recording, and the right hippocampus was used for biochemical experiments or immunohistochemical staining to observe synaptophysin levels and amyloid beta deposition levels. The results revealed that, compared with wild-type mice, 6-week-old 5 XFAD mice exhibited unaltered long-term potentiation in the hippocampal dentate gyrus. Another set of 5 XFAD mice began to show attenuation at the age of 10 weeks, and a large quantity of amyloid beta protein was accumulated in hippocampal cells. The location of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor and N-methyl-D-aspartic acid receptor subunits in synaptosomes was decreased. These findings indicate that the delocalization of postsynaptic glutamate receptors and an associated decline in synaptic plasticity may be key mechanisms in the early onset of Alzheimer's disease. The use and care of animals were in strict accordance with the ethical standards of the Animal Ethics Committee of Capital Medical University,China on December 17, 2015(approval No. AEEI-2015-182).展开更多
BACKGROUND: Nerve growth factor (NGF) attenuates glutamate-induced injury to hippocampal neurons, and the human tumor suppressor gene phosphatase and tensin homologue deleted on chromosome 10 (PTEN) promotes neur...BACKGROUND: Nerve growth factor (NGF) attenuates glutamate-induced injury to hippocampal neurons, and the human tumor suppressor gene phosphatase and tensin homologue deleted on chromosome 10 (PTEN) promotes neuronal apoptosis. However, effects of PTEN in NGF-mediated neuroprotection against glutamate excitotoxicity remain poorly understood. OBJECTIVE: To investigate the relationship between NGF inhibition of glutamate-induced injury and PTEN. DESIGN, TIME AND SE'I'rlNG: The randomized, controlled, in vitro study was performed at the Department of Pathophysiology, Medical School of Nantong University, China from October 2007 to March 2008. MATERIALS: Glutamate, NGF, 4, 6-diamidino-2-phenyl-indolediacetate, 3-[4, 5-dimethylthiazol-2-yl]- 2, 5-diphenyl tetrazoliumbromide (M-I-F), and lactate dehydrogenase kit (Sigma, USA), fluorescence microscope and inverted phase contrast microscope (Olympus, Japan) were used in this study. METHODS: Hippocampal neurons were obtained from newborn (〈 24 hours) Sprague Dawley rats and cultured for 7 days. The control group was not treated with any intervention factor, the glutamate group was treated with glutamate (0.2 mmol/L), and NGF groups were treated with NGF (10, 50, 100, and 200 μg/L, respectively) prior to glutamate treatment. MAIN OUTCOME MEASURES: The MTT and lactate dehydrogenase assays were applied to evaluate viability of hippocampal neurons. Morphological changes in hippocampal neurons were observed using an inverted phase-contrast microscope, and neuronal apoptosis was detected by 4, 6-diamidino-2- phenyl-indolediacetate staining. PTEN mRNA and protein expression were measured by reverse transcription-polymerase chain reaction and Western blot analysis, respectively. RESULTS: Glutamate (0.2 mmol/L) induced significantly decreased neuronal viability and greater lactate dehydrogenase efflux compared with the control group (P 〈 0.01). However, compared with the glutamate group, cell viability significantly increased and lactate dehydrogenase efflux decreased in the NGF group with increasing NGF concentrations (P 〈 0.05 or P 〈 0.01). The apoptotic ratio and PTEN mRNA and protein expression decreased in the NGF group compared with the glutamate group (P 〈 0.01). CONCLUSION: Pretreatment with NGF exerted neuroprotective effects against glutamate-induced injury, partially through inhibition of PTEN expression and neuronal apoptosis.展开更多
AIM:To assess whether glutamate plays a similar role to glutamine in preserving gut wall integrity.METHODS:The effects of glutamine and glutamate on induced hyperpermeability in intestinal cell lines were studied.Para...AIM:To assess whether glutamate plays a similar role to glutamine in preserving gut wall integrity.METHODS:The effects of glutamine and glutamate on induced hyperpermeability in intestinal cell lines were studied.Paracellular hyperpermeability was induced in Caco2.BBE and HT-29CL.19A cell lines by adding phorbol-12,13-dibutyrate(PDB) apically,after which the effects of glutamine and glutamate on horseradish peroxidase(HRP) diffusion were studied.An inhibitor of glutamate transport(L-trans-pyrrolidine-2,4-dicarboxylic acid:trans-PDC) and an irreversible blocker(acivicin) of the extracellular glutamine to glutamate converting enzyme,γ-glutamyltransferase,were used.RESULTS:Apical to basolateral HRP flux increased significantly compared to controls not exposed to PDB (n=30,P<0.001).Glutamine application reduced hyperpermeability by 19%and 39%in the respective cell lines.Glutamate application reduced hyperpermeability by 30%and 20%,respectively.Incubation of HT29CL.19A cells with acivicin and subsequent PDB and glutamine addition increased permeability levels.Incubation of Caco2.BBE cells with trans-PDC followed by PDB and glutamate addition also resulted in high permeability levels.CONCLUSION:Apical glutamate-similar to glutaminecan decrease induced paracellular hyperpermeability.Extracellular conversion of glutamine to glutamate and subsequent uptake of glutamate could be a pivotal step in the mechanism underlying the protective effect of glutamine.展开更多
Autophagy has been suggested to participate in the pathology of hypoxic-ischemic brain damage(HIBD).However,its regulatory role in HIBD remains unclear and was thus examined here using a rat model.To induce HIBD,the...Autophagy has been suggested to participate in the pathology of hypoxic-ischemic brain damage(HIBD).However,its regulatory role in HIBD remains unclear and was thus examined here using a rat model.To induce HIBD,the left common carotid artery was ligated in neonatal rats,and the rats were subjected to hypoxia for 2 hours.Some of these rats were intraperitoneally pretreated with the autophagy inhibitor 3-methyladenine(10 m M in 10 μL) or the autophagy stimulator rapamycin(1 g/kg) 1 hour before artery ligation.Our findings demonstrated that hypoxia-ischemia-induced hippocampal injury in neonatal rats was accompanied by increased expression levels of the autophagy-related proteins light chain 3 and Beclin-1 as well as of the AMPA receptor subunit GluR 1,but by reduced expression of GluR 2.Pretreatment with the autophagy inhibitor 3-methyladenine blocked hypoxia-ischemia-induced hippocampal injury,whereas pretreatment with the autophagy stimulator rapamycin significantly augmented hippocampal injury.Additionally,3-methyladenine pretreatment blocked the hypoxia-ischemia-induced upregulation of Glu R1 and downregulation of GluR2 in the hippocampus.By contrast,rapamycin further elevated hippocampal Glu R1 levels and exacerbated decreased GluR2 expression levels in neonates with HIBD.Our results indicate that autophagy inhibition favors the prevention of HIBD in neonatal rats,at least in part,through normalizing Glu R1 and GluR2 expression.展开更多
Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalitie...Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalities for reducing glutamate accumulation.However,further research is needed to investigate the dynamic changes in and molecular mechanisms of glutamate transport and the effects of glutamate transport on synapses.The aim of this study was to investigate the regulatory mechanisms underlying Notch pathway mediation of glutamate transport and synaptic plasticity.In this study,Yorkshire neonatal pigs(male,age 3 days,weight 1.0–1.5 kg,n=48)were randomly divided into control(sham surgery group)and five hypoxic ischemia subgroups,according to different recovery time,which were then further subdivided into subgroups treated with dimethyl sulfoxide or a Notch pathway inhibitor(N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester).Once the model was established,immunohistochemistry,immunofluorescence staining,and western blot analyses of Notch pathway-related proteins,synaptophysin,and glutamate transporter were performed.Moreover,synapse microstructure was observed by transmission electron microscopy.At the early stage(6–12 hours after hypoxic ischemia)of hypoxic ischemic injury,expression of glutamate transporter excitatory amino acid transporter-2 and synaptophysin was downregulated,the number of synaptic vesicles was reduced,and synaptic swelling was observed;at 12–24 hours after hypoxic ischemia,the Notch pathway was activated,excitatory amino acid transporter-2 and synaptophysin expression was increased,and the number of synaptic vesicles was slightly increased.Excitatory amino acid transporter-2 and synaptophysin expression decreased after treatment with the Notch pathway inhibitor.This suggests that glutamate transport in astrocytes-neurons after hypoxic ischemic injury is regulated by the Notch pathway and affects vesicle release and synaptic plasticity through the expression of synaptophysin.展开更多
基金supported by the National Natural Science Foundation of China,Nos.32371065(to CL)and 32170950(to LY)the Natural Science Foundation of the Guangdong Province,No.2023A1515010899(to CL)the Science and Technology Projects in Guangzhou,Nos.2023A4J0578 and 2024A03J0180(to CW)。
文摘Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.
基金supported by COBRE(P30GM149367)the Puerto Rico Science&Technology Trust(2022-00125)+1 种基金MBRS-RISE Program(R25 GM061838)SC1GM144032 program(all to JDM)。
文摘In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epicenter,and caudal penumbra of the injury site initiates a cellularmolecular interplay that acts as a rewiring mechanism leading to central neuropathic pain.Sprouting can lead to the formation of new connections triggering abnormal sensory transmission.The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity.Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen.In this study,we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury.We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters,leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting.Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control(placebo).We used von Frey monofilaments and the“up-down method”to evaluate mechanical allodynia.Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sexdependent effect.The expression profile of glutamatergic transporters(excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1)revealed a sexual dimorphism in the rostral,epicenter,and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes.Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents.Analyses of peptidergic(calcitonin gene-related peptide-α)and non-peptidergic(isolectin B4)fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/isolectin B4 ratio in comparison with sham,suggesting increased receptive fields in the dorsal horn.Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats,this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury.Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord.The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain,an area with a critical need for treatment.
基金supported by the National Natural Science Foundation of China,No.82272484(to XC).
文摘The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arthritis,and managing inflammatory cytokine storms.Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma,the exact mechanism by which it enhances functional recovery after spinal cord injury,particularly its effect on astrocytes,remains unclear.To address this gap,we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury.Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury,restored EAAT2 expression,reduced glutamate levels,and alleviated excitatory toxicity.Furthermore,ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1β,interleukin-6,and tumor necrosis factor-α.Additionally,in glutamate-induced excitotoxicity astrocytes,ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3,thereby reducing glutamate-induced neurotoxicity,calcium influx,oxidative stress,and cell apoptosis,and increasing the complexity of dendritic branching.Collectively,these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes,reduces neurotoxicity,and effectively alleviates inflammatory and immune responses after spinal cord injury,thereby promoting functional recovery after spinal cord injury.
基金supported by the National Natural Science Foundation of China,Nos.81974132,81770927Hunan Provincial Health Commission,No.20220702839+1 种基金the Natural Science Foundation of Hunan Province of China,No.2022JJ30076National Key R&D Program of China,No.2021YFA1101202(all to WS)。
文摘Glutamate excitotoxicity has been shown to play an important role in glaucoma, and glutamate can induce ferroptosis. The p38 mitogenactivated protein kinase(MAPK) pathway inhibitor SB202190 has a potential ability to suppress ferroptosis, and its downstream targets, such as p53, have been shown to be associated with ferroptosis. However, whether ferroptosis also occurs in retinal ganglion cells in response to glutamate excitotoxicity and whether inhibition of ferroptosis reduces the loss of retinal ganglion cells induced by glutamate excitotoxicity remain unclear. This study investigated ferroptosis in a glutamate-induced glaucoma rat model and explored the effects and molecular mechanisms of SB202190 on retinal ganglion cells. A glutamate-induced excitotoxicity model in R28 cells and an N-methyl-D-aspartate-induced glaucoma model in rats were used. In vitro experiments showed that glutamate induced the accumulation of iron and lipid peroxide and morphological changes of mitochondria in R28 cells, and SB202190 inhibited these changes. Glutamate induced the levels of p-p38 MAPK/p38 MAPK and SAT1 and decreased the expression levels of ferritin light chain, SLC7A11, and GPX4. SB202190 inhibited the expression of iron death-related proteins induced by glutamate. In vivo experiments showed that SB202190 attenuated N-methyl-D-aspartate-induced damage to rat retinal ganglion cells and improved visual function. These results suggest that SB202190 can inhibit ferroptosis and protect retinal ganglion cells by regulating ferritin light chain, SAT1, and SLC7A11/Gpx4 pathways and may represent a potential retina protectant.
基金supported by the Natural Science Foundation of Hunan Province,No.2021JJ30389(to JG)the Key Research and Development Program of Hunan Province of China,Nos.2022SK2042(to LL)and 2020SK2122(to ET)。
文摘Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
基金supported by the National Natural Science Foundation of China(Grant Nos.32371902,31901327)National Key Research and Development Program of China(Grant Nos.2019YFE0119100,2021YFD2200205)+1 种基金Overseas Expertise Introduction Project for Discipline Innovation(111 Project D18008)The researches foundation of Zhejiang A&F University(Grant No.2018FR013)。
文摘Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Calcium(Ca),as a signaling molecule,is involved in the regulation of plant root development.However,the detailed underlying regulatory mechanism is elusive.In this study,we analyzed the morphological and transcriptomic variations of 84K poplar(Populus alba×P.glandulosa)in response to different calcium concentrations and found that low Ca^(2+)(1 mmol·L^(-1))promoted lateral root development,while deficiency(0.1 mmol·L^(-1)Ca^(2+))inhibited lateral root development.Co-expression analysis showed that Ca^(2+)channel glutamate receptors(GLRs)were present in various modules with significance for root development.Two GLR paralogous genes,PagGLR3.3a and Pag GLR3.3b,were mainly expressed in roots and up-regulated under Ca^(2+)deficiency.The CRISPR/Cas9-mediated signal gene(crispr-PagGLR3.3a,PagGLR3.3b)and double gene(crispr-PagGLR3.3ab)mutants presented more and longer lateral roots.Anatomical analysis showed that crispr-PagGLR3.3ab plants had more xylem cells and promoted the development of secondary vascular tissues.Further transcriptomic analysis suggested that knockout of PagGLR3.3a and PagGLR3.3b led to the up-regulation of several genes related to protein phosphorylation,auxin efflux,lignin and hemicellulose biosynthesis as well as transcriptional regulation,which might contribute to lateral root growth.This study not only provides novel insight into how the Ca^(2+)channels mediated root growth and development in trees,but also provides a directive breeding of new poplar species for biofuel and bioenergy production.
基金supported by the National Natural Science Foundation of China(No.30230130 and No.30400129)the Ministry of Science and Technology of China(No.2003CB515405,No.2005CB522406)+1 种基金the Program for Changjiang Scholars and Innovative Research Team of Ministry of Education of ChinaShanghai Municipal Commission for Science and Technology(No.06JC14008).
文摘Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral subiculum, which play a critical role in the reinstatement of drug-seeking behavior induced by environmental cues. Methods Conditioning place preference (CPP) and conditioning place aversion (CPA) models were used to establish environment associated with rewarding and aversive properties of morphine respectively. Microdialysis and high performance liquid chromatography were used to measure the extracelluar level of glutamate and GABA in the ventral subiculum under these environmental cues. Results Exposure to the environmental cues associated with rewarding properties of morphine resulted in a decrease (approximately 11%) of extracellular level of GABA in ventral subiculum, and exposure to the environmental cues associated with aversive properties of morphine resulted in an increase (approximately 230%) of extracellular level of glutamate in ventral subiculum. Conclusion Environmental cues associated with different properties of morphine modulate the release of distinct neurotransmitters in the hippocampal ventral subiculum possibly through different neural circuit.
文摘A full_length cDNA has been cloned encoding nicotinamide adenine dinucleotide phosphate_specific glutamate dehydrogenase (NADP_GDH) from Chlorella sorokiniana with the RT_PCR method. The complete nucleotide sequence of NADP_GDH gene had 94% homology to the previously reported one . The NADP_GDH gene was constructed into a vector highly expressed in plants. The specific activity of NADP_GDH in transformants was detected, but not in the control plants. All transformed shoots on MS medium containing lower concentration of nitrogen and the transformed seedlings grown in lower concentration of nitrogen vermiculite had higher growth rate and more leaves than the control plants. Transformed leaf discs cultured on MS medium containing different nitrogen concentrations had more chlorophyll contents compared to the controls. These results suggested that exogenous NADP_GDH may enhance the absorption and utilization to ammonium in plants. The increased weight of transformed leaf discs cultured on medium supplemented with different concentrations of phosphinothricin (PPT) was more than that of control discs. 0.5 μg/mL PPT could be used as a selecting drug instead of kanamycin to develop the transformants. These results suggested that the NADP_GDH gene might be used as a new selecting gene in the future research of plant gene engineering.
基金supported by the National Natural Science Foundation of China,No.82371444(to YZ)the Natural Science Foundation of Hubei Province,No.2022CFB216(to XC)the Key Research Project of Ministry of Science and Technology of China,No.2022ZD021160(to YZ)。
文摘The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.
基金supported by the National Natural Science Foundation of China,Nos.32371070 (to JT),31761163005 (to JT),32100824 (to QX)the Shenzhen Science and Technology Program,Nos.RCBS20210609104606024 (to QX),JCY20210324101813035 (to DL)+4 种基金the Guangdong Provincial Key S&T Program,No.2018B030336001 (to JT)the Key Basic Research Program of Shenzhen Science and Technology Innovation Commission,Nos.JCYJ20200109115405930 (to JT),JCYJ20220818101615033 (to DL),JCYJ20210324115811031 (to QX),JCYJ20200109150717745 (to QX)Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases,No.ZDSYS20220304163558001 (to JT)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,No.2023B1212060055 (to JT)the China Postdoctoral Science Foundation,No.2021M693298 (to QX)。
文摘The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
文摘Aim In order to improve the solubility of azithromycin, the objectives of the present study were to screen an appropriate salt for azithromycin by comparing acute hepatic and renal toxicities in animals, and study the pharmacokinetics of final chosen azithromycin salt. Methods Various salts of azithromycin, such as glutamate, citrate, hydrochloride, sulphate, dihydrogen phosphate, lactobionate, tartrate, and aspartate were given intravenously to Sprague Dawley rats at a dose of 10 mg once daily for 14 consecutive days via tail vein. The acute hepatic and renal indicators were measured before and after administration. A pharmacokinetic study was performed on 12 healthy human volunteers. The subjects were equally divided into two groups by a randomized crossover design. Azithromycin glutamate injection was administered by intravenous infusion or intramuscular injection at a single dose of 500 mg, respectively. Azithromycin concentrations in plasma were determined by microbial inhibition zone assay, and the pharmacokinetic parameters were calculated using a practical pharmacokinetic software 3P87 program. Results Azithromycin glutamate was least toxic to the liver and kidney of the rats, thus being selected as a final salt for parenteral preparation of azithromycin. Pharmacokinetic results showed that the area under the plasma concentration-time curves (AUC0-120h) were 21.47 ± 1.57 h·μg·mL^-1 for intravenous infusion, and 19.36 ± 2.44 h·μg·mL^-1 for intramuscular injection. The absolute bioavailability of intramuscular injection was 92.59%. Conclusion Azithromycin glutamate is suitable for the future clinical application, and its pharmacokinetics is characterized in human volunteers in the present study.
基金Supported by the National Natural Science Foundation of China (No.30570411)the Research Plan of Zhejiang Province, China.
文摘A Lactobacillus brevis CGMCC 1306 isolated from fresh milk without pasteurization was found to have higher glutamate decarboxylase (GAD) activity. An effective isolation and purification procedure of GAD from a cell-free extract of Lactobacillus brevis was developed, and the procedure included four steps: 30%-90% saturation (NH4)2SO4 fractional precipitation, Q sepharose FF anion-exchange chromatography, sephacryl S-200 gel filtration, and resource Q anion-exchange chromatography. Using this protocol, the purified GAD was demonstrated to possess electrophoretic homogeneity via SDS-PAGE. The purification fold and activity recovery of GAD were 43.78 and 16.95%, respectively. The molecular weight of the purified GAD was estimated to be approximately 62 kDa via SDS-PAGE. The optimum pH and temperature of the purified GAD were 4.4 and 37℃, respectively. The purified GAD had a half-life of 50rain at 45℃ and the Km value of the enzyme from Lineweaver-Burk plot was found to be 8.22.5'-pyridoxal phosphate (PLP) had little effect on the regulation of its activity.
文摘Objective To examine the vesicular glutamate transporters (VGluTs: VGluT 1-VGluT3) in the peripheral vestibular system. Methods The vestibular structures, including Scarpa's ganglion (vestibular ganglion, VG), maculae of utricle and saccule, and ampullary cristae, from normal Sprague-Dawley rats were processed immunohistochemically for VGluTs, by avidin-biotinylated peroxidase complex method, with 3-3'-diaminobenzidine (DAB) as chromogen. Results (1) VGluT 1 was localized to partial neurons of VG and to the putative primary afferent fibers innervating vestibular end-organs. (2) Intense VGluT3 immunoreactivity was detected in large number of sensory epithelia cells, and weak labeling of VGluT3- positive afferent fibers was in the maculae and ampullary cristae. (3) No or very weak VGluT2 immunoreactivity was observed in the VG and acoustic maculae. Conclusion These results provide the morphological support that glutamate exists in the peripheral vestibular system, and it may play an important role in the centripetal vestibular transmission.
基金supported by China Agriculture Research System(No.CARS-37)
文摘Arginine (ARG) exerts many beneficial effects on animal body and enhanced angiogenesis, lactogenesis, which finally leads to the improvement in nitrogen (N) metabolism, reproduction, lactation, immunity and growth. Unfortunately, unprotected ARG will be degraded in the rumen and its price is high, thus feeding rumen-protected ARG seems to be uneconomical. Alternatively, N-carbamoyl glutamate (NCG) is structural analogue of N-acetyl glutamate, cofactor of cabamoyl phosphate synthetasel, is lower in rumen degradation compared to ARG. Additionally, rumen epithelial and duodenal cells have potentially utilized the NCG for ureagenesis. Supplementation of NCG to high yielding dairy cows increased plasma concentration of ARG and nitric oxide, decreased the plasma ammonia N and improved lactation performance and N utilization. Supplementation of NCG enhanced pregnancy rates in rats, improved litter size and fetal survival rate, thereby improved the reproductive performance of sows. Oral NCG supplementation increases plasma ARG and somatotropin levels, and increased growth rate and muscle protein synthesis in nursing piglets. The NCG is potential a relatively cheaper source of feed additive to offer vital compensation over oral administration of ARG, resulting in improved ruminant animal health and production. In this article, we reviewed the mechanism of AfiG biosynthesis by NCG and their significance in growth, reproduction, milk production and N utilization in ruminant animals.
基金supported by the National Natural Science Foundation of China,No.81571038,81771145(both to YZ)
文摘Mounting evidence suggests that synaptic plasticity provides the cellular biological basis of learning and memory, and plasticity deficits play a key role in dementia caused by Alzheimer's disease. However, the mechanisms by which synaptic dysfunction contributes to the pathogenesis of Alzheimer's disease remain unclear. In the present study, Alzheimer's disease transgenic mice were used to determine the relationship between decreased hippocampal synaptic plasticity and pathological changes and cognitive-behavioral deterioration, as well as possible mechanisms underlying decreased synaptic plasticity in the early stages of Alzheimer's disease-like diseases. APP/PS1 double transgenic(5 XFAD; Jackson Laboratory) mice and their littermates(wild-type, controls) were used in this study. Additional 6-weekold and 10-week-old 5 XFAD mice and wild-type mice were used for electrophysiological recording of hippocampal dentate gyrus. For10-week-old 5 XFAD mice and wild-type mice, the left hippocampus was used for electrophysiological recording, and the right hippocampus was used for biochemical experiments or immunohistochemical staining to observe synaptophysin levels and amyloid beta deposition levels. The results revealed that, compared with wild-type mice, 6-week-old 5 XFAD mice exhibited unaltered long-term potentiation in the hippocampal dentate gyrus. Another set of 5 XFAD mice began to show attenuation at the age of 10 weeks, and a large quantity of amyloid beta protein was accumulated in hippocampal cells. The location of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor and N-methyl-D-aspartic acid receptor subunits in synaptosomes was decreased. These findings indicate that the delocalization of postsynaptic glutamate receptors and an associated decline in synaptic plasticity may be key mechanisms in the early onset of Alzheimer's disease. The use and care of animals were in strict accordance with the ethical standards of the Animal Ethics Committee of Capital Medical University,China on December 17, 2015(approval No. AEEI-2015-182).
基金the Natural Science Foundation of Jiangsu Province, No. BK2004048the Social Development and Technology Plan of Nantong City, No. K2008009
文摘BACKGROUND: Nerve growth factor (NGF) attenuates glutamate-induced injury to hippocampal neurons, and the human tumor suppressor gene phosphatase and tensin homologue deleted on chromosome 10 (PTEN) promotes neuronal apoptosis. However, effects of PTEN in NGF-mediated neuroprotection against glutamate excitotoxicity remain poorly understood. OBJECTIVE: To investigate the relationship between NGF inhibition of glutamate-induced injury and PTEN. DESIGN, TIME AND SE'I'rlNG: The randomized, controlled, in vitro study was performed at the Department of Pathophysiology, Medical School of Nantong University, China from October 2007 to March 2008. MATERIALS: Glutamate, NGF, 4, 6-diamidino-2-phenyl-indolediacetate, 3-[4, 5-dimethylthiazol-2-yl]- 2, 5-diphenyl tetrazoliumbromide (M-I-F), and lactate dehydrogenase kit (Sigma, USA), fluorescence microscope and inverted phase contrast microscope (Olympus, Japan) were used in this study. METHODS: Hippocampal neurons were obtained from newborn (〈 24 hours) Sprague Dawley rats and cultured for 7 days. The control group was not treated with any intervention factor, the glutamate group was treated with glutamate (0.2 mmol/L), and NGF groups were treated with NGF (10, 50, 100, and 200 μg/L, respectively) prior to glutamate treatment. MAIN OUTCOME MEASURES: The MTT and lactate dehydrogenase assays were applied to evaluate viability of hippocampal neurons. Morphological changes in hippocampal neurons were observed using an inverted phase-contrast microscope, and neuronal apoptosis was detected by 4, 6-diamidino-2- phenyl-indolediacetate staining. PTEN mRNA and protein expression were measured by reverse transcription-polymerase chain reaction and Western blot analysis, respectively. RESULTS: Glutamate (0.2 mmol/L) induced significantly decreased neuronal viability and greater lactate dehydrogenase efflux compared with the control group (P 〈 0.01). However, compared with the glutamate group, cell viability significantly increased and lactate dehydrogenase efflux decreased in the NGF group with increasing NGF concentrations (P 〈 0.05 or P 〈 0.01). The apoptotic ratio and PTEN mRNA and protein expression decreased in the NGF group compared with the glutamate group (P 〈 0.01). CONCLUSION: Pretreatment with NGF exerted neuroprotective effects against glutamate-induced injury, partially through inhibition of PTEN expression and neuronal apoptosis.
基金Supported by VU University Medical Center,Amsterdam,The Netherlands
文摘AIM:To assess whether glutamate plays a similar role to glutamine in preserving gut wall integrity.METHODS:The effects of glutamine and glutamate on induced hyperpermeability in intestinal cell lines were studied.Paracellular hyperpermeability was induced in Caco2.BBE and HT-29CL.19A cell lines by adding phorbol-12,13-dibutyrate(PDB) apically,after which the effects of glutamine and glutamate on horseradish peroxidase(HRP) diffusion were studied.An inhibitor of glutamate transport(L-trans-pyrrolidine-2,4-dicarboxylic acid:trans-PDC) and an irreversible blocker(acivicin) of the extracellular glutamine to glutamate converting enzyme,γ-glutamyltransferase,were used.RESULTS:Apical to basolateral HRP flux increased significantly compared to controls not exposed to PDB (n=30,P<0.001).Glutamine application reduced hyperpermeability by 19%and 39%in the respective cell lines.Glutamate application reduced hyperpermeability by 30%and 20%,respectively.Incubation of HT29CL.19A cells with acivicin and subsequent PDB and glutamine addition increased permeability levels.Incubation of Caco2.BBE cells with trans-PDC followed by PDB and glutamate addition also resulted in high permeability levels.CONCLUSION:Apical glutamate-similar to glutaminecan decrease induced paracellular hyperpermeability.Extracellular conversion of glutamine to glutamate and subsequent uptake of glutamate could be a pivotal step in the mechanism underlying the protective effect of glutamine.
基金supported by the National Natural Science Foundation of China,No.81471488,81271378,81502157,and 81501291the Key Medical Subjects of Jiangsu Province of China,No.XK201120+3 种基金the Jiangsu Province Key Research and Development of Special Funds in China,No.BE2015644the Science and Technology Project of Suzhou City of China,No.SYSD2013105,SYS201446,SYS201441the Public Health Technology Project of Suzhou City of China,No.SS201536the Department of Pediatrics Clinical Center of Suzhou City of China,No.Szzx201504
文摘Autophagy has been suggested to participate in the pathology of hypoxic-ischemic brain damage(HIBD).However,its regulatory role in HIBD remains unclear and was thus examined here using a rat model.To induce HIBD,the left common carotid artery was ligated in neonatal rats,and the rats were subjected to hypoxia for 2 hours.Some of these rats were intraperitoneally pretreated with the autophagy inhibitor 3-methyladenine(10 m M in 10 μL) or the autophagy stimulator rapamycin(1 g/kg) 1 hour before artery ligation.Our findings demonstrated that hypoxia-ischemia-induced hippocampal injury in neonatal rats was accompanied by increased expression levels of the autophagy-related proteins light chain 3 and Beclin-1 as well as of the AMPA receptor subunit GluR 1,but by reduced expression of GluR 2.Pretreatment with the autophagy inhibitor 3-methyladenine blocked hypoxia-ischemia-induced hippocampal injury,whereas pretreatment with the autophagy stimulator rapamycin significantly augmented hippocampal injury.Additionally,3-methyladenine pretreatment blocked the hypoxia-ischemia-induced upregulation of Glu R1 and downregulation of GluR2 in the hippocampus.By contrast,rapamycin further elevated hippocampal Glu R1 levels and exacerbated decreased GluR2 expression levels in neonates with HIBD.Our results indicate that autophagy inhibition favors the prevention of HIBD in neonatal rats,at least in part,through normalizing Glu R1 and GluR2 expression.
基金supported by the National Natural Science Foundation of China,Nos.81871408 and 81271631(to XMW)National Science Foundation for Young Scientists of China,No.81801658(to YZ)+1 种基金Outstanding Scientific Fund of Shengjing Hospital,No.201402(to XMW)345 Talent Support Project of Shengjing Hospital,No.30B(to YZ)。
文摘Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalities for reducing glutamate accumulation.However,further research is needed to investigate the dynamic changes in and molecular mechanisms of glutamate transport and the effects of glutamate transport on synapses.The aim of this study was to investigate the regulatory mechanisms underlying Notch pathway mediation of glutamate transport and synaptic plasticity.In this study,Yorkshire neonatal pigs(male,age 3 days,weight 1.0–1.5 kg,n=48)were randomly divided into control(sham surgery group)and five hypoxic ischemia subgroups,according to different recovery time,which were then further subdivided into subgroups treated with dimethyl sulfoxide or a Notch pathway inhibitor(N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester).Once the model was established,immunohistochemistry,immunofluorescence staining,and western blot analyses of Notch pathway-related proteins,synaptophysin,and glutamate transporter were performed.Moreover,synapse microstructure was observed by transmission electron microscopy.At the early stage(6–12 hours after hypoxic ischemia)of hypoxic ischemic injury,expression of glutamate transporter excitatory amino acid transporter-2 and synaptophysin was downregulated,the number of synaptic vesicles was reduced,and synaptic swelling was observed;at 12–24 hours after hypoxic ischemia,the Notch pathway was activated,excitatory amino acid transporter-2 and synaptophysin expression was increased,and the number of synaptic vesicles was slightly increased.Excitatory amino acid transporter-2 and synaptophysin expression decreased after treatment with the Notch pathway inhibitor.This suggests that glutamate transport in astrocytes-neurons after hypoxic ischemic injury is regulated by the Notch pathway and affects vesicle release and synaptic plasticity through the expression of synaptophysin.