期刊文献+
共找到38,791篇文章
< 1 2 250 >
每页显示 20 50 100
Discontinuity development patterns and the challenges for 3D discrete fracture network modeling on complicated exposed rock surfaces 被引量:1
1
作者 Wen Zhang Ming Wei +8 位作者 Ying Zhang Tengyue Li Qing Wang Chen Cao Chun Zhu Zhengwei Li Zhenbang Nie Shuonan Wang Han Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2154-2171,共18页
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st... Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues. 展开更多
关键词 Complicated exposed rock surfaces Discontinuity characteristic variation Three-dimensional discrete fracture network modeling Outcrop study Vegetation cover and rockfalls
下载PDF
A multilayer network diffusion-based model for reviewer recommendation
2
作者 黄羿炜 徐舒琪 +1 位作者 蔡世民 吕琳媛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期700-717,共18页
With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to d... With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes. 展开更多
关键词 reviewer recommendation multilayer network network diffusion model recommender systems complex networks
下载PDF
Comparative Analysis of the Factors Influencing Metro Passenger Arrival Volumes in Wuhan, China, and Lagos, Nigeria: An Application of Association Rule Mining and Neural Network Models
3
作者 Bello Muhammad Lawan Jabir Abubakar Shuyang Zhang 《Journal of Transportation Technologies》 2024年第4期607-653,共47页
This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfac... This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals. 展开更多
关键词 Metro Passenger Arrival volume Influencing Factor Analysis Wuhan and Lagos Metro Neural network modeling Association Rule Mining Technique
下载PDF
Algorithmic approach to discrete fracture network flow modeling in consideration of realistic connections in large-scale fracture networks
4
作者 Qihua Zhang Shan Dong +2 位作者 Yaoqi Liu Junjie Huang Feng Xiong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3798-3811,共14页
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne... Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications. 展开更多
关键词 Discrete fracture network(DFN)flow model Geometric algorithm Fracture flow Water-sealing effect
下载PDF
Smaller & Smarter: Score-Driven Network Chaining of Smaller Language Models
5
作者 Gunika Dhingra Siddansh Chawla +1 位作者 Vijay K. Madisetti Arshdeep Bahga 《Journal of Software Engineering and Applications》 2024年第1期23-42,共20页
With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily meas... With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily measured by the number of parameters, but also the subsequent escalation in computational demands, hardware and software prerequisites for training, all culminating in a substantial financial investment as well. In this paper, we present novel techniques like supervision, parallelization, and scoring functions to get better results out of chains of smaller language models, rather than relying solely on scaling up model size. Firstly, we propose an approach to quantify the performance of a Smaller Language Models (SLM) by introducing a corresponding supervisor model that incrementally corrects the encountered errors. Secondly, we propose an approach to utilize two smaller language models (in a network) performing the same task and retrieving the best relevant output from the two, ensuring peak performance for a specific task. Experimental evaluations establish the quantitative accuracy improvements on financial reasoning and arithmetic calculation tasks from utilizing techniques like supervisor models (in a network of model scenario), threshold scoring and parallel processing over a baseline study. 展开更多
关键词 Large Language models (LLMs) Smaller Language models (SLMs) FINANCE networkING Supervisor model Scoring Function
下载PDF
The Actuarial Data Intelligent Based Artificial Neural Network (ANN) Automobile Insurance Inflation Adjusted Frequency Severity Loss Reserving Model
6
作者 Brighton Mahohoho 《Open Journal of Statistics》 2024年第5期634-665,共32页
This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the ch... This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the challenges of accurately predicting insurance claim frequencies, severities, and overall loss reserves while accounting for inflation adjustments. Through comprehensive data analysis and model development, this research explores the effectiveness of ANN methodologies in capturing complex nonlinear relationships within insurance data. The study leverages a data set comprising automobile insurance policyholder information, claim history, and economic indicators to train and validate the ANN-based reserving model. Key aspects of the methodology include data preprocessing techniques such as one-hot encoding and scaling, followed by the construction of frequency, severity, and overall loss reserving models using ANN architectures. Moreover, the model incorporates inflation adjustment factors to ensure the accurate estimation of future loss reserves in real terms. Results from the study demonstrate the superior predictive performance of the ANN-based reserving model compared to traditional actuarial methods, with substantial improvements in accuracy and robustness. Furthermore, the model’s ability to adapt to changing market conditions and regulatory requirements, such as IFRS17, highlights its practical relevance in the insurance industry. The findings of this research contribute to the advancement of actuarial science and provide valuable insights for insurance companies seeking more accurate and efficient loss reserving techniques. The proposed ANN-based approach offers a promising avenue for enhancing risk management practices and optimizing financial decision-making processes in the automobile insurance sector. 展开更多
关键词 Artificial Neural network Actuarial Loss Reserving Machine Learning Intelligent model
下载PDF
Percolation Network Modeling of Electrical Properties of Reservoir Rock* 被引量:2
7
作者 王克文 孙建孟 +1 位作者 关继腾 苏远大 《Applied Geophysics》 SCIE CSCD 2005年第4期223-229,共7页
Based on the percolation network model characterizing reservoir rock's pore structure and fluid characteristics, this paper qualitatively studies the effects of pore size, pore shape, pore connectivity, and the amoun... Based on the percolation network model characterizing reservoir rock's pore structure and fluid characteristics, this paper qualitatively studies the effects of pore size, pore shape, pore connectivity, and the amount of micropores on the I - Sw curve using numerical modeling. The effects of formation water salinity on the electrical resistivity of the rock are discussed. Then the relative magnitudes of the different influencing factors are discussed. The effects of the different factors on the I - Sw curve are analyzed by fitting simulation results. The results show that the connectivity of the void spaces and the amount of micropores have a large effect on the I - S, curve, while the other factors have little effect. The formation water salinity has a large effect on the absolute resistivity values. The non-Archie phenomenon is prevalent, which is remarkable in rocks with low permeability. 展开更多
关键词 rock resistivity saturation exponent network modeling reservoir characteristics.
下载PDF
Optimal path finding algorithms based on SLSD road network model 被引量:3
8
作者 张小国 王庆 龚福祥 《Journal of Southeast University(English Edition)》 EI CAS 2010年第4期558-562,共5页
A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional an... A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional and single-line style,a road is no longer a linkage of road nodes but abstracted as a network node.Similarly,a road node is abstracted as the linkage of two ordered single-directional roads.This model can describe turn restrictions,circular roads,and other real scenarios usually described using a super-graph.Then a computing framework for optimal path finding(OPF)is presented.It is proved that classical Dijkstra and A algorithms can be directly used for OPF computing of any real-world road networks by transferring a super-graph to an SLSD network.Finally,using Singapore road network data,the proposed conceptual model and its corresponding optimal path finding algorithms are validated using a two-step optimal path finding algorithm with a pre-computing strategy based on the SLSD road network. 展开更多
关键词 optimal path finding road network model conceptual model digital map vehicle navigation system A algorithm Dijkstra algorithm
下载PDF
TIME SERIES NEURAL NETWORK MODEL FOR HYDROLOGIC FORECASTING 被引量:4
9
作者 钟登华 刘东海 Mittnik Stefan 《Transactions of Tianjin University》 EI CAS 2001年第3期182-186,共5页
Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced... Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible. 展开更多
关键词 hydrologic forecasting time series neural network model back propagation
下载PDF
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
10
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning Convolutional Neural networks (CNN) Seismic Fault Identification U-Net 3D model Geological Exploration
下载PDF
Study of the permeability characteristics of porous media with methane hydrate by pore network model 被引量:7
11
作者 Haifeng Liang Yongchen Song Yu Liu Mingjun Yang Xing Huang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第3期255-260,共6页
The permeability in the methane hydrate reservoir is one of the key parameters in estimating the gas production performance and the flow behavior of gas and water during dissociation.In this paper,a three-dimensional ... The permeability in the methane hydrate reservoir is one of the key parameters in estimating the gas production performance and the flow behavior of gas and water during dissociation.In this paper,a three-dimensional cubic pore-network model based on invasion percolation is developed to study the effect of hydrate particle formation and growth habit on the permeability.The variation of permeability in porous media with different hydrate saturation is studied by solving the network problem.The simulation results are well consistent with the experimental data.The proposed model predicts that the permeability will reduce exponentially with the increase of hydrate saturation,which is crucial in developing a deeper understanding of the mechanism of hydrate formation and dissociation in porous media. 展开更多
关键词 pore network model hydrate saturation PERMEABILITY porous media
下载PDF
Research on runoff variations based on wavelet analysis and wavelet neural network model: A case study of the Heihe River drainage basin (1944-2005) 被引量:6
12
作者 WANG Jun MENG Jijun 《Journal of Geographical Sciences》 SCIE CSCD 2007年第3期327-338,共12页
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin... The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin. 展开更多
关键词 annual runoff variations wavelet analysis wavelet neural network model GIS spatial analysis HeiheRiver drainage basin
下载PDF
Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake 被引量:5
13
作者 XU Min ZENG Guang-ming +3 位作者 XU Xin-yi HUANG Guo-he SUN Wei JIANG Xiao-yun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期946-952,共7页
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t... Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake. 展开更多
关键词 Dongting Lake CHLOROPHYLL-A Bayesian regularized BP neural network model sum of square weights
下载PDF
A Trajectory-Oriented Carriageway-Based Road Network Data Model, Part 1: Background 被引量:10
14
作者 LI Xiang LIN Hui 《Geo-Spatial Information Science》 2006年第1期65-70,共6页
This is the first of a three-part series of pape rs which introduces a general background of building trajectory-oriented road net work data models, including motivation, related works, and basic concepts. The p urpos... This is the first of a three-part series of pape rs which introduces a general background of building trajectory-oriented road net work data models, including motivation, related works, and basic concepts. The p urpose of the series is to develop a trajectory-oriented road network data mode l, namely carriageway-based road network data model (CRNM). Part 1 deals with t he modeling background. Part 2 proposes the principle and architecture of the CR NM. Part 3 investigates the implementation of the CRNM in a case study. In the p resent paper, the challenges of managing trajectory data are discussed. Then, de veloping trajectory-oriented road network data models is proposed as a solution and existing road network data models are reviewed. Basic representation approa ches of a road network are introduced as well as its constitution. 展开更多
关键词 TRAJECTORY road network data model CARRIAGEWAY GIS GIS-T
下载PDF
A Trajectory-Oriented, Carriageway-Based Road Network Data Model,Part 2:Methodology 被引量:10
15
作者 LI Xiang LIN Hui 《Geo-Spatial Information Science》 2006年第2期112-117,150,共7页
This is the second of a three-part series of papers which presents the principle and architecture of the CRNM, a trajectory-oriented, carriageway-based road network data model. The first part of the series has introdu... This is the second of a three-part series of papers which presents the principle and architecture of the CRNM, a trajectory-oriented, carriageway-based road network data model. The first part of the series has introduced a general background of building trajectory-oriented road network data models, including motivation, related works, and basic concepts. Based on it, this paper describs the CRNM in detail. At first, the notion of basic roadway entity is proposed and discussed. Secondly, carriageway is selected as the basic roadway entity after compared with other kinds of roadway, and approaches to representing other roadways with carriageways are introduced. At last, an overall architecture of the CRNM is proposed. 展开更多
关键词 TRAJECTORY road network data model CARRIAGEWAY GIS GIS-T
下载PDF
Artificial neural network models predicting the leaf area index:a case study in pure even-aged Crimean pine forests from Turkey 被引量:4
16
作者 ilker Ercanli Alkan Gunlu +1 位作者 Muammer Senyurt Sedat Keles 《Forest Ecosystems》 SCIE CSCD 2018年第4期400-411,共12页
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic... Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands. 展开更多
关键词 Leaf area index Multivariate linear regression model Artificial neural network modeling Crimean pine Stand parameters
下载PDF
A Trajectory-Oriented Carriageway-Based Road Network Data Model, Part 3: Implementation 被引量:6
17
作者 LI Xiang LIN Hui 《Geo-Spatial Information Science》 2006年第3期201-205,共5页
This is the final of a three-part series of papers which mainly discusses the implementation issues of the CRNM. The first two papers in the series have introduced the modeling background and methodology, respectively... This is the final of a three-part series of papers which mainly discusses the implementation issues of the CRNM. The first two papers in the series have introduced the modeling background and methodology, respectively. An overall architecture of the CRNM has been proposed in the last paper. On the basis of the above discusses, a linear reference method (LRM) for providing spatial references for location points of a trajectory is developed. A case study is introduced to illustrate the application of the CRNM for modeling a road network in the real world is given. A comprehensive conclusion is given for the series of papers. 展开更多
关键词 TRAJECTORY road network data model CARRIAGEWAY GIS GIS-T
下载PDF
Brain networks modeling for studying the mechanism underlying the development of Alzheimer’s disease 被引量:3
18
作者 Shuai-Zong Si Xiao Liu +2 位作者 Jin-Fa Wang Bin Wang Hai Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第10期1805-1813,共9页
Alzheimer’s disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions.Although connections between changes in brain networks of Alzheimer’s disease patien... Alzheimer’s disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions.Although connections between changes in brain networks of Alzheimer’s disease patients have been established,the mechanisms that drive these alterations remain incompletely understood.This study,which was conducted in 2018 at Northeastern University in China,included data from 97 participants of the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset covering genetics,imaging,and clinical data.All participants were divided into two groups:normal control(n=52;20 males and 32 females;mean age 73.90±4.72 years)and Alzheimer’s disease(n=45,23 males and 22 females;mean age 74.85±5.66).To uncover the wiring mechanisms that shaped changes in the topology of human brain networks of Alzheimer’s disease patients,we proposed a local naive Bayes brain network model based on graph theory.Our results showed that the proposed model provided an excellent fit to observe networks in all properties examined,including clustering coefficient,modularity,characteristic path length,network efficiency,betweenness,and degree distribution compared with empirical methods.This proposed model simulated the wiring changes in human brain networks between controls and Alzheimer’s disease patients.Our results demonstrate its utility in understanding relationships between brain tissue structure and cognitive or behavioral functions.The ADNI was performed in accordance with the Good Clinical Practice guidelines,US 21 CFR Part 50-Protection of Human Subjects,and Part 56-Institutional Review Boards(IRBs)/Research Good Clinical Practice guidelines Institutional Review Boards(IRBs)/Research Ethics Boards(REBs). 展开更多
关键词 nerve regeneration Alzheimer’s disease graph theory functional magnetic resonance imaging network model link prediction naive Bayes topological structures anatomical distance global efficiency local efficiency neural regeneration
下载PDF
Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model 被引量:2
19
作者 Yu Wang Qunfeng Zhang +3 位作者 Xinlei Liu Junqi Weng Guanghua Ye Xinggui Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期293-303,共11页
Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, w... Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking. 展开更多
关键词 Deactivation by coking Dry reforming of methane Pore network model Diffusion limitation Catalyst pellet
下载PDF
Numerical simulation of neuronal spike patterns in a retinal network model 被引量:1
20
作者 Lei Wang Shenquan Liu Shanxing Ou 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第16期1254-1260,共7页
This study utilized a neuronal compartment model and NEURON software to study the effects of external light stimulation on retinal photoreceptors and spike patterns of neurons in a retinal network Following light stim... This study utilized a neuronal compartment model and NEURON software to study the effects of external light stimulation on retinal photoreceptors and spike patterns of neurons in a retinal network Following light stimulation of different shapes and sizes, changes in the spike features of ganglion cells indicated that different shapes of light stimulation elicited different retinal responses. By manipulating the shape of light stimulation, we investigated the effects of the large number of electrical synapses existing between retinal neurons. Model simulation and analysis suggested that interplexiform cells play an important role in visual signal information processing in the retina, and the findings indicated that our constructed retinal network model was reliable and feasible. In addition, the simulation results demonstrated that ganglion cells exhibited a variety of spike patterns under different light stimulation sizes and different stimulation shapes, which reflect the functions of the retina in signal transmission and processing. 展开更多
关键词 computational network model RETINA light stimulation ganglion cell spike pattern
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部