The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stab...The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stabilized by means of the stem plane, and the thruster is left to stabilize the longitudinal bottom-following error and forward speed. In order to better meet the need of engineering applications, working characteristics of the actuators were sufficiently considered to design the proposed controller. Different from the traditional method, the methodology used to solve the problem is generated by AUV model without a reference orientation, and it deals explicitly with vehicle dynamics and the geometric characteristics of the desired tracking bottom curve. The estimation of systemic uncertainties and disturbances and the pitch velocity PE (persistent excitation) conditions are not required. The stability analysis is given by Lyapunov theorem. Simulation results of a full nonlinear hydrodynamic AUV model are provided to validate the effectiveness and robustness of the proposed controller.展开更多
In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear ...In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear implicit iterative method is monotonically decreasing and, with this monotonicity, prove convergence of the new method for both the exact and perturbed equations.展开更多
This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mec...This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mechanical quadrature methods are simple without computing any singular integration. A nonlinear system is constructed by discretizing the nonlinear boundary integral equations. The stability and convergence of the system are proved based on an asymptotical compact theory and the Stepleman theorem. Using the h3-Richardson extrapolation algorithms (EAs), the accuracy to the order of O(h5) is improved. To slove the nonlinear system, the Newton iteration is discussed extensively by using the Ostrowski fixed point theorem. The efficiency of the algorithms is illustrated by numerical examples.展开更多
In this paper we use the auxiliary principle technique to suggest and analyze novel and innovative iterative algorithms for a class of nonlinear variational inequalities. Several special cases, which can be obtained f...In this paper we use the auxiliary principle technique to suggest and analyze novel and innovative iterative algorithms for a class of nonlinear variational inequalities. Several special cases, which can be obtained from our main results, are also discussed.展开更多
In the sense of the nonlinear multisplitting and based on the principle of suffi-ciently using the delayed information, we propose models of asynchronous parallelaccelerated overrelaxation iteration methods for solvin...In the sense of the nonlinear multisplitting and based on the principle of suffi-ciently using the delayed information, we propose models of asynchronous parallelaccelerated overrelaxation iteration methods for solving large scale system of non-linear equations. Under proper conditions, we set up the local convergence theoriesof these new method models.展开更多
For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is dif...For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.展开更多
The Advanced TIROS-N Operational Vertical Sounder (ATOVS) measurements are used to generate the atmospheric parameters,such as temperature and moisture profiles,under both clear and cloudy situations.This paper descri...The Advanced TIROS-N Operational Vertical Sounder (ATOVS) measurements are used to generate the atmospheric parameters,such as temperature and moisture profiles,under both clear and cloudy situations.This paper describes briefly the nonlinear iterative physical retrieval method.By using this retrieval scheme,an experiment has been carried out to retrieve the moisture profiles from ATOVS measurements on the NOAA-16 satellite for July of 2002.ATOVS profile retrieval results are evaluated by root mean square (RMS) differences with respect to RAdiosonde OBservation (RAOB) profiles.The accuracy of the retrieval is about 15%-23% for the relative humidity profile in this study.展开更多
Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In th...Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In this paper, we first study the existence and uniqueness of eigenvalues, and then investigate three numerical algorithms, namely Picard iteration, nonlinear Rayleigh quotient iteration and successive linear approximation method (SLAM). The global convergence of the SLAM is proven under some mild assumptions. Numerical examples illustrate that the SLAM is the most robust method.展开更多
A new method to solve the Gauss-Codazzi system is given in which we transform the linearized system to a partial differential equation of second order, and by the method we solve the problem of semi-global isometric e...A new method to solve the Gauss-Codazzi system is given in which we transform the linearized system to a partial differential equation of second order, and by the method we solve the problem of semi-global isometric embedding of surfaces with Gaussian curvature changing sign cleanly.展开更多
For a new nonlinear iterative method named as Picard-Newton(P-N)iterative method for the solution of the time-dependent reaction-diffusion systems,which arise in non-equilibrium radiation diffusion applications,two ti...For a new nonlinear iterative method named as Picard-Newton(P-N)iterative method for the solution of the time-dependent reaction-diffusion systems,which arise in non-equilibrium radiation diffusion applications,two time step control methods are investigated and a study of temporal accuracy of a first order time integration is presented.The non-equilibrium radiation diffusion problems with flux limiter are considered,which appends pesky complexity and nonlinearity to the diffusion coef-ficient.Numerical results are presented to demonstrate that compared with Picard method,for a desired accuracy,significant increase in solution efficiency can be obtained by Picard-Newton method with the suitable time step size selection.展开更多
基金Project(61174047) supported by the National Natural Science Foundation of ChinaProject(20102304110003) supported by the Doctoral Fund of Ministry of Education of ChinaProject(51316080301) supported by Advanced Research
文摘The bottom-following problem for underactuated autonomous underwater vehicles (AUV) was addressed by a new type of nonlinear decoupling control law. The vertical bottom-following error and pitch angle error are stabilized by means of the stem plane, and the thruster is left to stabilize the longitudinal bottom-following error and forward speed. In order to better meet the need of engineering applications, working characteristics of the actuators were sufficiently considered to design the proposed controller. Different from the traditional method, the methodology used to solve the problem is generated by AUV model without a reference orientation, and it deals explicitly with vehicle dynamics and the geometric characteristics of the desired tracking bottom curve. The estimation of systemic uncertainties and disturbances and the pitch velocity PE (persistent excitation) conditions are not required. The stability analysis is given by Lyapunov theorem. Simulation results of a full nonlinear hydrodynamic AUV model are provided to validate the effectiveness and robustness of the proposed controller.
基金supported by the Key Disciplines of Shanghai Municipality (Operations Research & Cybernetics, No. S30104)the Shanghai Leading Academic Discipline Project (No. J50101)
文摘In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear implicit iterative method is monotonically decreasing and, with this monotonicity, prove convergence of the new method for both the exact and perturbed equations.
基金supported by the National Natural Science Foundation of China(No.10871034)the Natural Science Foundation Project of Chongqing(No.CSTC20-10BB8270)+1 种基金the Air Force Office of Scientific Research(No.FA9550-08-1-0136)the National Science Foundation(No.OCE-0620464)
文摘This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The methods have high accuracy of order O(h3) and low computation complexity. Moreover, the mechanical quadrature methods are simple without computing any singular integration. A nonlinear system is constructed by discretizing the nonlinear boundary integral equations. The stability and convergence of the system are proved based on an asymptotical compact theory and the Stepleman theorem. Using the h3-Richardson extrapolation algorithms (EAs), the accuracy to the order of O(h5) is improved. To slove the nonlinear system, the Newton iteration is discussed extensively by using the Ostrowski fixed point theorem. The efficiency of the algorithms is illustrated by numerical examples.
文摘In this paper we use the auxiliary principle technique to suggest and analyze novel and innovative iterative algorithms for a class of nonlinear variational inequalities. Several special cases, which can be obtained from our main results, are also discussed.
文摘In the sense of the nonlinear multisplitting and based on the principle of suffi-ciently using the delayed information, we propose models of asynchronous parallelaccelerated overrelaxation iteration methods for solving large scale system of non-linear equations. Under proper conditions, we set up the local convergence theoriesof these new method models.
文摘For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.
基金Supported by the National Key Basic Research and Development Program granted by the Ministry of Science and Technology of China with a project number of 2001CB309402
文摘The Advanced TIROS-N Operational Vertical Sounder (ATOVS) measurements are used to generate the atmospheric parameters,such as temperature and moisture profiles,under both clear and cloudy situations.This paper describes briefly the nonlinear iterative physical retrieval method.By using this retrieval scheme,an experiment has been carried out to retrieve the moisture profiles from ATOVS measurements on the NOAA-16 satellite for July of 2002.ATOVS profile retrieval results are evaluated by root mean square (RMS) differences with respect to RAdiosonde OBservation (RAOB) profiles.The accuracy of the retrieval is about 15%-23% for the relative humidity profile in this study.
基金supported in part by NSF grants DMS-0611548 and OCI-0749217 and DOE grant DE-FC02-06ER25794supported in part by NSF of China under the contract number 10871049 and Shanghai Down project 200601.
文摘Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In this paper, we first study the existence and uniqueness of eigenvalues, and then investigate three numerical algorithms, namely Picard iteration, nonlinear Rayleigh quotient iteration and successive linear approximation method (SLAM). The global convergence of the SLAM is proven under some mild assumptions. Numerical examples illustrate that the SLAM is the most robust method.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No. ZYGX2010J109)National Natural Science Foundation of China (Grant No. 11101068)the Sichuan Youth Science and Technology Foundation (Grant No. 2011JQ0003)
文摘A new method to solve the Gauss-Codazzi system is given in which we transform the linearized system to a partial differential equation of second order, and by the method we solve the problem of semi-global isometric embedding of surfaces with Gaussian curvature changing sign cleanly.
基金supported by the Basic Research Project of National Defence(B1520110011)the Foundation of CAEP(2010A0202010),the Foundation of National Key Laboratory of Science and Technology on Computational Physics。
文摘For a new nonlinear iterative method named as Picard-Newton(P-N)iterative method for the solution of the time-dependent reaction-diffusion systems,which arise in non-equilibrium radiation diffusion applications,two time step control methods are investigated and a study of temporal accuracy of a first order time integration is presented.The non-equilibrium radiation diffusion problems with flux limiter are considered,which appends pesky complexity and nonlinearity to the diffusion coef-ficient.Numerical results are presented to demonstrate that compared with Picard method,for a desired accuracy,significant increase in solution efficiency can be obtained by Picard-Newton method with the suitable time step size selection.