Ammonia is an important chemical for pharmaceutical,agriculture,industry,as well as energy production et al.However,the industrial production of ammonia using the Haber-Bosch process is energy-intensive,which stimulat...Ammonia is an important chemical for pharmaceutical,agriculture,industry,as well as energy production et al.However,the industrial production of ammonia using the Haber-Bosch process is energy-intensive,which stimulates us to explore a cost-effective and low-carbon footprint way for the synthesis of ammonia[1–3].Electrochemical(EC)synthesis of ammonia from an aqueous N_(2)reduction reaction(NRR)has gained significant attention in recent years,while the high dissociation energy of the N≡N bond(941 kJ/mol),as well as higher over-potential than hydrogen evolution reaction(HER),cause a lower efficiency[4].展开更多
A flexible fibre biofilm reactor was developed for treatment of organic wastewaters.The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional ac...A flexible fibre biofilm reactor was developed for treatment of organic wastewaters.The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional activated sludge processes.Tracer experiments were performed to obtain the residence time distributions of the reactors.The results indicated that both reactors could be treated as mixed flow reactors.The effects of flow rates of water and air on the overall mass transfer coefficient of oxygen were investigated,and the correlations between the mass transfer coefficient and the ratio of flow rates were obtained.Compared to the conventional activated sludge reactor,the mass transfer coefficients in the flexible fibre reactor were similar to but slightly lower,and less sensitive to the variation in the ratio of flow rates.It indicated that the fibre packing in the reactor hindered the oxygen transfer to some extent.展开更多
Due to 4f electron characteristics and alternation valence, cerium involved in an oxidation-reduction reaction in plant, closely relating to photosynthesis. Our studies proved that cerium could promote photosynthesis ...Due to 4f electron characteristics and alternation valence, cerium involved in an oxidation-reduction reaction in plant, closely relating to photosynthesis. Our studies proved that cerium could promote photosynthesis and greatly improve spinach growth. However, the mechanism of promoting energy transfer and conversion by cerium remains unclear. Here we reported that the effects of Ce^3+ on energy transfer and oxygen evolution in photosystem Ⅱ (PS Ⅱ ) isolated from spinach, which was related to 4f electron characteristics and alternation valence in Ce molecule. The methods of absorption spectrum, fluorescence spectrum were used in the research. Results showed that Ce^3+ treatment at low concentration could suitably change PS Ⅱ mieroenvironment, increase the absorbance of visible light, improve the energy transfer among amino acids within PS Ⅱ protein-pigment complex, and accelerate energy transport from tyrosine residue to chlorophyll a. In summary, the photochemical activity of PS Ⅱ (fluorescence quantum yield) and its oxygen evolving rate were enhanced by Ce^3+.展开更多
Oxygen transfer presents a serious challenge in the application of liquid lead as a nuclear coolant in advanced reactors. To mitigate corrosion by liquid lead in contact with steel, carefully controlling the oxygen co...Oxygen transfer presents a serious challenge in the application of liquid lead as a nuclear coolant in advanced reactors. To mitigate corrosion by liquid lead in contact with steel, carefully controlling the oxygen concentration has been used as an effective way. Oxygen needs to mix in liquid lead uniformly and quickly. To enhance oxygen transport in liquid lead, nanoparticles are added to the liquid metal. In the current study, a lattice Boltzmann method is applied to investigate natural convection of copper/lead and aluminum oxide/lead in two-dimensional simplified container. Two thermal boundary cases are evaluated in order to check the effect of different natural convection flow patterns on oxygen transport. Some useful information are obtained such as improvement in natural convection and reduction in oxygen equilibrium time.展开更多
The effects of axial ligand on the oxygen atom transfer(OAT)reaction from 5,10,15-tris(pentafluorophenyl)corrole((tpfc)MnVO)to dimethyl sulfide(DMS)have been investigated by density functional theory(DFT)calculations....The effects of axial ligand on the oxygen atom transfer(OAT)reaction from 5,10,15-tris(pentafluorophenyl)corrole((tpfc)MnVO)to dimethyl sulfide(DMS)have been investigated by density functional theory(DFT)calculations.Imidazole(Im),4-methylimidazole(4-MI)and pyridine(Py)were selected as the axial ligands.The results revealed that the axial ligand can form coordinate bond with(tpfc)MnVO in the transition state(TS)of the OAT reaction.The axial coordination favored charge transferring from(tpfc)MnVO to DMS,and weakened the Mn≡O bond in both singlet and triplet states.Furthermore,axial coordination can reduce the energy barrier of neutral(tpfc)MnVO from 23.62 kJ·mol^-1 to less than 3 kJ·mol^-1 in the triplet state,which is significantly lower than in the singlet state.This makes(tpfc)MnVO tend to direct the OAT reaction via triplet state pathway.On the other hand,the energy barriers of[(tpfc)MnVIO]+species from disproportionation pathway increased from 1.26 to 33.95 kJ·mol^-1 in a doublet state.This suggests axial ligands were conducive for direct(tpfc)MnVO OAT reaction pathway.展开更多
In this paper, the characteristics of fluid mixing time in a novel extra-loop fluidized bed were studied. The results showed that the mixing time was shortened with the increase of fluid velocity. All the discrete num...In this paper, the characteristics of fluid mixing time in a novel extra-loop fluidized bed were studied. The results showed that the mixing time was shortened with the increase of fluid velocity. All the discrete numbers of the reactor were above 0.2. The serial number n was 2.5 -3.0. It was judged accordingly that the reactor fluid state was continous stirred tank reactor (CSTR) mainly. When the inspiratory capacity increased the mixing time of the reactor was shortened. Thus the air input was beneficial for the fluid mixing. During the three phases mixing process, the mixing time of the reactor could be decreased by the n increase of carrier and air loading together, but the change was not significant. The parameters affecting the reactor fluid state were fluid velocity, inspiratory capacity and carrier. KLa could be increased with the air loading increase, and at the same gas/liquid ratio when the pressure drop was high, KL~ value was increased. The amount of carrier complex influence on KLa. As the carrier loading continued to increase, its value had been dropped but the changes was not significant, and optimization condition was found at above 800 1 000 g carrier loading (pouzzolane) or 600 g PVC. Under gas/liquid ratio of 0.8% -5.2%, KLa was (0.62-1.37)×10^-2· s^-1.展开更多
This paper deals with a novel dual shield TIG welding method named gas pool coupled activating TIG( GPCA-TIG)welding. The welding method divides the shielding gas into two layers. Inert gas such as Ar is adopted as th...This paper deals with a novel dual shield TIG welding method named gas pool coupled activating TIG( GPCA-TIG)welding. The welding method divides the shielding gas into two layers. Inert gas such as Ar is adopted as the inner layer gas to protect the tungsten electrode and the molten pool metal. Pure O_2,N_2 or mixture of them are used as the outer layer gas to increase the weld penetration and improve the low temperature toughness of weld metal. Through analyzing the interaction between outer gas and arc and the distributions and existing forms of oxygen and nitrogen elements,the transfer behaviors of nitrogen and oxygen from arc to pool were investigated. The results show that,the interaction between the outer gas and arc plasma makes the arc slightly constrict. The incoming oxygen enriches on the molten pool surface and exists in the form of iron oxide,chromium oxide,manganese oxide and silicon oxygen compounds. The incoming nitrogen evenly distributes in the molten pool and exists in the form of nitrogen atom.展开更多
This paper mainly dealt with the dissolved oxygen in production of D-ribose by fermentation. The oxygen transfer coefficients of common flask, buffed flask and jar fermentor were determined.
An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid b...An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid barrier-jet was shown to generate uniform discharge with a lower breakdown voltage and a relatively low gas temperature varying from 390 K to 440 K, even when the vol.% oxygen in argon was up to 6%. Utilizing the actinometry method, the concentration of atomic oxygen was estimated to be about in an orders of magnitude of 10^17 cm^-3. The argon/oxygen plasma jet was then employed to clean out heat transfer oil, with a maximum cleaning rate of 0.1 mm/s achieved.展开更多
Formation of negative static charges (e-) throughout troposphere is a natural phenomenon revealed by some weather events such as storms and lightning flashes that accompany thunderclouds. This climatic phenomenon (for...Formation of negative static charges (e-) throughout troposphere is a natural phenomenon revealed by some weather events such as storms and lightning flashes that accompany thunderclouds. This climatic phenomenon (formation of negative charge in that case) has long been considered as physical phenomena of very small space-time scales. Now we have good reasons to say that this perception of troposphere electrical status is totally meaningless. Indeed, it is now easy to show that significant numbers of electrons are provided to troposphere at each appearance of a thunderstorm (or a lightning flash). Thereafter, movement implemented in the troposphere by winds (e.g., West African aerojet) contributes to the formation of low altitudes Electrojets (e.g., West African Equatorial Aerojet gives birth to West African Equatorial Electrojet). The existence of Low Layers Equatorial Electrojets (LL-EEJ) was totally unknown by the first theorists who have studied the Earth’s Ionosphere Plasma Physics and Electrodynamics. This mistake has led their followers to many questions unanswered in their attempt to explain the longitudinal and seasonal variations of observed EEJ. In this paper, we will provide many useful explanations on the manner in which clouds provide oxygen to troposphere and thereafter trigger negative static charges (e-) throughout both troposphere and ionosphere. Indeed, this paper also explains how, opportunely, the ITF (inter tropical front) plays the role of the tap which facilitates oxygen transfer from troposphere to ionosphere. Detailed studies on the Earth’s troposphere plasma physics and electrodynamics are impatiently awaited.展开更多
The perforated breakwater is an environmentally friendly coastal structure, and dissolved oxygen concentration levels are an important index to denote water quality. In this paper, oxygen transport experiments with re...The perforated breakwater is an environmentally friendly coastal structure, and dissolved oxygen concentration levels are an important index to denote water quality. In this paper, oxygen transport experiments with regular waves through a vertical perforated breakwater were conducted. The oxygen scavenger method was used to reduce the dissolved oxygen concentration of inner water body with the chemicals Na2SO3 and COC12. The dissolved oxygen concentration and wave parameters of 36 experimental scenarios were measured with different perforated arrangements and wave conditions. It was found that the oxygen transfer coefficient through wave surface, K1α1, is much lower than the oxygen transport coefficient through the perforated breakwater, K2α2. If the effect of K1α1 is not considered, the dissolved oxygen concentration computation for inner water body will not be greatly affected. Considering the effect of a permeable area ratio a, relative location parameter of perforations 6 and wave period T, the aforementioned data of 30 experimental scenarios, the dimensional analysis and the least squares method were used to derive an equation of K2α2 (K2α2=0.0042aσ56δ2T1). It was validated with 6 other experimental scenarios data, which indicates an approximate agreement. Therefore, this equation can be used to compute the DO concentration caused by the water transport through perforated breakwater.展开更多
In an internal loop airlift reactor of 55L working volume,the gas-liquid volumetric oxygenmass transfer coefficient k_Lα,gas holdup ε_G and liquid circulation time t_c were measured with the sol-ution of carboxymeth...In an internal loop airlift reactor of 55L working volume,the gas-liquid volumetric oxygenmass transfer coefficient k_Lα,gas holdup ε_G and liquid circulation time t_c were measured with the sol-ution of carboxymethyl cellulose(CMC)to simulate the performance of a reactor with highly viscousbroth.Electric conductivity and oxygen probes were used to measure the local gas holdup,liquidcirculation time and oxygen mass transfer coefficient in the individual sections of the reactor(riser,downcomer and the gas-liquid separating section at the top of the reactor)and the total reactor,respectively.The values of k_Lα for the riser,downcomer and separation sections of the reactor were alsoestimated and compared with that for the total reactor.The results show that,both k_Lα and ε_G in-crease but t_c decreases with increasing gas velocity.Correlations and comparisons with works reportedin the literature are also presented.Data show that the methods developed for k_Lα measurements inthe individual section展开更多
Previously,we had identified the various dynamic mechanisms of a wide range air to fuel ratio sensor operated in the engine exhaust by using the transfer function approach.In this study,we utilized these results to mo...Previously,we had identified the various dynamic mechanisms of a wide range air to fuel ratio sensor operated in the engine exhaust by using the transfer function approach.In this study,we utilized these results to model the real time sensor response to an engine exhaust excursion.In the fitting,we identified a new dynamic mechanism,which was not detected in the previous transfer function study.This new dynamic occurred at the stoichiometric point when the engine changed from rich to lean.This new mechanism involved the depletion of the adsorbed fuel species on the electrode surface by an oxidation process. The dynamics of this effect depends on the ratio of the diffusion flux of the sensor-coating layer to the total adsorbed gas species on the electrode surface.The smaller the ratio is,the slower the dynamic mechanism will be.展开更多
基金supported by the National Natural Science Foundation of China(T2322013)supported by the Ministry of Science and ICT through the National Research Foundation of Korea(2022H1D3A3A01077254,NRF-2019R1A2C3010479)。
文摘Ammonia is an important chemical for pharmaceutical,agriculture,industry,as well as energy production et al.However,the industrial production of ammonia using the Haber-Bosch process is energy-intensive,which stimulates us to explore a cost-effective and low-carbon footprint way for the synthesis of ammonia[1–3].Electrochemical(EC)synthesis of ammonia from an aqueous N_(2)reduction reaction(NRR)has gained significant attention in recent years,while the high dissociation energy of the N≡N bond(941 kJ/mol),as well as higher over-potential than hydrogen evolution reaction(HER),cause a lower efficiency[4].
文摘A flexible fibre biofilm reactor was developed for treatment of organic wastewaters.The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional activated sludge processes.Tracer experiments were performed to obtain the residence time distributions of the reactors.The results indicated that both reactors could be treated as mixed flow reactors.The effects of flow rates of water and air on the overall mass transfer coefficient of oxygen were investigated,and the correlations between the mass transfer coefficient and the ratio of flow rates were obtained.Compared to the conventional activated sludge reactor,the mass transfer coefficients in the flexible fibre reactor were similar to but slightly lower,and less sensitive to the variation in the ratio of flow rates.It indicated that the fibre packing in the reactor hindered the oxygen transfer to some extent.
基金Project supported by the National Natural Science Foundation of China (20671067, 30470150)
文摘Due to 4f electron characteristics and alternation valence, cerium involved in an oxidation-reduction reaction in plant, closely relating to photosynthesis. Our studies proved that cerium could promote photosynthesis and greatly improve spinach growth. However, the mechanism of promoting energy transfer and conversion by cerium remains unclear. Here we reported that the effects of Ce^3+ on energy transfer and oxygen evolution in photosystem Ⅱ (PS Ⅱ ) isolated from spinach, which was related to 4f electron characteristics and alternation valence in Ce molecule. The methods of absorption spectrum, fluorescence spectrum were used in the research. Results showed that Ce^3+ treatment at low concentration could suitably change PS Ⅱ mieroenvironment, increase the absorbance of visible light, improve the energy transfer among amino acids within PS Ⅱ protein-pigment complex, and accelerate energy transport from tyrosine residue to chlorophyll a. In summary, the photochemical activity of PS Ⅱ (fluorescence quantum yield) and its oxygen evolving rate were enhanced by Ce^3+.
基金the financial support from the office of Vice-President for Research at University of Nevada-Las Vegas
文摘Oxygen transfer presents a serious challenge in the application of liquid lead as a nuclear coolant in advanced reactors. To mitigate corrosion by liquid lead in contact with steel, carefully controlling the oxygen concentration has been used as an effective way. Oxygen needs to mix in liquid lead uniformly and quickly. To enhance oxygen transport in liquid lead, nanoparticles are added to the liquid metal. In the current study, a lattice Boltzmann method is applied to investigate natural convection of copper/lead and aluminum oxide/lead in two-dimensional simplified container. Two thermal boundary cases are evaluated in order to check the effect of different natural convection flow patterns on oxygen transport. Some useful information are obtained such as improvement in natural convection and reduction in oxygen equilibrium time.
基金supported by the National Natural Science Foundation of China(21275057,21671068)Natural Science Foundation of Guangdong Province(S2012010008763,2017A050506048)
文摘The effects of axial ligand on the oxygen atom transfer(OAT)reaction from 5,10,15-tris(pentafluorophenyl)corrole((tpfc)MnVO)to dimethyl sulfide(DMS)have been investigated by density functional theory(DFT)calculations.Imidazole(Im),4-methylimidazole(4-MI)and pyridine(Py)were selected as the axial ligands.The results revealed that the axial ligand can form coordinate bond with(tpfc)MnVO in the transition state(TS)of the OAT reaction.The axial coordination favored charge transferring from(tpfc)MnVO to DMS,and weakened the Mn≡O bond in both singlet and triplet states.Furthermore,axial coordination can reduce the energy barrier of neutral(tpfc)MnVO from 23.62 kJ·mol^-1 to less than 3 kJ·mol^-1 in the triplet state,which is significantly lower than in the singlet state.This makes(tpfc)MnVO tend to direct the OAT reaction via triplet state pathway.On the other hand,the energy barriers of[(tpfc)MnVIO]+species from disproportionation pathway increased from 1.26 to 33.95 kJ·mol^-1 in a doublet state.This suggests axial ligands were conducive for direct(tpfc)MnVO OAT reaction pathway.
基金Project supported by the Foundation Social European,Republoque Francaise
文摘In this paper, the characteristics of fluid mixing time in a novel extra-loop fluidized bed were studied. The results showed that the mixing time was shortened with the increase of fluid velocity. All the discrete numbers of the reactor were above 0.2. The serial number n was 2.5 -3.0. It was judged accordingly that the reactor fluid state was continous stirred tank reactor (CSTR) mainly. When the inspiratory capacity increased the mixing time of the reactor was shortened. Thus the air input was beneficial for the fluid mixing. During the three phases mixing process, the mixing time of the reactor could be decreased by the n increase of carrier and air loading together, but the change was not significant. The parameters affecting the reactor fluid state were fluid velocity, inspiratory capacity and carrier. KLa could be increased with the air loading increase, and at the same gas/liquid ratio when the pressure drop was high, KL~ value was increased. The amount of carrier complex influence on KLa. As the carrier loading continued to increase, its value had been dropped but the changes was not significant, and optimization condition was found at above 800 1 000 g carrier loading (pouzzolane) or 600 g PVC. Under gas/liquid ratio of 0.8% -5.2%, KLa was (0.62-1.37)×10^-2· s^-1.
基金supported by National Natural Science Foundation of China(Grant No.51265029)
文摘This paper deals with a novel dual shield TIG welding method named gas pool coupled activating TIG( GPCA-TIG)welding. The welding method divides the shielding gas into two layers. Inert gas such as Ar is adopted as the inner layer gas to protect the tungsten electrode and the molten pool metal. Pure O_2,N_2 or mixture of them are used as the outer layer gas to increase the weld penetration and improve the low temperature toughness of weld metal. Through analyzing the interaction between outer gas and arc and the distributions and existing forms of oxygen and nitrogen elements,the transfer behaviors of nitrogen and oxygen from arc to pool were investigated. The results show that,the interaction between the outer gas and arc plasma makes the arc slightly constrict. The incoming oxygen enriches on the molten pool surface and exists in the form of iron oxide,chromium oxide,manganese oxide and silicon oxygen compounds. The incoming nitrogen evenly distributes in the molten pool and exists in the form of nitrogen atom.
文摘This paper mainly dealt with the dissolved oxygen in production of D-ribose by fermentation. The oxygen transfer coefficients of common flask, buffed flask and jar fermentor were determined.
基金supported by National Natural Science Foundation of China (Nos.10775026, 50537020, 50528707)
文摘An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid barrier-jet was shown to generate uniform discharge with a lower breakdown voltage and a relatively low gas temperature varying from 390 K to 440 K, even when the vol.% oxygen in argon was up to 6%. Utilizing the actinometry method, the concentration of atomic oxygen was estimated to be about in an orders of magnitude of 10^17 cm^-3. The argon/oxygen plasma jet was then employed to clean out heat transfer oil, with a maximum cleaning rate of 0.1 mm/s achieved.
文摘Formation of negative static charges (e-) throughout troposphere is a natural phenomenon revealed by some weather events such as storms and lightning flashes that accompany thunderclouds. This climatic phenomenon (formation of negative charge in that case) has long been considered as physical phenomena of very small space-time scales. Now we have good reasons to say that this perception of troposphere electrical status is totally meaningless. Indeed, it is now easy to show that significant numbers of electrons are provided to troposphere at each appearance of a thunderstorm (or a lightning flash). Thereafter, movement implemented in the troposphere by winds (e.g., West African aerojet) contributes to the formation of low altitudes Electrojets (e.g., West African Equatorial Aerojet gives birth to West African Equatorial Electrojet). The existence of Low Layers Equatorial Electrojets (LL-EEJ) was totally unknown by the first theorists who have studied the Earth’s Ionosphere Plasma Physics and Electrodynamics. This mistake has led their followers to many questions unanswered in their attempt to explain the longitudinal and seasonal variations of observed EEJ. In this paper, we will provide many useful explanations on the manner in which clouds provide oxygen to troposphere and thereafter trigger negative static charges (e-) throughout both troposphere and ionosphere. Indeed, this paper also explains how, opportunely, the ITF (inter tropical front) plays the role of the tap which facilitates oxygen transfer from troposphere to ionosphere. Detailed studies on the Earth’s troposphere plasma physics and electrodynamics are impatiently awaited.
基金funded by the National Natural Science Foundation of China (Nos.51579229 and 51009123)
文摘The perforated breakwater is an environmentally friendly coastal structure, and dissolved oxygen concentration levels are an important index to denote water quality. In this paper, oxygen transport experiments with regular waves through a vertical perforated breakwater were conducted. The oxygen scavenger method was used to reduce the dissolved oxygen concentration of inner water body with the chemicals Na2SO3 and COC12. The dissolved oxygen concentration and wave parameters of 36 experimental scenarios were measured with different perforated arrangements and wave conditions. It was found that the oxygen transfer coefficient through wave surface, K1α1, is much lower than the oxygen transport coefficient through the perforated breakwater, K2α2. If the effect of K1α1 is not considered, the dissolved oxygen concentration computation for inner water body will not be greatly affected. Considering the effect of a permeable area ratio a, relative location parameter of perforations 6 and wave period T, the aforementioned data of 30 experimental scenarios, the dimensional analysis and the least squares method were used to derive an equation of K2α2 (K2α2=0.0042aσ56δ2T1). It was validated with 6 other experimental scenarios data, which indicates an approximate agreement. Therefore, this equation can be used to compute the DO concentration caused by the water transport through perforated breakwater.
基金Supported by the National Natural Science Foundation of China
文摘In an internal loop airlift reactor of 55L working volume,the gas-liquid volumetric oxygenmass transfer coefficient k_Lα,gas holdup ε_G and liquid circulation time t_c were measured with the sol-ution of carboxymethyl cellulose(CMC)to simulate the performance of a reactor with highly viscousbroth.Electric conductivity and oxygen probes were used to measure the local gas holdup,liquidcirculation time and oxygen mass transfer coefficient in the individual sections of the reactor(riser,downcomer and the gas-liquid separating section at the top of the reactor)and the total reactor,respectively.The values of k_Lα for the riser,downcomer and separation sections of the reactor were alsoestimated and compared with that for the total reactor.The results show that,both k_Lα and ε_G in-crease but t_c decreases with increasing gas velocity.Correlations and comparisons with works reportedin the literature are also presented.Data show that the methods developed for k_Lα measurements inthe individual section
文摘Previously,we had identified the various dynamic mechanisms of a wide range air to fuel ratio sensor operated in the engine exhaust by using the transfer function approach.In this study,we utilized these results to model the real time sensor response to an engine exhaust excursion.In the fitting,we identified a new dynamic mechanism,which was not detected in the previous transfer function study.This new dynamic occurred at the stoichiometric point when the engine changed from rich to lean.This new mechanism involved the depletion of the adsorbed fuel species on the electrode surface by an oxidation process. The dynamics of this effect depends on the ratio of the diffusion flux of the sensor-coating layer to the total adsorbed gas species on the electrode surface.The smaller the ratio is,the slower the dynamic mechanism will be.
基金国家重点研发计划(2021YFA1502400)国家自然科学基金(22272176,22002166,22125205,22072146,22002158)+2 种基金中国科学院洁净能源创新研究院合作基金(DNL202007)榆林学院-中国科学院洁净能源创新研究院联合基金(YLU-DNL Fund 2022008)中国科学院青年创新促进计划(Y201938)资助项目。