In this paper, in order to investigate the viscoelasticity of asphalt binder at the softening point temperature, more than 30 different asphalt binders were selected and tested by dynamic rheological scan method using...In this paper, in order to investigate the viscoelasticity of asphalt binder at the softening point temperature, more than 30 different asphalt binders were selected and tested by dynamic rheological scan method using a dynamic shear rheometer(DSR). The softening points and the rheological parameters of the asphalt samples were measured and analyzed. The results indicated that at the softening point temperature the neat asphalt and the SBS modified asphalt showed two different rheological states. The neat asphalt binders had a majority of viscous components in viscoelastic composition, with the phase angles being mostly higher than 80 o. The SBS modified binders had lower phase angles, with their elasticity still retained. Meanwhile, the Shapiro-Wilk normality test showed that at a confidence level of 0.05, at whatever aging state, the neat asphalt had a stable complex modulus corresponding to the softening point, which was 13.034 kPa at a standard deviation of 2.105 kPa under the same test condition. The softening point of neat asphalt binder can be calculated via the equivalent modulus rule. It is found out that there is a good relationship between the calculated and the measured softening points. And it is suggested that more data are needed to validate this finding.展开更多
There are numerous methods and additives available to improve the durability and quality of road bitumen. A coal tar obtained by coal coking was distilled in a laboratory into fractions of initial boiling point IBP-18...There are numerous methods and additives available to improve the durability and quality of road bitumen. A coal tar obtained by coal coking was distilled in a laboratory into fractions of initial boiling point IBP-180℃ (gasoline-like fuel), 180℃ - 360℃ (diesel-like fuel), and >360℃ (residue or coal tar pitch). The coal tar pitch was added into road bitumen by up to 1 - 5 wt% and investigated the alteration of physical and chemical properties. The physico-mechanical properties of coal tar pitch and bitumen blends, as well as the chemical group composition, were determined using standard techniques (MNS) and the SARA method, respectively. Results of 3% coal tar pitch addition into bitumen enhanced ductility by 12.4% and softening point by 1.6℃. We found that blending with bitumen coal tar pitch as a modifier could improve bitumen properties.展开更多
The styrene-butadiene-styrene(SBS) modified bitumens with different contents of SBS modifiers are stored in different conditions to study the storage stability of SBS modified bitumen.Mixed-level orthogonal array de...The styrene-butadiene-styrene(SBS) modified bitumens with different contents of SBS modifiers are stored in different conditions to study the storage stability of SBS modified bitumen.Mixed-level orthogonal array design(OAD) is used and factors such as SBS modifier content,storage time,storage temperature and container size are chosen in a mixed-level OAD with an OA16(31×44) matrix.Parameters like the separation softening point difference(the separation difference of the ring and ball softening point of the top and bottom samples) and the average softening point(the arithmetic mean of the softening points of the top and bottom samples) are proposed to evaluate the separation and the ageing of modified bitumen during storage in this experiment,respectively.The results reveal that the separation and the ageing during storage exhibit a complicated variation for storage temperature and time.The separation softening point difference decreases with the storage temperature rising from 20 to 120 ℃ and increases with the temperature exceeding 120 ℃,and the average softening point drops with the storage time being prolonged.Different storage conditions have various effects on the storage stability of SBS modified bitumen.展开更多
The simulation of slope failures,including both failure initiation and development,has been modelled using the material point method(MPM).Numerical case studies involving various slope angles,heterogeneity and rainf...The simulation of slope failures,including both failure initiation and development,has been modelled using the material point method(MPM).Numerical case studies involving various slope angles,heterogeneity and rainfall infiltration are presented.It is demonstrated that,by utilising a constitutive model which encompasses,in a simplified manner,both pre-and post-failure behaviour,the material point method is able to simulate commonly observed failure modes.This is a step towards being able to better quantify slope failure consequence and risk.展开更多
Effect of tri(2-hydroxypropyl), tri(2-hydroxybutyl)and tri(hydroxythiodiethylene) borates (BT2HB, BT2HP and BTHET) on the thermal and heat properties of the rigid polyurethane-polyisocyanurate (PUR-PIR) foam...Effect of tri(2-hydroxypropyl), tri(2-hydroxybutyl)and tri(hydroxythiodiethylene) borates (BT2HB, BT2HP and BTHET) on the thermal and heat properties of the rigid polyurethane-polyisocyanurate (PUR-PIR) foams was investigated: Increasing amounts of BT2HB and BT2HP in the foam composition, from 0.05 to 0.4 of chemical equivalent, caused increases in the softening point, the temperature of the first mass loss, the extrapolated tempera- ture of the main mass loss foam and temperature of the highest rate of the mass loss. In the case when BTHTE was added to the foam compositions, the lower increase in the mentioned above characteristic temperatures was observed as compared to those of standard foam (without borate added).展开更多
基金financially supported by the Shandong Natural Science Foundation (ZR2009FL020)the Shandong Transportation Innovation Foundation (2010Y20)
文摘In this paper, in order to investigate the viscoelasticity of asphalt binder at the softening point temperature, more than 30 different asphalt binders were selected and tested by dynamic rheological scan method using a dynamic shear rheometer(DSR). The softening points and the rheological parameters of the asphalt samples were measured and analyzed. The results indicated that at the softening point temperature the neat asphalt and the SBS modified asphalt showed two different rheological states. The neat asphalt binders had a majority of viscous components in viscoelastic composition, with the phase angles being mostly higher than 80 o. The SBS modified binders had lower phase angles, with their elasticity still retained. Meanwhile, the Shapiro-Wilk normality test showed that at a confidence level of 0.05, at whatever aging state, the neat asphalt had a stable complex modulus corresponding to the softening point, which was 13.034 kPa at a standard deviation of 2.105 kPa under the same test condition. The softening point of neat asphalt binder can be calculated via the equivalent modulus rule. It is found out that there is a good relationship between the calculated and the measured softening points. And it is suggested that more data are needed to validate this finding.
文摘There are numerous methods and additives available to improve the durability and quality of road bitumen. A coal tar obtained by coal coking was distilled in a laboratory into fractions of initial boiling point IBP-180℃ (gasoline-like fuel), 180℃ - 360℃ (diesel-like fuel), and >360℃ (residue or coal tar pitch). The coal tar pitch was added into road bitumen by up to 1 - 5 wt% and investigated the alteration of physical and chemical properties. The physico-mechanical properties of coal tar pitch and bitumen blends, as well as the chemical group composition, were determined using standard techniques (MNS) and the SARA method, respectively. Results of 3% coal tar pitch addition into bitumen enhanced ductility by 12.4% and softening point by 1.6℃. We found that blending with bitumen coal tar pitch as a modifier could improve bitumen properties.
基金The National Natural Science Foundation of China (No.51178348)
文摘The styrene-butadiene-styrene(SBS) modified bitumens with different contents of SBS modifiers are stored in different conditions to study the storage stability of SBS modified bitumen.Mixed-level orthogonal array design(OAD) is used and factors such as SBS modifier content,storage time,storage temperature and container size are chosen in a mixed-level OAD with an OA16(31×44) matrix.Parameters like the separation softening point difference(the separation difference of the ring and ball softening point of the top and bottom samples) and the average softening point(the arithmetic mean of the softening points of the top and bottom samples) are proposed to evaluate the separation and the ageing of modified bitumen during storage in this experiment,respectively.The results reveal that the separation and the ageing during storage exhibit a complicated variation for storage temperature and time.The separation softening point difference decreases with the storage temperature rising from 20 to 120 ℃ and increases with the temperature exceeding 120 ℃,and the average softening point drops with the storage time being prolonged.Different storage conditions have various effects on the storage stability of SBS modified bitumen.
基金supported by the Marie Curie Career Integration Grant(No.333177)the "100 Talents" programme of the Chinese Academy of Science+1 种基金the China Scholarship Councilthe Geo-Engineering Section of Delft University of Technology
文摘The simulation of slope failures,including both failure initiation and development,has been modelled using the material point method(MPM).Numerical case studies involving various slope angles,heterogeneity and rainfall infiltration are presented.It is demonstrated that,by utilising a constitutive model which encompasses,in a simplified manner,both pre-and post-failure behaviour,the material point method is able to simulate commonly observed failure modes.This is a step towards being able to better quantify slope failure consequence and risk.
文摘Effect of tri(2-hydroxypropyl), tri(2-hydroxybutyl)and tri(hydroxythiodiethylene) borates (BT2HB, BT2HP and BTHET) on the thermal and heat properties of the rigid polyurethane-polyisocyanurate (PUR-PIR) foams was investigated: Increasing amounts of BT2HB and BT2HP in the foam composition, from 0.05 to 0.4 of chemical equivalent, caused increases in the softening point, the temperature of the first mass loss, the extrapolated tempera- ture of the main mass loss foam and temperature of the highest rate of the mass loss. In the case when BTHTE was added to the foam compositions, the lower increase in the mentioned above characteristic temperatures was observed as compared to those of standard foam (without borate added).