期刊文献+
共找到28,521篇文章
< 1 2 250 >
每页显示 20 50 100
A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:antioxidant and bile acid-binding capacity 被引量:5
1
作者 Qiaoyun Li Zuman Dou +5 位作者 Qingfei Duan Chun Chen Ruihai Liu Yueming Jiang Bao Yang Xiong Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期494-505,共12页
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic... In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods. 展开更多
关键词 Sea buckthorn Extraction method structure Rheological properties Antioxidant activity Bile acid binding capacity
下载PDF
Mechanical responses of anchoring structure under triaxial cyclic loading 被引量:2
2
作者 Peng Wang Nong Zhang +5 位作者 Qun Wei Xingliang Xu Guangzhen Cui Aoran Li Sen Yang Jiaguang Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期545-560,共16页
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves... Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification. 展开更多
关键词 Triaxial stress Dynamic-static combination load Cyclic loading Anchoring structure(AS) Cumulative damage
下载PDF
Carbon Emission Effects Driven by Evolution of Chinese Dietary Structure from 1987 to 2020 被引量:1
3
作者 ZHU Yuanyuan ZHANG Yan ZHU Xiaohua 《Chinese Geographical Science》 SCIE CSCD 2024年第1期181-194,共14页
Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research ob... Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern. 展开更多
关键词 dietary structure structural evolution carbon emission effects carbon neutrality China
下载PDF
Seismic response of a mid-story isolated structure considering SSI in mountainous areas under long-period earthquakes 被引量:1
4
作者 Wan Feng Qin Shengwu +7 位作者 Liu Dewen Zhao Tiange Zheng Yanping Shan Hang Li Zhiang Peng Fusong Xu Jingran Lei Min 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期151-161,共11页
At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is es... At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures. 展开更多
关键词 SSI in mountainous areas long-period earthquakes mid-story isolated structure structural dynamic analysis
下载PDF
OptoGPT: A foundation model for inverse design in optical multilayer thin film structures 被引量:1
5
作者 Taigao Ma Haozhu Wang L.Jay Guo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第7期4-16,共13页
Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design... Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously. 展开更多
关键词 multilayer thin film structure inverse design foundation models deep learning structural color
下载PDF
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
6
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang Min Gyu Kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST Acidic oxygen evolution reaction Electronic structure engineering DURABILITY Reaction barrier
下载PDF
In-situ additive manufacturing of high strength yet ductility titanium composites with gradient layered structure using N_(2) 被引量:1
7
作者 Yunmian Xiao Changhui Song +4 位作者 Zibin Liu Linqing Liu Hanxiang Zhou Di Wang Yongqiang Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期387-409,共23页
It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites incl... It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites. 展开更多
关键词 laser powder bed fusion layered structure composites in-situ synthesis TiN strength-plasticity synergy
下载PDF
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:1
8
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 Transition metal disulfides Electromagnetic wave absorption Impedance matching structure engineering modulation
下载PDF
Structure and immunomodulatory activity of Lentinus edodes polysaccharides modified by probiotic fermentation 被引量:2
9
作者 Jingjing Liang Meina Zhang +6 位作者 Xiaohan Li Yuan Yue Xiaowei Wang Mengzhen Han Tianli Yue Zhouli Wang Zhenpeng Gao 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期421-433,共13页
Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were... Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields. 展开更多
关键词 Lentinus edodes polysaccharide Lactobacillus fermentum fermentation Structural analysis Immunoregulatory activity Nuclear magnetic resonance
下载PDF
Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm 被引量:1
10
作者 Jianjun Zi Tao Liu +3 位作者 Wei Zhang Xiaohua Pan Hu Ji Honghu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4285-4299,共15页
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta... The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm. 展开更多
关键词 Soil structure MICRO-CT Multi-level thresholding MICP Genetic algorithm(GA)
下载PDF
Web Layout Design of Large Cavity Structures Based on Topology Optimization 被引量:1
11
作者 Xiaoqiao Yang Jialiang Sun Dongping Jin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2665-2689,共25页
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas... Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures. 展开更多
关键词 Topology optimization lightweight design web layout design cavity structure
下载PDF
Deformation,structure and potential hazard of a landslide based on InSAR in Banbar county,Xizang(Tibet) 被引量:1
12
作者 Guan-hua Zhao Heng-xing Lan +4 位作者 Hui-yong Yin Lang-ping Li Alexander Strom Wei-feng Sun Chao-yang Tian 《China Geology》 CAS CSCD 2024年第2期203-221,共19页
The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan P... The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability. 展开更多
关键词 LANDSLIDE INSAR Human activity DEFORMATION structure LSTM model Engineering construction Thickness Neural network Machine learning Prediction and prevention Tibetan Plateau Geological hazards survey engineering
下载PDF
Deep learning to estimate ocean subsurface salinity structure in the Indian Ocean using satellite observations 被引量:1
13
作者 Jifeng QI Guimin SUN +2 位作者 Bowen XIE Delei LI Baoshu YIN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期377-389,共13页
Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS... Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques. 展开更多
关键词 machine learning convolutional neural network(CNN) ocean subsurface salinity structure(OSSS) Indian Ocean satellite observations
下载PDF
Community structure and species diversity dynamics of a subtropical evergreen broad-leaved forest in China:2005 to 2020 被引量:1
14
作者 Shi-Guang Wei Lin Li +3 位作者 Kun-Dong Bai Zhi-Feng Wen Jing-Gang Zhou Qin Lin 《Plant Diversity》 SCIE CAS CSCD 2024年第1期70-77,共8页
Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest chang... Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure. 展开更多
关键词 Community structure Death and renewal dynamics Species diversity dynamics South subtropical forest
下载PDF
Crystal structure,phase transitions,and thermodynamic properties of magnesium metavanadate(MgV_(2)O_(6)) 被引量:1
15
作者 Guishang Pei Cheng Pan +2 位作者 Dapeng Zhong Junyi Xiang Xuewei Lv 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1449-1460,共12页
As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile... As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures. 展开更多
关键词 MgV_(2)O_(6) Crystal structure Phase transitions Thermodynamic functions
下载PDF
Enhancing electromagnetic wave absorption with core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres 被引量:1
16
作者 Xuewen Jiang Qian Wang +7 位作者 Limeng Song Hongxia Lu Hongliang Xu Gang Shao Hailong Wang Rui Zhang Changan Wang Bingbing Fan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期90-104,共15页
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const... Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.” 展开更多
关键词 core‐shell structure electromagnetic wave absorption multiloss mechanism SiO_(2)@MXene@MoS_(2)
下载PDF
Designing Symmetric Gradient Honeycomb Structures with Carbon‑Coated Iron‑Based Composites for High‑Efficiency Microwave Absorption 被引量:1
17
作者 Yu Zhang Shu‑Hao Yang +9 位作者 Yue Xin Bo Cai Peng‑Fei Hu Hai‑Yang Dai Chen‑Ming Liang Yun‑Tong Meng Ji‑Hao Su Xiao‑Juan Zhang Min Lu Guang‑Sheng Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期224-241,共18页
The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(... The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties. 展开更多
关键词 MIL-88C(Fe) Fe/Fe_(3)O_(4)/Fe_(3)C@C Controllable preparation Symmetric gradient honeycomb structure Microwave absorbing
下载PDF
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces 被引量:2
18
作者 Ruozhong Han Yuchan Zhang +6 位作者 Qilin Jiang Long Chen Kaiqiang Cao Shian Zhang Donghai Feng Zhenrong Sun Tianqing Jia 《Opto-Electronic Science》 2024年第3期33-46,共14页
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t... Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL. 展开更多
关键词 laser-induced periodic surface structures(LIPSS) local field enhancement collinear pump-probe imaging silicon high spatial frequency periodic structures
下载PDF
Multi-Material Topology Optimization for Spatial-Varying Porous Structures 被引量:1
19
作者 Chengwan Zhang Kai Long +4 位作者 Zhuo Chen Xiaoyu Yang Feiyu Lu Jinhua Zhang Zunyi Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期369-390,共22页
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu... This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures. 展开更多
关键词 Topology optimization porous structures local volume fraction augmented lagrangian multiple materials
下载PDF
Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures 被引量:1
20
作者 Xianfu Zhang Long Zhang +2 位作者 Xinyuan Jia Wen Song Yongchang Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期305-349,共45页
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re... Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented. 展开更多
关键词 Aqueous zinc metal batteries Zinc anodes High zinc utilization Depth of discharge Anode-free structures
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部