It is crucial to ensure workers wear safety helmets when working at a workplace with a high risk of safety accidents,such as construction sites and mine tunnels.Although existing methods can achieve helmet detection i...It is crucial to ensure workers wear safety helmets when working at a workplace with a high risk of safety accidents,such as construction sites and mine tunnels.Although existing methods can achieve helmet detection in images,their accuracy and speed still need improvements since complex,cluttered,and large-scale scenes of real workplaces cause server occlusion,illumination change,scale variation,and perspective distortion.So,a new safety helmet-wearing detection method based on deep learning is proposed.Firstly,a new multi-scale contextual aggregation module is proposed to aggregate multi-scale feature information globally and highlight the details of concerned objects in the backbone part of the deep neural network.Secondly,a new detection block combining the dilate convolution and attention mechanism is proposed and introduced into the prediction part.This block can effectively extract deep featureswhile retaining information on fine-grained details,such as edges and small objects.Moreover,some newly emerged modules are incorporated into the proposed network to improve safety helmetwearing detection performance further.Extensive experiments on open dataset validate the proposed method.It reaches better performance on helmet-wearing detection and even outperforms the state-of-the-art method.To be more specific,the mAP increases by 3.4%,and the speed increases from17 to 33 fps in comparison with the baseline,You Only Look Once(YOLO)version 5X,and themean average precision increases by 1.0%and the speed increases by 7 fps in comparison with the YOLO version 7.The generalization ability and portability experiment results show that the proposed improvements could serve as a springboard for deep neural network design to improve object detection performance in complex scenarios.展开更多
The in-situ Al-based composites with different SiO2/C/Al molar ratios were fabricated by reaction hot pressing. The dry sliding wear characteristics of the composites were investigated using a pin-on-disc wear tester....The in-situ Al-based composites with different SiO2/C/Al molar ratios were fabricated by reaction hot pressing. The dry sliding wear characteristics of the composites were investigated using a pin-on-disc wear tester. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to investigate the surface composition and its morphology. The results show that when the SiO2/C/Al molar ratio is 3:6:9, more in-situ synthesized Al2O3 and SiC along with Si particles are produced, and Al4C3 is prevented completely from the Al?SiO2?C system. Thereby, a significant improvement of wear resistance is obtained. When the sliding velocity increases from 0.4 to 1.6 m/s, the wear loss decreases gradually. With increasing the normal load, the wear loss increases as well. Ploughing, craters and micro-grooving are observed as dominant abrasive wear mechanisms. Whereas, when a high velocity is employed, only the oxidation mechanism controls the wear behavior of the composites.展开更多
Safety helmet-wearing detection is an essential part of the intelligentmonitoring system. To improve the speed and accuracy of detection, especiallysmall targets and occluded objects, it presents a novel and efficient...Safety helmet-wearing detection is an essential part of the intelligentmonitoring system. To improve the speed and accuracy of detection, especiallysmall targets and occluded objects, it presents a novel and efficient detectormodel. The underlying core algorithm of this model adopts the YOLOv5 (YouOnly Look Once version 5) network with the best comprehensive detection performance. It is improved by adding an attention mechanism, a CIoU (CompleteIntersection Over Union) Loss function, and the Mish activation function. First,it applies the attention mechanism in the feature extraction. The network can learnthe weight of each channel independently and enhance the information dissemination between features. Second, it adopts CIoU loss function to achieve accuratebounding box regression. Third, it utilizes Mish activation function to improvedetection accuracy and generalization ability. It builds a safety helmet-wearingdetection data set containing more than 10,000 images collected from the Internetfor preprocessing. On the self-made helmet wearing test data set, the averageaccuracy of the helmet detection of the proposed algorithm is 96.7%, which is1.9% higher than that of the YOLOv5 algorithm. It meets the accuracy requirements of the helmet-wearing detection under construction scenarios.展开更多
Thin Layer Activation is a nuclear technique that has key advantages over other wear measuring techniques for mechanical systems,especially for in site experiments on equipment important to safety in nuclear plants.St...Thin Layer Activation is a nuclear technique that has key advantages over other wear measuring techniques for mechanical systems,especially for in site experiments on equipment important to safety in nuclear plants.Still,it incurs radioactive dose and,thus,must be proved radiologically safe before use,otherwise,the utilization of this technique may be hindered inviable.Proving said technique is safe previous to any operational/monetary cost is key,providing a methodology for this early assertion is the main contribution of this work—here,only non-occupationally exposed individuals are considered.This work offers a methodology,through a case study,to ascertain the Thin Layer Activation parameters to obtain safe levels of radioactive dose while maintaining statistically reliable results.This methodology consists of using simulations,through the Monte Carlo Method,to obtain the floors and ceilings for the previously mentioned activation parameters based on operation and work conditions on site.展开更多
In this paper,based on three different kinds of ceramic side dams for thin strip antinuous casting,the friction and wearing property were studied.The effects of friction pressure,temperature and friction time on the f...In this paper,based on three different kinds of ceramic side dams for thin strip antinuous casting,the friction and wearing property were studied.The effects of friction pressure,temperature and friction time on the friction and wearing property of the ceramic side dam were researched.What’s more,the friction mechanism and wearing mechanism of the ceramic side dam were researched as well.Results show that the ceramic side dam of BN-SiA lO N has the best wearing resistance property.while at room temperature,16 min of friction time and0.35 MPa of friction pressure,the test friction coefficient is 0.60 and wearing capacity is 272.358 mm-3.In addition,when at 400℃,16 min of friction time and 0.18MPa of friction pressure,the test friction coefficient is0.70.The friction mechanism of ceramic side dam with the opposite wearing material is mainly the composite wear of adhesion,abrasive and fatigue.展开更多
The effects of kerosene flow rate on the microstructure and wearing properties were investigated for Fe-based amorphous coatings sprayed by High Velocity Oxygen Fuel (HVOF).The microstructures and wearing properties o...The effects of kerosene flow rate on the microstructure and wearing properties were investigated for Fe-based amorphous coatings sprayed by High Velocity Oxygen Fuel (HVOF).The microstructures and wearing properties of the Fe-based amorphous coatings were analyzed with scanning electron microscope (SEM),X-ray diffraction analyzer (XRD),and ball-on-disc tribometer (CFT-1),respectively.The experimental results show that the well interfacial bonding can be observed between the amorphous coating layer and the substrate,and the porosity in amorphous coating layer is less to 1%.Only some crystalline a-Fe and FeO phases can be detected by XRD in the amorphous coatings,while the amorphous content is up to 99.4%.The wearing coefficient is near to 0.15,which is superior to SUS316 of 0.28.As the increasing of wearing loads,the failure mode is changed from oxidation wear to the composite of oxidation and abrasive wear.展开更多
The 2012 Nobel Prize winner in Literature,Chinese writer Mo Yan,describes the 50 years history of Chinese countryside from 1950 to 2000 in his masterpiece Life and Death Are Wearing Me Out.By the six artistic images o...The 2012 Nobel Prize winner in Literature,Chinese writer Mo Yan,describes the 50 years history of Chinese countryside from 1950 to 2000 in his masterpiece Life and Death Are Wearing Me Out.By the six artistic images of the innocent killing landlord’s reincarnation as a donkey,an ox,a pig,a dog,a monkey,and a big head baby boy,it focuses on the topic of the land.It explains that all the relationships between the peasants and the land,and shows the changes in the life of Chinese peasants and their tenacious,optimistic and tough spirit since the foundation of the New China.By analyzing the unique plot of the six great divisions in the wheel of karma and the hero’s mental journey,it can be found that the theme of the novel is to reveal a global circular diaspora with the moon,rather than the sun as the center of the circle,which is quite different from the real world.展开更多
The relationship between observed early teeth wearing in cattle and the existence of large areas where excess nuoride in underground water prevails in Argentina, but has never been studied. Average values of bone fluo...The relationship between observed early teeth wearing in cattle and the existence of large areas where excess nuoride in underground water prevails in Argentina, but has never been studied. Average values of bone fluoride exceeding 5000 ppm and well water containing up to 10.5 ppm of this element were found in a farm (ETWF) where early teeth wearing is observed, while in a control farm (NETWF), those values were 1480 ppm and 3.0 ppm respectively. Urine samples from animals from the ETWF contained almost 4 times more fluoride than those from the latter.Forage in both farms contained about the same levels of fluoride (15 to 25 ppm). None of the farms was exPosed to industrial, volcanic, or geothermal activity. Lactating and adult animals were transferred from one farm to the other. After 30 months, adult animals from the NETWF showed no damage in teeth, while adults from the ETWF continued a rapid teeth wearing. Young animals from the NETWF developed severely damaged permanent teeth, while young animals from the ETWF developed normal teeth. We concluded that the problem exists in the ETWF and being a standard farm, the condition could be extrapolated to other areas展开更多
Rapid road infrastructure development due to an increasing demand of car users resulted in an increase in paved areas including road sites and suppression of green spaces. An integrated solution that can support a cou...Rapid road infrastructure development due to an increasing demand of car users resulted in an increase in paved areas including road sites and suppression of green spaces. An integrated solution that can support a country’s economic development without compromising water pollution is becoming inevitable. Recycling tyres in the form of crumb rubber tyres and mixing it into bituminous paving mixture can increase the recycling rate and minimize cost of incineration process. In dry mixing process, five (5) different variations of Open Graded Wearing (OGW) course road samples were made to make up 1.15 kg in each sample. Each OGW mix contained 4% - 6% bitumen Pen 60/ 70 and fixed 1% of crumb rubber tyres, making the percentage of crumb rubber tyres 14% - 20% of bituminous samples. Bitumen Pen 60/70 mixed with 20% crumb rubber tyres content met the PG 76 bitumen properties. Physical properties of OGW made from crumb rubber modified bitumen (CRMB) were better than standard bitumen only. In a separate water leachate test using ICP-OES equipment, heavy metal leachate of Cu(II), Pb(II), Zn(II) and Cd(II) were present in all OGW CRMB samples at increasing surrounding water temperature from 25℃ to 60℃. However all the heavy metal concentration was very low below the allowable limit of trade effluent standards into water course.展开更多
Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determin...Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determining cutting tools lifespan, but most of the existing models don’t take into account the cutting temperature. In this work, the theoretical and experimental results of a dynamic study of metal machining against cutting temperature of a treated steel of grade S235JR with a high-speed steel tool are provided. This study is based on the analysis of two complementary approaches, an experimental approach with the measurement of the temperature and on the other hand, an approach using modeling. Based on unifactorial and multifactorial tests (speed of cut, feed, and depth of cut), this study allowed the highlighting of the influence of the cutting temperature on the machining time. To achieve this objective, two specific approaches have been selected. The first was to measure the temperature of the cutting tool and the second was to determine the wear law using Rayleigh-Ham dimensional analysis method. This study permitted the determination of a law that integrates the cutting temperature in the calculations of the lifespan of the tools during machining.展开更多
Being one of their prominent exploitative characteristics, cutting tools durability depends on the character, intensity and the speed of wearing. Identification of tool wearing is of great significance for the purpose...Being one of their prominent exploitative characteristics, cutting tools durability depends on the character, intensity and the speed of wearing. Identification of tool wearing is of great significance for the purpose of avoiding sooner or later replacement of tools. The parameters of tool wearing can be measured by out-process and in-process-measuring systems. Given the extremely limiting role of the former in modern production lines, development of the latter (the indirect measuring systems) has gained prominence, The basis of indirect measuring systems comprises a set of various signals originating from the units of the system under treatment which stand in certain correlations with the wearing parameters. The paper presents mathematical models of axial force designed on the basis of experimental research in drilling tempered steel by twist drills made of high-speed steel manufactured by powder metallurgy.展开更多
Skopos Theory is the kernel part of functionalism, holding that the skopos rule is the top-ranking rule that justifies the overall translation process. This paper attempts to make an analysis of the C-E translation of...Skopos Theory is the kernel part of functionalism, holding that the skopos rule is the top-ranking rule that justifies the overall translation process. This paper attempts to make an analysis of the C-E translation of Life and Death Are Wearing Me Out from the perspectives of Skopos Theory, and intends to explore the impact of translating skopos on the translator's choice of translating skills as well as the possible reasons behind them.展开更多
Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion...Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.展开更多
As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in pra...As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.展开更多
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc...The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.展开更多
Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials with...Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials without copper has become a significant challenge.In this paper,the resin-based braking materials were filled with flyash cenospheres to develop copper-free braking materials.The effects of fly-ash cenospheres on the physical properties,mechanical and friction and wear properties of braking materials were studied.Furthermore,the wear mechanism of copper-free resin-based braking materials filled with fly-ash cenospheres was discussed.The results indicate that the inclusion of fly-ash cenospheres in the braking materials improved their thermal stability,hardness and impact strength,reduced their density,effectively increased the friction coefficient at medium and high temperatures,and enhanced the heat-fade resistance of the braking materials.The inclusion of fly-ash cenospheres contributed to the formation of surface friction film during the friction process of the braking materials,and facilitated the transition of form from abrasive wear to adhesive wear.At 100-350℃,the friction coefficient of the optimal formulation is in the range of 0.57-0.61,and the wear rate is in the range(0.29-0.65)×10^(-7) cm^(3)·N^(-1)·m^(-1),demonstrating excellent resistance to heat-fade and stability in friction coefficient.This research proposes the use of fly-ash cenospheres as a substitute for environmentally harmful and expensive copper in brake materials,which not only improves the performance of braking materials but also reduces their costs.展开更多
To ensure an accurate selection of rolling guide shoe materials,an analysis of the intricate relationship between linear speed and wear is imperative.Finite element simulations and experimental measurements are employ...To ensure an accurate selection of rolling guide shoe materials,an analysis of the intricate relationship between linear speed and wear is imperative.Finite element simulations and experimental measurements are employed to evaluate four distinct types of materials:polyurethane,rubber,polytetrafluoroethylene(PTFE),and nylon.The speed-index of each material is measured,serving as a preparation for subsequent analysis.Furthermore,the velocity-wear factor is determined,providing insights into the resilience and durability of the material across varying speeds.Additionally,a wear model tailored specifically for viscoelastic bodies is explored,which is pivotal in understanding the wear mechanisms within the material.Leveraging this model,wear predictions are made under higher speed conditions,facilitating the choice of material for rolling guide shoes.To validate the accuracy of the model,the predicted degree of wear is compared with experimental data,ensuring its alignment with both theoretical principles and real-world performance.This comprehensive analysis has verified the effectiveness of the model in the selection of materials under high-speed conditions,thereby offering confidence in its reliability and ensuring optimal performance.展开更多
Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term o...Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term operation.Both profile shift and tooth surface wear(TSW)can impact the meshing characteristics by altering the involute tooth profile.In this study,a tooth stiffness model of spur gears that incorporates profile shift,TSW,tooth deformation,tooth contact deformation,fillet-foundation deformation,and gear body structure coupling is established.This model efficiently and accurately determines the time-varying mesh stiffness(TVMS).Additionally,an improved wear depth prediction method for spur gears is developed,which takes into consideration the mutually prime teeth numbers and more accurately reflects actual gear meshing conditions.Results show that consideration of the mutual prime of teeth numbers will have a certain impact on the TSW process.Furthermore,the finite element method(FEM)is employed to accurately verify the values of TVMS and load sharing ratio(LSR)of profile-shifted gears and worn gears.This study quantitatively analyzes the effect of profile shift on the surface wear process,which suggests that gear profile shift can partially alleviate the negative effects of TSW.The contribution of this study provides valuable insights into the design and maintenance of spur gear systems.展开更多
基金supported in part by National Natural Science Foundation of China under Grant No.61772050,Beijing Municipal Natural Science Foundation under Grant No.4242053Key Project of Science and Technology Innovation and Entrepreneurship of TDTEC(No.2022-TD-ZD004).
文摘It is crucial to ensure workers wear safety helmets when working at a workplace with a high risk of safety accidents,such as construction sites and mine tunnels.Although existing methods can achieve helmet detection in images,their accuracy and speed still need improvements since complex,cluttered,and large-scale scenes of real workplaces cause server occlusion,illumination change,scale variation,and perspective distortion.So,a new safety helmet-wearing detection method based on deep learning is proposed.Firstly,a new multi-scale contextual aggregation module is proposed to aggregate multi-scale feature information globally and highlight the details of concerned objects in the backbone part of the deep neural network.Secondly,a new detection block combining the dilate convolution and attention mechanism is proposed and introduced into the prediction part.This block can effectively extract deep featureswhile retaining information on fine-grained details,such as edges and small objects.Moreover,some newly emerged modules are incorporated into the proposed network to improve safety helmetwearing detection performance further.Extensive experiments on open dataset validate the proposed method.It reaches better performance on helmet-wearing detection and even outperforms the state-of-the-art method.To be more specific,the mAP increases by 3.4%,and the speed increases from17 to 33 fps in comparison with the baseline,You Only Look Once(YOLO)version 5X,and themean average precision increases by 1.0%and the speed increases by 7 fps in comparison with the YOLO version 7.The generalization ability and portability experiment results show that the proposed improvements could serve as a springboard for deep neural network design to improve object detection performance in complex scenarios.
基金Project (2012CB619600) supported by the Ministry of Science and Technology of ChinaProject (51201047) supported by the National Natural Science Foundation of China+1 种基金Project (HIT.NSRIF.2013001) supported by the Fundamental Research Funds for the Central Universities ChinaProject (20110491038) supported by the Postdoctoral Science Foundation of China
文摘The in-situ Al-based composites with different SiO2/C/Al molar ratios were fabricated by reaction hot pressing. The dry sliding wear characteristics of the composites were investigated using a pin-on-disc wear tester. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to investigate the surface composition and its morphology. The results show that when the SiO2/C/Al molar ratio is 3:6:9, more in-situ synthesized Al2O3 and SiC along with Si particles are produced, and Al4C3 is prevented completely from the Al?SiO2?C system. Thereby, a significant improvement of wear resistance is obtained. When the sliding velocity increases from 0.4 to 1.6 m/s, the wear loss decreases gradually. With increasing the normal load, the wear loss increases as well. Ploughing, craters and micro-grooving are observed as dominant abrasive wear mechanisms. Whereas, when a high velocity is employed, only the oxidation mechanism controls the wear behavior of the composites.
基金supported by NARI Technology Development Co.LTD.(No.524608190024).
文摘Safety helmet-wearing detection is an essential part of the intelligentmonitoring system. To improve the speed and accuracy of detection, especiallysmall targets and occluded objects, it presents a novel and efficient detectormodel. The underlying core algorithm of this model adopts the YOLOv5 (YouOnly Look Once version 5) network with the best comprehensive detection performance. It is improved by adding an attention mechanism, a CIoU (CompleteIntersection Over Union) Loss function, and the Mish activation function. First,it applies the attention mechanism in the feature extraction. The network can learnthe weight of each channel independently and enhance the information dissemination between features. Second, it adopts CIoU loss function to achieve accuratebounding box regression. Third, it utilizes Mish activation function to improvedetection accuracy and generalization ability. It builds a safety helmet-wearingdetection data set containing more than 10,000 images collected from the Internetfor preprocessing. On the self-made helmet wearing test data set, the averageaccuracy of the helmet detection of the proposed algorithm is 96.7%, which is1.9% higher than that of the YOLOv5 algorithm. It meets the accuracy requirements of the helmet-wearing detection under construction scenarios.
基金the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financially supporting one of the authors (M.A.F.)the Instituto de Engenharia Nuclear (IENCNEN)+1 种基金Programa de Engenharia Mecanica (PEM-COPPE/UFRJ)for their invaluable help for the development of the research
文摘Thin Layer Activation is a nuclear technique that has key advantages over other wear measuring techniques for mechanical systems,especially for in site experiments on equipment important to safety in nuclear plants.Still,it incurs radioactive dose and,thus,must be proved radiologically safe before use,otherwise,the utilization of this technique may be hindered inviable.Proving said technique is safe previous to any operational/monetary cost is key,providing a methodology for this early assertion is the main contribution of this work—here,only non-occupationally exposed individuals are considered.This work offers a methodology,through a case study,to ascertain the Thin Layer Activation parameters to obtain safe levels of radioactive dose while maintaining statistically reliable results.This methodology consists of using simulations,through the Monte Carlo Method,to obtain the floors and ceilings for the previously mentioned activation parameters based on operation and work conditions on site.
文摘In this paper,based on three different kinds of ceramic side dams for thin strip antinuous casting,the friction and wearing property were studied.The effects of friction pressure,temperature and friction time on the friction and wearing property of the ceramic side dam were researched.What’s more,the friction mechanism and wearing mechanism of the ceramic side dam were researched as well.Results show that the ceramic side dam of BN-SiA lO N has the best wearing resistance property.while at room temperature,16 min of friction time and0.35 MPa of friction pressure,the test friction coefficient is 0.60 and wearing capacity is 272.358 mm-3.In addition,when at 400℃,16 min of friction time and 0.18MPa of friction pressure,the test friction coefficient is0.70.The friction mechanism of ceramic side dam with the opposite wearing material is mainly the composite wear of adhesion,abrasive and fatigue.
基金Funded by the National Natural Science Foundation of China(No.51965044)the Basic Pre Research of General Armament Department(No.41423060313)。
文摘The effects of kerosene flow rate on the microstructure and wearing properties were investigated for Fe-based amorphous coatings sprayed by High Velocity Oxygen Fuel (HVOF).The microstructures and wearing properties of the Fe-based amorphous coatings were analyzed with scanning electron microscope (SEM),X-ray diffraction analyzer (XRD),and ball-on-disc tribometer (CFT-1),respectively.The experimental results show that the well interfacial bonding can be observed between the amorphous coating layer and the substrate,and the porosity in amorphous coating layer is less to 1%.Only some crystalline a-Fe and FeO phases can be detected by XRD in the amorphous coatings,while the amorphous content is up to 99.4%.The wearing coefficient is near to 0.15,which is superior to SUS316 of 0.28.As the increasing of wearing loads,the failure mode is changed from oxidation wear to the composite of oxidation and abrasive wear.
文摘The 2012 Nobel Prize winner in Literature,Chinese writer Mo Yan,describes the 50 years history of Chinese countryside from 1950 to 2000 in his masterpiece Life and Death Are Wearing Me Out.By the six artistic images of the innocent killing landlord’s reincarnation as a donkey,an ox,a pig,a dog,a monkey,and a big head baby boy,it focuses on the topic of the land.It explains that all the relationships between the peasants and the land,and shows the changes in the life of Chinese peasants and their tenacious,optimistic and tough spirit since the foundation of the New China.By analyzing the unique plot of the six great divisions in the wheel of karma and the hero’s mental journey,it can be found that the theme of the novel is to reveal a global circular diaspora with the moon,rather than the sun as the center of the circle,which is quite different from the real world.
文摘The relationship between observed early teeth wearing in cattle and the existence of large areas where excess nuoride in underground water prevails in Argentina, but has never been studied. Average values of bone fluoride exceeding 5000 ppm and well water containing up to 10.5 ppm of this element were found in a farm (ETWF) where early teeth wearing is observed, while in a control farm (NETWF), those values were 1480 ppm and 3.0 ppm respectively. Urine samples from animals from the ETWF contained almost 4 times more fluoride than those from the latter.Forage in both farms contained about the same levels of fluoride (15 to 25 ppm). None of the farms was exPosed to industrial, volcanic, or geothermal activity. Lactating and adult animals were transferred from one farm to the other. After 30 months, adult animals from the NETWF showed no damage in teeth, while adults from the ETWF continued a rapid teeth wearing. Young animals from the NETWF developed severely damaged permanent teeth, while young animals from the ETWF developed normal teeth. We concluded that the problem exists in the ETWF and being a standard farm, the condition could be extrapolated to other areas
文摘Rapid road infrastructure development due to an increasing demand of car users resulted in an increase in paved areas including road sites and suppression of green spaces. An integrated solution that can support a country’s economic development without compromising water pollution is becoming inevitable. Recycling tyres in the form of crumb rubber tyres and mixing it into bituminous paving mixture can increase the recycling rate and minimize cost of incineration process. In dry mixing process, five (5) different variations of Open Graded Wearing (OGW) course road samples were made to make up 1.15 kg in each sample. Each OGW mix contained 4% - 6% bitumen Pen 60/ 70 and fixed 1% of crumb rubber tyres, making the percentage of crumb rubber tyres 14% - 20% of bituminous samples. Bitumen Pen 60/70 mixed with 20% crumb rubber tyres content met the PG 76 bitumen properties. Physical properties of OGW made from crumb rubber modified bitumen (CRMB) were better than standard bitumen only. In a separate water leachate test using ICP-OES equipment, heavy metal leachate of Cu(II), Pb(II), Zn(II) and Cd(II) were present in all OGW CRMB samples at increasing surrounding water temperature from 25℃ to 60℃. However all the heavy metal concentration was very low below the allowable limit of trade effluent standards into water course.
文摘Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determining cutting tools lifespan, but most of the existing models don’t take into account the cutting temperature. In this work, the theoretical and experimental results of a dynamic study of metal machining against cutting temperature of a treated steel of grade S235JR with a high-speed steel tool are provided. This study is based on the analysis of two complementary approaches, an experimental approach with the measurement of the temperature and on the other hand, an approach using modeling. Based on unifactorial and multifactorial tests (speed of cut, feed, and depth of cut), this study allowed the highlighting of the influence of the cutting temperature on the machining time. To achieve this objective, two specific approaches have been selected. The first was to measure the temperature of the cutting tool and the second was to determine the wear law using Rayleigh-Ham dimensional analysis method. This study permitted the determination of a law that integrates the cutting temperature in the calculations of the lifespan of the tools during machining.
文摘Being one of their prominent exploitative characteristics, cutting tools durability depends on the character, intensity and the speed of wearing. Identification of tool wearing is of great significance for the purpose of avoiding sooner or later replacement of tools. The parameters of tool wearing can be measured by out-process and in-process-measuring systems. Given the extremely limiting role of the former in modern production lines, development of the latter (the indirect measuring systems) has gained prominence, The basis of indirect measuring systems comprises a set of various signals originating from the units of the system under treatment which stand in certain correlations with the wearing parameters. The paper presents mathematical models of axial force designed on the basis of experimental research in drilling tempered steel by twist drills made of high-speed steel manufactured by powder metallurgy.
文摘Skopos Theory is the kernel part of functionalism, holding that the skopos rule is the top-ranking rule that justifies the overall translation process. This paper attempts to make an analysis of the C-E translation of Life and Death Are Wearing Me Out from the perspectives of Skopos Theory, and intends to explore the impact of translating skopos on the translator's choice of translating skills as well as the possible reasons behind them.
文摘Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.
基金supported by the National Natural Science Foundation of China(Nos.51922023,61874011)Fundamental Research Funds for the Central Universities(E1EG6804)
文摘As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.
基金the National Natural Science Foundation of China(Grant number 51771178)Shaanxi Outstanding Youth Fund project(Grant number 2021JC-45)+2 种基金Key international cooperation projects in Shaanxi Province(Grant number 2020KWZ-007)the Major Program of Science and Technology in Shaanxi Province(Grant number20191102006)Open Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant number 32115019)。
文摘The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.
基金Supported by National Natural Science Foundation of China(Grant No.52275178)Fujian Provincial Natural Science Foundation of China(Grant Nos.2020J05115,2022J01073)Project National United Engineering Laboratory for Advanced Bearing Tribology,Henan University of Science and Technology of China(Grant No.202103).
文摘Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials without copper has become a significant challenge.In this paper,the resin-based braking materials were filled with flyash cenospheres to develop copper-free braking materials.The effects of fly-ash cenospheres on the physical properties,mechanical and friction and wear properties of braking materials were studied.Furthermore,the wear mechanism of copper-free resin-based braking materials filled with fly-ash cenospheres was discussed.The results indicate that the inclusion of fly-ash cenospheres in the braking materials improved their thermal stability,hardness and impact strength,reduced their density,effectively increased the friction coefficient at medium and high temperatures,and enhanced the heat-fade resistance of the braking materials.The inclusion of fly-ash cenospheres contributed to the formation of surface friction film during the friction process of the braking materials,and facilitated the transition of form from abrasive wear to adhesive wear.At 100-350℃,the friction coefficient of the optimal formulation is in the range of 0.57-0.61,and the wear rate is in the range(0.29-0.65)×10^(-7) cm^(3)·N^(-1)·m^(-1),demonstrating excellent resistance to heat-fade and stability in friction coefficient.This research proposes the use of fly-ash cenospheres as a substitute for environmentally harmful and expensive copper in brake materials,which not only improves the performance of braking materials but also reduces their costs.
基金Supported by National Natural Science Foundation of China (Grant No.51935007)。
文摘To ensure an accurate selection of rolling guide shoe materials,an analysis of the intricate relationship between linear speed and wear is imperative.Finite element simulations and experimental measurements are employed to evaluate four distinct types of materials:polyurethane,rubber,polytetrafluoroethylene(PTFE),and nylon.The speed-index of each material is measured,serving as a preparation for subsequent analysis.Furthermore,the velocity-wear factor is determined,providing insights into the resilience and durability of the material across varying speeds.Additionally,a wear model tailored specifically for viscoelastic bodies is explored,which is pivotal in understanding the wear mechanisms within the material.Leveraging this model,wear predictions are made under higher speed conditions,facilitating the choice of material for rolling guide shoes.To validate the accuracy of the model,the predicted degree of wear is compared with experimental data,ensuring its alignment with both theoretical principles and real-world performance.This comprehensive analysis has verified the effectiveness of the model in the selection of materials under high-speed conditions,thereby offering confidence in its reliability and ensuring optimal performance.
基金Supported by National Natural Science Foundation of China (Grant No.52275061)。
文摘Profile shift is a highly effective technique for optimizing the performance of spur gear transmission systems.However,tooth surface wear is inevitable during gear meshing due to inadequate lubrication and long-term operation.Both profile shift and tooth surface wear(TSW)can impact the meshing characteristics by altering the involute tooth profile.In this study,a tooth stiffness model of spur gears that incorporates profile shift,TSW,tooth deformation,tooth contact deformation,fillet-foundation deformation,and gear body structure coupling is established.This model efficiently and accurately determines the time-varying mesh stiffness(TVMS).Additionally,an improved wear depth prediction method for spur gears is developed,which takes into consideration the mutually prime teeth numbers and more accurately reflects actual gear meshing conditions.Results show that consideration of the mutual prime of teeth numbers will have a certain impact on the TSW process.Furthermore,the finite element method(FEM)is employed to accurately verify the values of TVMS and load sharing ratio(LSR)of profile-shifted gears and worn gears.This study quantitatively analyzes the effect of profile shift on the surface wear process,which suggests that gear profile shift can partially alleviate the negative effects of TSW.The contribution of this study provides valuable insights into the design and maintenance of spur gear systems.