Objective:The aim of this research was to evaluate the efficiency of reciprocating morcellation for removing giant benign prostatic hyperplasia during holmium laser enucleation of the prostate,investigate whether perf...Objective:The aim of this research was to evaluate the efficiency of reciprocating morcellation for removing giant benign prostatic hyperplasia during holmium laser enucleation of the prostate,investigate whether performing morcellation as a two-stage procedure improves tissue retrieval efficiency,and seek to determine the optimal interval between the two surgeries.Methods:This study included nine cases of holmium laser enucleation of the prostate with an enucleated prostate weight exceeding 200 g,indicative of substantial prostate enlargement.Morcellation was performed on Day 0(n=4),Day 4(n=1),Day 6(n=1),and Day 7(n=3).The intervals were compared regarding the morcellation efficiency,beach ball presence,and pathology.Results:The mean estimated prostate volume was 383(range 330e528)mL;the median enucleation weight was 252(interquartile range[IQR]222,342)g;and the median enucleation time was 83(IQR 62,100)min.The mean morcellation efficiency was 1.44(SD 0.55)g/min on Day 0 and 13.69(SD 2.46)g/min on day 7.The morcellation efficiency was 4.15 g/min and 10.50 g/min on Day 4 and Day 6,respectively,with significantly higher in the two-stage group compared to one-stage group(11.0 g/min vs.1.5 g/min;p=0.014).Efficiency was strongly correlated with intervals(p<0.001);the incidences of beach balls were 100%(4/4)and 60%(3/5)in the immediate and two-stage surgery groups,respectively.Conclusion:The efficiency of two-stage morcellation with reciprocating morcellators was highly related to the postoperative interval,with the maximum efficiency reached on Day 7.展开更多
The authors have studied the motion mechanism of the magnetic fluid in a reciprocating seal gap, on the basis of which the authors obtain an anti pressure formula of the reciprocating shaft magnetic fluid seal fro...The authors have studied the motion mechanism of the magnetic fluid in a reciprocating seal gap, on the basis of which the authors obtain an anti pressure formula of the reciprocating shaft magnetic fluid seal from general Navier Stokes equation. In order to verify the correctness of the anti pressure formula, the authors have calculated the magnetic field distribution of seal structure and have gotten the maximum still anti pressure. Finally, the authors have verified the influence of speed and stroke on the seal anti pressure. \{展开更多
Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. On...Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.展开更多
Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, re...Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, reasonable boundary conditions for Navier-Stokesequations are determined and the equations are modified, so that the final equations can describethe real flow state of the clearance flow. Through combining the final equations with finite elementmethod, the pressure distributions within the clearance field during the reciprocating motion ofthe piston and the leakage rate with the pressure are studied. The deflections of the seal whichaffect sealing performance are calculated as well. Sealing performance of piston seals using oil asthe working liquid is compared with using water. It is concluded that the seal using water as theworking liquid is under dry friction, which cannot be dealt with the theory of fluid mechanics. Theseal structure is only acceptable using oil as the working liquid..展开更多
The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the u...The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the underground part of hydraulic power rodless type oil extraction equipment is studied. We design three seal structures, do the performance testing and the life testing with related equipment. It turned out that the seal form that combines gap seal with sand prevention techniques has high performance, longer life. The power cylinder works stably and reliably.展开更多
Elastomer sealing performance is of critical importance for downhole tools application including the use of fracturing(Frac)plugs during multi-stage hydraulic fracking.In practice sealing performances of such plugs ar...Elastomer sealing performance is of critical importance for downhole tools application including the use of fracturing(Frac)plugs during multi-stage hydraulic fracking.In practice sealing performances of such plugs are normally evaluated through pressure tests,and in numerical simulation studies,maximum contact stress,average contact stress and contact length data are used to determine sealing quality between a packer and casing.In previous studies,the impact of friction forces on sealing performance is often overlooked.This work aims to fill this knowledge gap in determining the influence of friction forces on elastomer packer sealing performances.We first determined the most appropriate constitutive hyperelastic model for the elastomers used in frac plug.Then we compared analytical calculation results with Finite Element Analysis simulation using a simplified tubular geometry and showed the significant influences on interfacial friction on elastomer packer stress distribution,deformation,and contact stress after setting.With the demonstration of validity of FEA method,we conducted systematic numerical simulation studies to show how the interfacial friction coefficients can affect the maximum contact stress,average contact stress,contact stress distribution,and maximum mises stress for an actual packer used in plug products.In addition,we also demonstrated how the groove in a packer can affect packer deformation and evolvement during setting with the consideration of interfacial stress.This study underscores the critical role that friction forces play in Frac plug performance and provides a new dimension for optimizing packer design by controlling interfacial interactions at the packer contact surfaces.展开更多
Bearing condition monitoring and fault diagnosis (CMFD) can investigate bearing faults in the early stages, preventing the subsequent impacts of machine bearing failures effectively. CMFD for low-speed, non-continuous...Bearing condition monitoring and fault diagnosis (CMFD) can investigate bearing faults in the early stages, preventing the subsequent impacts of machine bearing failures effectively. CMFD for low-speed, non-continuous operation bearings, such as yaw bearings and pitch bearings in wind turbines, and rotating support bearings in space launch towers, presents more challenges compared to continuous rolling bearings. Firstly, these bearings have very slow speeds, resulting in weak collected fault signals that are heavily masked by severe noise interference. Secondly, their limited rotational angles during operation lead to a restricted number of fault signals. Lastly, the interference from deceleration and direction-changing impact signals significantly affects fault impact signals. To address these challenges, this paper proposes a method for extracting fault features in low-speed reciprocating bearings based on short signal segmentation and modulation signal bispectrum (MSB) slicing. This method initially separates short signals corresponding to individual cycles from the vibration signals based on encoder signals. Subsequently, MSB analysis is performed on each short signal to generate MSB carrier-slice spectra. The optimal carrier frequency and its corresponding modulation signal slice spectrum are determined based on the carrier-slice spectra. Finally, the MSB modulation signal slice spectra of the short signal set are averaged to obtain the overall average feature of the sliced spectra.展开更多
Quantum nonreciprocity, such as nonreciprocal photon blockade, has attracted a great deal of attention due to its unique applications in quantum information processing. Its implementation primarily relies on rotating ...Quantum nonreciprocity, such as nonreciprocal photon blockade, has attracted a great deal of attention due to its unique applications in quantum information processing. Its implementation primarily relies on rotating nonlinear systems, based on the Sagnac effect. Here, we propose an all-optical approach to achieve nonreciprocal photon blockade in an on-chip microring resonator coupled to a V-type Rb atom, which arises from the Zeeman splittings of the atomic hyperfine sublevels induced by the fictitious magnetic field of a circularly polarized control laser. The system manifests single-photon blockade or multi-photon tunneling when driven from opposite directions. This nonreciprocity results from the directional detunings between the countercirculating probe fields and the V-type atom, which does not require the mechanical rotation and facilitates integration. Our work opens up a new route to achieve on-chip integrable quantum nonreciprocity, enabling applications in chiral quantum technologies.展开更多
Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid d...Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets.This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices,thereby inducing a magnetic nonreciprocal effect,in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes.Furthermore,the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice.Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities,offering a groundbreaking paradigm for superconducting electronics.展开更多
Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consid...Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.展开更多
Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulatio...Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulation.However,conventional LCMs seem ineffective in high-temperature formations.This may be due to the changes in the mechanical properties of LCMs and their sealing performance under high-temperature conditions.To understand how high temperature affects the fracture sealing performance of LCMs,we developed a coupled computational fluid dynamics-discrete element method(CFD-DEM)model to simulate the behavior of granular LCMs in fractures.We summarized the literature on the effects of high temperature on the mechanical properties of LCMs and the rheological properties of drilling fluid.We conducted sensitivity analyses to investigate how changing LCM slurry properties affected the fracture sealing efficiency at increasing temperatures.The results show that high temperature reduces the size,strength,and friction coefficient of LCMs as well as the drilling fluid viscosity.Smaller,softer,and less frictional LCM particles have lower bridging probability and slower bridging initiation.Smaller particles tend to form dual-particle bridges rather than single-particle bridges.These result in a deeper,tighter,but unstable sealing zone.Reduced drilling fluid viscosity leads to faster and shallower sealing zones.展开更多
The Meso-Neoproterozoic is a new play in the Ordos Basin.A deeper understanding about the dynamic relationship between the caprocks and the source rocks is needed.Based on the comprehensive analysis of hydrocarbon sou...The Meso-Neoproterozoic is a new play in the Ordos Basin.A deeper understanding about the dynamic relationship between the caprocks and the source rocks is needed.Based on the comprehensive analysis of hydrocarbon source development characteristics of the Meso-Neoproterozoic and its overlying strata,as well as the formation contact relationships,lithology characteristics and exploratory drilling data,it is recognized that the Meso-Neoproterozoic contains two types of petroleum accumulation assemblage,that is,the“self-sourced indigenous”and“upper source rock-lower reservoir”assemblages.The former is mainly controlled by the development and distribution of source rocks of the Changcheng System,with the Lower Cambrian shale sequence as its caprock.The later is controlled by the superposition between the Meso-Neoproterozoic and its overlying source rocks and this assemblage is mainly distributed in Hangjinqi and Pingliang areas with the Carboniferous-Permian shale sequence as its caprock.The dynamic evaluation on the displacement pressure serves to reconstruct the displacement pressure history of the caprock.The results show that the shale sequence of the Cambrian Maozhuang Formation in well XY 1 in the southern Ordos Basin has possibly acquired the ability of sealing natural gas since the early of Late Triassic.Its displacement pressure increased rapidly up to 20 MPa during the Late Triassic-Jurassic and keeps at 9.2 MPa at present,indicating fair sealing ability.The Carboniferous-Permian caprocks in Hangjinqi area could have acquired the ability to seal natural gas in the Late Jurassic-Early Cretaceous,and the present-day displacement pressure is 9e12 MPa,indicating good sealing ability.The upper Paleozoic caprock in Pingliang area has been able to seal natural gas since the Early Jurassic,with a maximum displacement pressure of 23 MPa during the Cretaceous period and a current value of 17 e20 MPa,indicative of strong ability to seal natural gas.The sealing ability of caprocks of both the“selfsourced indigenous”and“upper source rock-lower reservoir”assemblages has come into being earlier than or at least no later than the peak gas generation of the source rocks and therefore the caprocks are dynamically effective in geohistory.The Meso-Neoproterozoic reservoirs in the Ordos Basin are well preserved and probabally of better potential for exploration in terms of the caprock-source rock combination.展开更多
Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units....Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals.展开更多
Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atm...Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability.展开更多
Let G be a connected graph of order n and m_(RD)^(L)_(G)I denote the number of reciprocal distance Laplacian eigenvaluesof G in an interval I.For a given interval I,we mainly present several bounds on m_(RD)^(L)_(G)I ...Let G be a connected graph of order n and m_(RD)^(L)_(G)I denote the number of reciprocal distance Laplacian eigenvaluesof G in an interval I.For a given interval I,we mainly present several bounds on m_(RD)^(L)_(G)I in terms of various structuralparameters of the graph G,including vertex-connectivity,independence number and pendant vertices.展开更多
We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists betw...We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists between both alternative gravity formulas with respect to the distances between mass centers. We conclude a one-to-one mapping of the two gravitational formulas. We don’t need Einstein’s construct of spacetime bending by matter.展开更多
The hydraulic actuator,known as the"muscle"of military aircraft,is responsible for flight attitude adjustment,trajectory control,braking turn,landing gear retracting and other actions,which directly affect i...The hydraulic actuator,known as the"muscle"of military aircraft,is responsible for flight attitude adjustment,trajectory control,braking turn,landing gear retracting and other actions,which directly affect its flight efficiency and safety.However,the sealing assembly often has the situation of over-aberrant aperture fit clearance or critical over-aberrant clearance,which increases the failure probability and degree of movable seal failure,and directly affects the flight efficiency and safety of military aircraft.In this paper,the simulation model of hydraulic actuator seal combination is established by ANSYS software,and the sealing principle is described.The change curve of contact width and contact pressure of combination seal under the action of high-pressure fluid is drawn.The effects of different oil pressure,fit clearance and other parameters on the sealing performance are analyzed.Finally,the accelerated life test of sliding seal components is carried out on the hydraulic actuator accelerated life test rig,and the surface morphology is compared and analyzed.The research shows that the O-ring is the main sealing element and the role of the check ring is to protect and support the O-ring to prevent damage caused by squeezing into the fit clearance,so the check ring bears a large load and is prone to shear failure.Excessive fit clearance is the main factor affecting the damage of the check ring,and the damage parts are mainly concentrated at the edge of the sealing surface.This paper provides a theoretical basis for the design of hydraulic actuator and the improvement of sealing performance.展开更多
Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Call...Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.展开更多
Fine-grained ZK60 alloy was prepared by 2-pass reciprocating extrusion, and the low temperature superplasticity was conducted in a temperature range from 443 to 523 K and an initial strain rate ranging from 3.3×1...Fine-grained ZK60 alloy was prepared by 2-pass reciprocating extrusion, and the low temperature superplasticity was conducted in a temperature range from 443 to 523 K and an initial strain rate ranging from 3.3×10^-4 to 3.3×10-2^s^-1. The results show that the alloy has an equiaxed grain structure with an average grain size of about 5.0μm, and the sizes of broken secondary particles and precipitates are no more than 175 and 50 nm, respectively. The alloy exhibits quasi-superplasticity with a maximum elongation of 270% at 523 K and an initial strain rate of 3.3×10^-4 s^-1. The strain rate sensitivity m is less than 0.2 at 443 and 473 K, and it is 0.42 at 523 K. The apparent activation energies at temperature below 473 K and at 523 K are less than 63.2 and 110.6 kJ/mol, respectively At temperature below 473 K, mainly intragranular sliding contributes to superplastic flow. At 523 K, grain boundary sliding is the dominant deformation mechanism, and dislocation creep controlled by grain boundary diffusion is considered to be the main accommodation mechanism.展开更多
文摘Objective:The aim of this research was to evaluate the efficiency of reciprocating morcellation for removing giant benign prostatic hyperplasia during holmium laser enucleation of the prostate,investigate whether performing morcellation as a two-stage procedure improves tissue retrieval efficiency,and seek to determine the optimal interval between the two surgeries.Methods:This study included nine cases of holmium laser enucleation of the prostate with an enucleated prostate weight exceeding 200 g,indicative of substantial prostate enlargement.Morcellation was performed on Day 0(n=4),Day 4(n=1),Day 6(n=1),and Day 7(n=3).The intervals were compared regarding the morcellation efficiency,beach ball presence,and pathology.Results:The mean estimated prostate volume was 383(range 330e528)mL;the median enucleation weight was 252(interquartile range[IQR]222,342)g;and the median enucleation time was 83(IQR 62,100)min.The mean morcellation efficiency was 1.44(SD 0.55)g/min on Day 0 and 13.69(SD 2.46)g/min on day 7.The morcellation efficiency was 4.15 g/min and 10.50 g/min on Day 4 and Day 6,respectively,with significantly higher in the two-stage group compared to one-stage group(11.0 g/min vs.1.5 g/min;p=0.014).Efficiency was strongly correlated with intervals(p<0.001);the incidences of beach balls were 100%(4/4)and 60%(3/5)in the immediate and two-stage surgery groups,respectively.Conclusion:The efficiency of two-stage morcellation with reciprocating morcellators was highly related to the postoperative interval,with the maximum efficiency reached on Day 7.
基金National Natural Science F oundation of China(No.5 970 5 0 0 4)
文摘The authors have studied the motion mechanism of the magnetic fluid in a reciprocating seal gap, on the basis of which the authors obtain an anti pressure formula of the reciprocating shaft magnetic fluid seal from general Navier Stokes equation. In order to verify the correctness of the anti pressure formula, the authors have calculated the magnetic field distribution of seal structure and have gotten the maximum still anti pressure. Finally, the authors have verified the influence of speed and stroke on the seal anti pressure. \{
基金supported by National Basic Research Program of China(973 Program,Grant No. 2009CB724304)Key Research Program of the State Key Laboratory of Tribology of Tsinghua University,China (Grant No. SKLT08A06)National Natural Science Foundation of China(Grant No. 50975157)
文摘Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.
基金This project is supported by National Natural Science Foundation of China(No.50005019).
文摘Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, reasonable boundary conditions for Navier-Stokesequations are determined and the equations are modified, so that the final equations can describethe real flow state of the clearance flow. Through combining the final equations with finite elementmethod, the pressure distributions within the clearance field during the reciprocating motion ofthe piston and the leakage rate with the pressure are studied. The deflections of the seal whichaffect sealing performance are calculated as well. Sealing performance of piston seals using oil asthe working liquid is compared with using water. It is concluded that the seal using water as theworking liquid is under dry friction, which cannot be dealt with the theory of fluid mechanics. Theseal structure is only acceptable using oil as the working liquid..
文摘The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the underground part of hydraulic power rodless type oil extraction equipment is studied. We design three seal structures, do the performance testing and the life testing with related equipment. It turned out that the seal form that combines gap seal with sand prevention techniques has high performance, longer life. The power cylinder works stably and reliably.
文摘Elastomer sealing performance is of critical importance for downhole tools application including the use of fracturing(Frac)plugs during multi-stage hydraulic fracking.In practice sealing performances of such plugs are normally evaluated through pressure tests,and in numerical simulation studies,maximum contact stress,average contact stress and contact length data are used to determine sealing quality between a packer and casing.In previous studies,the impact of friction forces on sealing performance is often overlooked.This work aims to fill this knowledge gap in determining the influence of friction forces on elastomer packer sealing performances.We first determined the most appropriate constitutive hyperelastic model for the elastomers used in frac plug.Then we compared analytical calculation results with Finite Element Analysis simulation using a simplified tubular geometry and showed the significant influences on interfacial friction on elastomer packer stress distribution,deformation,and contact stress after setting.With the demonstration of validity of FEA method,we conducted systematic numerical simulation studies to show how the interfacial friction coefficients can affect the maximum contact stress,average contact stress,contact stress distribution,and maximum mises stress for an actual packer used in plug products.In addition,we also demonstrated how the groove in a packer can affect packer deformation and evolvement during setting with the consideration of interfacial stress.This study underscores the critical role that friction forces play in Frac plug performance and provides a new dimension for optimizing packer design by controlling interfacial interactions at the packer contact surfaces.
文摘Bearing condition monitoring and fault diagnosis (CMFD) can investigate bearing faults in the early stages, preventing the subsequent impacts of machine bearing failures effectively. CMFD for low-speed, non-continuous operation bearings, such as yaw bearings and pitch bearings in wind turbines, and rotating support bearings in space launch towers, presents more challenges compared to continuous rolling bearings. Firstly, these bearings have very slow speeds, resulting in weak collected fault signals that are heavily masked by severe noise interference. Secondly, their limited rotational angles during operation lead to a restricted number of fault signals. Lastly, the interference from deceleration and direction-changing impact signals significantly affects fault impact signals. To address these challenges, this paper proposes a method for extracting fault features in low-speed reciprocating bearings based on short signal segmentation and modulation signal bispectrum (MSB) slicing. This method initially separates short signals corresponding to individual cycles from the vibration signals based on encoder signals. Subsequently, MSB analysis is performed on each short signal to generate MSB carrier-slice spectra. The optimal carrier frequency and its corresponding modulation signal slice spectrum are determined based on the carrier-slice spectra. Finally, the MSB modulation signal slice spectra of the short signal set are averaged to obtain the overall average feature of the sliced spectra.
基金supported by the National Natural Science Foundation of China (Grant Nos.12305020 and 92365107)the National Key R&D Program of China (Grant No.2019YFA0308700)+2 种基金the Program for Innovative Talents and Teams in Jiangsu (Grant No.JSSCTD202138)China Postdoctoral Science Foundation (Grant No.2023M731613)Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No.2023ZB708)。
文摘Quantum nonreciprocity, such as nonreciprocal photon blockade, has attracted a great deal of attention due to its unique applications in quantum information processing. Its implementation primarily relies on rotating nonlinear systems, based on the Sagnac effect. Here, we propose an all-optical approach to achieve nonreciprocal photon blockade in an on-chip microring resonator coupled to a V-type Rb atom, which arises from the Zeeman splittings of the atomic hyperfine sublevels induced by the fictitious magnetic field of a circularly polarized control laser. The system manifests single-photon blockade or multi-photon tunneling when driven from opposite directions. This nonreciprocity results from the directional detunings between the countercirculating probe fields and the V-type atom, which does not require the mechanical rotation and facilitates integration. Our work opens up a new route to achieve on-chip integrable quantum nonreciprocity, enabling applications in chiral quantum technologies.
基金supported by the National Natural Science Foundation of China(Grant Nos.62288101 and 62274086)the National Key R&D Program of China(Grant No.2021YFA0718802)the Jiangsu Outstanding Postdoctoral Program。
文摘Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets.This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices,thereby inducing a magnetic nonreciprocal effect,in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes.Furthermore,the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice.Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities,offering a groundbreaking paradigm for superconducting electronics.
基金funded by the National Natural Science Foundation of China(Grant No.42172147)PetroChina Major Science and Technology Project(Grant No.ZD2019-183-002).
文摘Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Grant No.52274009)China Postdoctoral Science Foundation(Grant No.2022M723501)Science and Technology Planning Project of Sichuan Province(Grant No.2021YJ0359).
文摘Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulation.However,conventional LCMs seem ineffective in high-temperature formations.This may be due to the changes in the mechanical properties of LCMs and their sealing performance under high-temperature conditions.To understand how high temperature affects the fracture sealing performance of LCMs,we developed a coupled computational fluid dynamics-discrete element method(CFD-DEM)model to simulate the behavior of granular LCMs in fractures.We summarized the literature on the effects of high temperature on the mechanical properties of LCMs and the rheological properties of drilling fluid.We conducted sensitivity analyses to investigate how changing LCM slurry properties affected the fracture sealing efficiency at increasing temperatures.The results show that high temperature reduces the size,strength,and friction coefficient of LCMs as well as the drilling fluid viscosity.Smaller,softer,and less frictional LCM particles have lower bridging probability and slower bridging initiation.Smaller particles tend to form dual-particle bridges rather than single-particle bridges.These result in a deeper,tighter,but unstable sealing zone.Reduced drilling fluid viscosity leads to faster and shallower sealing zones.
基金supported by the National Key R&D Program of China grant(2017YFC0603105).
文摘The Meso-Neoproterozoic is a new play in the Ordos Basin.A deeper understanding about the dynamic relationship between the caprocks and the source rocks is needed.Based on the comprehensive analysis of hydrocarbon source development characteristics of the Meso-Neoproterozoic and its overlying strata,as well as the formation contact relationships,lithology characteristics and exploratory drilling data,it is recognized that the Meso-Neoproterozoic contains two types of petroleum accumulation assemblage,that is,the“self-sourced indigenous”and“upper source rock-lower reservoir”assemblages.The former is mainly controlled by the development and distribution of source rocks of the Changcheng System,with the Lower Cambrian shale sequence as its caprock.The later is controlled by the superposition between the Meso-Neoproterozoic and its overlying source rocks and this assemblage is mainly distributed in Hangjinqi and Pingliang areas with the Carboniferous-Permian shale sequence as its caprock.The dynamic evaluation on the displacement pressure serves to reconstruct the displacement pressure history of the caprock.The results show that the shale sequence of the Cambrian Maozhuang Formation in well XY 1 in the southern Ordos Basin has possibly acquired the ability of sealing natural gas since the early of Late Triassic.Its displacement pressure increased rapidly up to 20 MPa during the Late Triassic-Jurassic and keeps at 9.2 MPa at present,indicating fair sealing ability.The Carboniferous-Permian caprocks in Hangjinqi area could have acquired the ability to seal natural gas in the Late Jurassic-Early Cretaceous,and the present-day displacement pressure is 9e12 MPa,indicating good sealing ability.The upper Paleozoic caprock in Pingliang area has been able to seal natural gas since the Early Jurassic,with a maximum displacement pressure of 23 MPa during the Cretaceous period and a current value of 17 e20 MPa,indicative of strong ability to seal natural gas.The sealing ability of caprocks of both the“selfsourced indigenous”and“upper source rock-lower reservoir”assemblages has come into being earlier than or at least no later than the peak gas generation of the source rocks and therefore the caprocks are dynamically effective in geohistory.The Meso-Neoproterozoic reservoirs in the Ordos Basin are well preserved and probabally of better potential for exploration in terms of the caprock-source rock combination.
基金the support of the National Natural Science Foundation of China(52372368)。
文摘Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals.
基金supported by Zhejiang Provincial Science and Technology Plan Project(Grant No.2022C01118).
文摘Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Graph problems of topological parameters based on the spectra of graph matrices”(2021D01C069)the National Natural Science Foundation of the People's Republic of China“The investigation of spectral properties of graph operations and their related problems”(12161085)。
文摘Let G be a connected graph of order n and m_(RD)^(L)_(G)I denote the number of reciprocal distance Laplacian eigenvaluesof G in an interval I.For a given interval I,we mainly present several bounds on m_(RD)^(L)_(G)I in terms of various structuralparameters of the graph G,including vertex-connectivity,independence number and pendant vertices.
文摘We compare Newton’s force law of universal gravitation with a corrected simple approach based on Bhandari’s recently presented work, where the gravitation constant G is maintained. A reciprocity relation exists between both alternative gravity formulas with respect to the distances between mass centers. We conclude a one-to-one mapping of the two gravitational formulas. We don’t need Einstein’s construct of spacetime bending by matter.
基金the qualification of school-enterprise cooperation project,the project name:"Failure Mechanism Analysis and life Prediction of Hydraulic actuator sliding seal Assembly",funded by"Shijiazhuang Haishan Industrial Development Corporation",project number(AF21E20211158).
文摘The hydraulic actuator,known as the"muscle"of military aircraft,is responsible for flight attitude adjustment,trajectory control,braking turn,landing gear retracting and other actions,which directly affect its flight efficiency and safety.However,the sealing assembly often has the situation of over-aberrant aperture fit clearance or critical over-aberrant clearance,which increases the failure probability and degree of movable seal failure,and directly affects the flight efficiency and safety of military aircraft.In this paper,the simulation model of hydraulic actuator seal combination is established by ANSYS software,and the sealing principle is described.The change curve of contact width and contact pressure of combination seal under the action of high-pressure fluid is drawn.The effects of different oil pressure,fit clearance and other parameters on the sealing performance are analyzed.Finally,the accelerated life test of sliding seal components is carried out on the hydraulic actuator accelerated life test rig,and the surface morphology is compared and analyzed.The research shows that the O-ring is the main sealing element and the role of the check ring is to protect and support the O-ring to prevent damage caused by squeezing into the fit clearance,so the check ring bears a large load and is prone to shear failure.Excessive fit clearance is the main factor affecting the damage of the check ring,and the damage parts are mainly concentrated at the edge of the sealing surface.This paper provides a theoretical basis for the design of hydraulic actuator and the improvement of sealing performance.
文摘Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.
基金Project (50271054) supported by National Natural Science Foundation of ChinaProject (20070700003) supported by Ph.D. Programs Foundation of Ministry of Education of China+1 种基金Project (102102210031) supported by Science and Technologies Foundation of Henan,ChinaProject (2010A430008) supported by Natural Science Foundation of Henan Educational Committee,China
文摘Fine-grained ZK60 alloy was prepared by 2-pass reciprocating extrusion, and the low temperature superplasticity was conducted in a temperature range from 443 to 523 K and an initial strain rate ranging from 3.3×10^-4 to 3.3×10-2^s^-1. The results show that the alloy has an equiaxed grain structure with an average grain size of about 5.0μm, and the sizes of broken secondary particles and precipitates are no more than 175 and 50 nm, respectively. The alloy exhibits quasi-superplasticity with a maximum elongation of 270% at 523 K and an initial strain rate of 3.3×10^-4 s^-1. The strain rate sensitivity m is less than 0.2 at 443 and 473 K, and it is 0.42 at 523 K. The apparent activation energies at temperature below 473 K and at 523 K are less than 63.2 and 110.6 kJ/mol, respectively At temperature below 473 K, mainly intragranular sliding contributes to superplastic flow. At 523 K, grain boundary sliding is the dominant deformation mechanism, and dislocation creep controlled by grain boundary diffusion is considered to be the main accommodation mechanism.