Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Dopple...Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.展开更多
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi...Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.展开更多
A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic...A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic field through the plasma to directly measure the ratio of the plasma loop average electron density to collision frequency.An equivalent circuit model is used to analyze the relationship of the phase shift of the magnetic field component of LF electromagnetic waves with the plasma electron density and collision frequency.The applicable range of the LF method on a given plasma scale is analyzed.The upper diagnostic limit for the ratio of the electron density(unit:m^(-3))to collision frequency(unit:Hz)exceeds 1×10^(11),enabling an electron density to exceed 1×10^(20)m^(-3)and a collision frequency to be less than 1 GHz.In this work,the feasibility of using the LF phase shift to implement the plasma diagnosis is also assessed.Diagnosis experiments on shock tube equipment are conducted by using both the electrostatic probe method and LF method.By comparing the diagnostic results of the two methods,the inversion results are relatively consistent with each other,thereby preliminarily verifying the feasibility of the LF method.The ratio of the electron density to the collision frequency has a relatively uniform distribution during the plasma stabilization.The LF diagnostic path is a loop around the model,which is suitable for diagnosing the plasma that surrounds the model.Finally,the causes of diagnostic discrepancy between the two methods are analyzed.The proposed method provides a new avenue for diagnosing high-density enveloping plasma.展开更多
The caesium atomic fountain clock is a primary frequency standard.During its operation,a Majorana transition frequency shift will occur once a magnetic field at some special locations along the atomic trajectory is si...The caesium atomic fountain clock is a primary frequency standard.During its operation,a Majorana transition frequency shift will occur once a magnetic field at some special locations along the atomic trajectory is singular.In this study,by developing a physical model,we analyzed the magnetic field requirements for atomic adiabatic transition and calculated the influence of the Majorana atomic transition on the atomic state via a quantum method.Based on the simulation results for the magnetic field in the fountain clock,we applied the Monte Carlo method to simulate the relationship between the Majorana transition frequency shift and the magnetic field at the entrance of the magnetic shielding,as well as the initial atomic population.Measurement of the Majorana transition frequency shift was realized by state-selecting asymmetrically populated atoms.The relationship between the Majorana transition frequency shift and the axial magnetic field at the entrance of the magnetic shielding was obtained.The measured results were essentially consistent with the calculated results.Thus,the magnetic field at the entrance of the magnetic shielding was configured,and the Majorana transition frequency shift of the fountain clock was calculated to be 4.57×10^(-18).展开更多
Enhancement factor K0, which characterizes NMR and EPR frequency shifts for Cs-129Xe, is measured for the first time. The enhancement factor r-o was measured to be (702±41) at 80 ℃ and (653±20) at 90 ℃...Enhancement factor K0, which characterizes NMR and EPR frequency shifts for Cs-129Xe, is measured for the first time. The enhancement factor r-o was measured to be (702±41) at 80 ℃ and (653±20) at 90 ℃, using the NMR frequency shift, detected by atomic magnetometer at a low magnetic field of 100 nT. This result is useful for predicting the EPR frequency shifts for Cs and the NMR frequency shifts for 129Xe in spin-exchange cells.展开更多
The novel compensating method directly demodulates the signals without the carrier recovery processes, in which the carrier with original modulation frequency is used as the local coherent carrier. In this way, the ph...The novel compensating method directly demodulates the signals without the carrier recovery processes, in which the carrier with original modulation frequency is used as the local coherent carrier. In this way, the phase offsets due to frequency shift are linear. Based on this premise, the compensation processes are: firstly, the phase offsets between the baseband neighbor-symbols after clock recovery is unbiasedly estimated among the reference symbols; then, the receiving signals symbols are adjusted by the phase estimation value; finally, the phase offsets after adjusting are compensated by the least mean squares (LMS) algorithm. In order to express the compensation processes and ability clearly, the quadrature phase shift keying (QPSK) modulation signals are regarded as examples for Matlab simulation. BER simulations are carried out using the Monte-Carlo method. The learning curves are obtained to study the algorithm's convergence ability. The constellation figures are also simulated to observe the compensation results directly.展开更多
The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inv...The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inviscid and incompressible for simplicity. Dynamic equations of the coupled system are established. The added mass effect of liquid on micro-beams is discussed in detail. Characteristics of frequency shift are clarified for different liquid depths. Modal analysis shows that a drag effect of liquid has resulted in the change of phase of interaction(surface shear force), thus changing the system resonant frequency. The obtained results are useful in resonator design and applications.展开更多
We study the influence of external magnetic field on the shift of the resonant frequency in the photoassociation of ultracold Cs atoms, which are captured in a magnetically levitated optical crossed dipole trap. With ...We study the influence of external magnetic field on the shift of the resonant frequency in the photoassociation of ultracold Cs atoms, which are captured in a magnetically levitated optical crossed dipole trap. With the increase of the photoassociation laser intensity, the linear variation of the frequency shift is measured by recording the photoassociation spectra of the long-range 0_u^+ state of Cs molecule below the 6S_(1/2)+ 6P_(1/2) dissociation limit at different magnetic fields.The slope of the frequency shift to the intensity of the photoassociation laser exhibits a strong dependence on the external magnetic field. The experimental data is simulated with an analytic theory model, in which a single channel rectangular potential with the tunable well depth is introduced to acquire the influence of the magnetic field on the atomic behavior in the effective range where photoassociation occurs.展开更多
The orthometric height (OH) system plays a key role in geodesy, and it has broad applications in various fields and activities. Based on general relativity theory (GRT), on an arbitrary equi-geo- potential surface, th...The orthometric height (OH) system plays a key role in geodesy, and it has broad applications in various fields and activities. Based on general relativity theory (GRT), on an arbitrary equi-geo- potential surface, there does not exist the gravity frequency shift of an electromagnetic wave signal. However, between arbitrary two different equi-geopotential surfaces, there exists the gra- vity frequency shift of the signal. The relationship between the geopotential difference and the gravity frequency shift between arbitrary two points P and Q is referred to as the gravity frequency shift equation. Based on this equation, one can determine the geopotential difference as well as the OH difference between two separated points P and Q either by using electromagnetic wave signals propagated between P and Q, or by using the Global Positioning System (GPS) satellite signals received simultaneously by receivers at P and Q. Suppose an emitter at P emits a signal with frequency f towards a receiver at Q, and the received frequency of the signal at Q is , or suppose an emitter on board a flying GPS satellite emits signals with frequency f towards two receivers at P and Q on ground, and the received frequencies of the signals at P and Q are and , respectively, then, the geopoten-tial dif- ference between these two points can be determined based on the geopotential frequen- cy shift equation, using either the gravity frequency shift ? f or ? , and the corresponding OH difference is further determined based on the Bruns’ formula. Besides, using this approach a unified world height datum system might be realized, because P and Q could be chosen quite arbitrarily, e.g., they are located on two separated continents or islands.展开更多
An improved frequency shift method is proposed to remove the flat earth phase in ATI-SAR ocean surface motion detection in this study. First, two conventional flat earth effect removal methods(i.e., the frequency shif...An improved frequency shift method is proposed to remove the flat earth phase in ATI-SAR ocean surface motion detection in this study. First, two conventional flat earth effect removal methods(i.e., the frequency shift method and the orbital parameter method) are introduced and compared. Then, two improvements to frequency shift method are suggested. In the first improvement, the phase diagram is divided into several sub-blocks to calculate the phase fringe frequency. In the second improvement, a function between the phase of land regions and position is fitted to correct the residual flat earth phase based on the phase of the land regions that tend toward zero in an along-track interferogram. It is found that the improved frequency shift method is greatly improved;and it agrees well with the orbital parameter method, and achieves similar accuracy.展开更多
With introduction of the first-order strain-gradient of surface micro-beams into the energy density function,we developed a two-dimensional dynamic model for a compound quartz crystal resonator(QCR) system,consistin...With introduction of the first-order strain-gradient of surface micro-beams into the energy density function,we developed a two-dimensional dynamic model for a compound quartz crystal resonator(QCR) system,consisting of a QCR and surface micro-beam arrays.The frequency shift that was induced by micro-beams with consideration of strain-gradients is discussed in detail and some useful results are obtained,which have important significance in resonator design and applications.展开更多
Frequency shifts of the acetylene saturated absorption lines at 1.5μm with temperature, gas pressure and laser power have been investigated in detail. The second-order Doppler effect, the recoil effect, the Zeeman ef...Frequency shifts of the acetylene saturated absorption lines at 1.5μm with temperature, gas pressure and laser power have been investigated in detail. The second-order Doppler effect, the recoil effect, the Zeeman effect, the pressure shift and the power shift are taken into consideration. The magnitudes of those shifts caused by various effects are evaluated. In order to reproduce the stability of 5.7 × 10^-14 obtained by Edwards, all necessary conditions are given. The results show that when there is a larger external magnetic field, the Zeeman shift could not be neglected, so that the shield should be employed. And the design of a long cavity is advantageous to reduce the influence of the second-order Doppler effect. The results also show that at least 4-2.5℃ temperature control for cavity can effectively prevent several effects and improve the frequency stability.展开更多
Molecular structure, vibrational frequency and infrared intensity of UF6 are investigated by using the revised Perdew Burke-Enzerhof function with the triple-zeta polarized basis set. The calculation results are in go...Molecular structure, vibrational frequency and infrared intensity of UF6 are investigated by using the revised Perdew Burke-Enzerhof function with the triple-zeta polarized basis set. The calculation results are in good agreement with the experimental values and indicate the existence of a stable U2F6 molecule with a multiple bonded U2 unit. The calculation results also predict that the D3d symmetry of U2F6 is more stable than D3h. The optimized geometries, vibrational frequencies, and infrared intensities are also reported for U2F6 molecules in D3d symmetry. In addition, the isotopic shift of vibrational frequencies of the two molecules under isotopic substitution of uranium atom are also investigated with the same method. The U2F6 molecule is predicted to be better than UF6 for laser uranic isotope separation.展开更多
Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQP...Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQPSK) and Gaussian Frequency Shift Keying (GFSK) can be non-coherently demodulated with simple algorithms. However, these types of demodulation are not robust and suffer from poor performance. This paper proposes a new method to enhance the performance of DQPSK and GFSK using Interactive Kalman Filtering (IKF) technique, in which a one Unscented Kalman Filter (UKF) and two Kalman Filters (KF) are coupled to optimize the demodulated signals. This method consists of simple but very effective algorithms without adding complexity to the demodulators comparing to other very complex methods. UKF is used in this method due to its superiority in approximating and estimating nonlinear systems and its ability to handle non-Gaussian noise environments. The proposed method has been validated by creating a MATLAB/SIMULINK Bluetooth system model, in which the IKF is integrated into the receiver, which implement both DQPSK and GFSK, and run simulation in Gaussian and Non-Gaussian noise environments. Results have shown the effectiveness of this method in optimizing the received signals, and that the UKF outperforms the Extended Kalman Filter (EKF).展开更多
Caesium atomic fountain clock is a primary frequency standard,which realizes the duration of second.Its performance is mostly dominated by the frequency accuracy,and the C-field induced second-order Zeeman frequency s...Caesium atomic fountain clock is a primary frequency standard,which realizes the duration of second.Its performance is mostly dominated by the frequency accuracy,and the C-field induced second-order Zeeman frequency shift is the major effect,which limits the accuracy improvement.By applying a high-precision current supply and high-performance magnetic shieldings,the C-field stability has been improved significantly.In order to achieve a uniform C-field,this paper proposes a doubly wound C-field solenoid,which compensates the radial magnetic field along the atomic flight region generated by the lead-out single wire and improves the accuracy evaluation of second-order Zeeman frequency shift.Based on the stable and uniform C-field,we launch the selected atoms to different heights and record the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 central frequency,obtaining this frequency shift as 131.03×10^(-15)and constructing the C-field profile(σ=0.15 n T).Meanwhile,during normal operation,we lock NTSC-F2 to the central frequency of the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 fringe for ten consecutive days and record this frequency fluctuation in time domain.The first evaluation of second-order Zeeman frequency shift uncertainty is 0.10×10^(-15).The total deviation of the frequency fluctuation on the clock transition induced by the C-field instability is less than 2.6×10^(-17).Compared with NTSC-F1,NTSC-F2,there appears a significant improvement.展开更多
2π phase ambiguity problem is very important in phase measurement when a deformed object has a large out of plane displacement. The dual-frequency projection grating phaseshifting profilometry (PSP) can be used to ...2π phase ambiguity problem is very important in phase measurement when a deformed object has a large out of plane displacement. The dual-frequency projection grating phaseshifting profilometry (PSP) can be used to solve such an issue. In the measurement, two properchosen frequency gratings are utilized to synthesize an equivalent wavelength grating which ensures the computed phase in a principal phase range. Thus, the error caused by the phase unwrapping process with the conventional phase reconstruct algorithm can be eliminated. Finally, experimental result of a specimen with large plastic deformation is given to prove that the proposed method is effective to handle the phase discontinuity.展开更多
The damping and frequency-shift in Landau mechanism of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate are investigated by using the Hartree-Fock-Bogoliubov approximation. The practical relaxation...The damping and frequency-shift in Landau mechanism of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate are investigated by using the Hartree-Fock-Bogoliubov approximation. The practical relaxations of the elementary excitations and the orthometric relation among them are taken into account to obtain advisable calculation formula for damping as well as frequency-shift. The first approximation of Gaussian distribution function is employed for the ground-state wavefunction to suitably eliminate the divergence of the analytic three-mode coupling matrix elements. According to these methods, both Landau damping rate and frequency-shift of the quadrupole mode are analytically calculated. In addition, all the theoretical results agree with the experimental ones.展开更多
High-speed and wide-band LiNbO3 waveguide electro-optic intensity modulator has drawn great attention in the field of optical fiber communication and sensor. This paper reports the research results on the measurement ...High-speed and wide-band LiNbO3 waveguide electro-optic intensity modulator has drawn great attention in the field of optical fiber communication and sensor. This paper reports the research results on the measurement of frequency shift characteristics of Mach-Zehnder electro-optic intensity modulator. Two measurement methods of frequency shift characteristics for high and low frequency modulations are studied in theory and experiment and demonstrate different results. The realization of a multi-wavelength optical source based on Mach-Zehnder electro-optic intensity modulator has been introduced. The technique to reach the maximum intensity for interesting shift frequency, particularly for heterodyne detection of Brillouin distributed optical fiber sensing, has been given.展开更多
In order to measure the Brillouin frequency shift (BFS) of the medium, this paper proposes a method using mixtures in a two-cell stimulated Brillouin scattering system, which uses a medium to be measured as amplifie...In order to measure the Brillouin frequency shift (BFS) of the medium, this paper proposes a method using mixtures in a two-cell stimulated Brillouin scattering system, which uses a medium to be measured as amplifier medium and a mixture medium as generator medium. The seed light from the generator gains effective amplification in the amplifier and the amplification ratio changes with the mixing fraction, Only when the BFS of the mixture medium is equal to that of the medium in the amplifier does the seed light obtain the maximum amplification ratio. The method has the advantage of independence of the wavelength of the incident light.展开更多
In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient ...In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/kin is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.展开更多
文摘Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.
基金Project supported by the IACAS Young Elite Researcher Project(Grant No.QNYC201703)the Rising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CAS(Grant No.ZDRW-XH-2021-2-04)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08).
文摘Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52107162 and 12202479)the Science and Technology Projects of Shaanxi Province,China(Grant Nos.2022CGBX-12 and 2022KXJ-57)the Science and Technology Projects of Xi’an City,China(Grant Nos.23KGDW0023-2022 and 23GXFW0011)。
文摘A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic field through the plasma to directly measure the ratio of the plasma loop average electron density to collision frequency.An equivalent circuit model is used to analyze the relationship of the phase shift of the magnetic field component of LF electromagnetic waves with the plasma electron density and collision frequency.The applicable range of the LF method on a given plasma scale is analyzed.The upper diagnostic limit for the ratio of the electron density(unit:m^(-3))to collision frequency(unit:Hz)exceeds 1×10^(11),enabling an electron density to exceed 1×10^(20)m^(-3)and a collision frequency to be less than 1 GHz.In this work,the feasibility of using the LF phase shift to implement the plasma diagnosis is also assessed.Diagnosis experiments on shock tube equipment are conducted by using both the electrostatic probe method and LF method.By comparing the diagnostic results of the two methods,the inversion results are relatively consistent with each other,thereby preliminarily verifying the feasibility of the LF method.The ratio of the electron density to the collision frequency has a relatively uniform distribution during the plasma stabilization.The LF diagnostic path is a loop around the model,which is suitable for diagnosing the plasma that surrounds the model.Finally,the causes of diagnostic discrepancy between the two methods are analyzed.The proposed method provides a new avenue for diagnosing high-density enveloping plasma.
基金Project supported by the National Natural Science Foundation of China(Grant No.12173044)Research and Development Project of Scientific Research Instruments and Equipment of Chinese Academy of Sciences(Grant No.YJKYYQ20200020)+1 种基金Large Research Infrastructures Improvement Funds of Chinese Academy of Sciences(Grant No.DSS-WXGZ-2020-0005)Chinese Academy of Sciences for Western Young Scholars(Grant Nos.XAB2018A06,XAB2019A07,and XAB2018B16)。
文摘The caesium atomic fountain clock is a primary frequency standard.During its operation,a Majorana transition frequency shift will occur once a magnetic field at some special locations along the atomic trajectory is singular.In this study,by developing a physical model,we analyzed the magnetic field requirements for atomic adiabatic transition and calculated the influence of the Majorana atomic transition on the atomic state via a quantum method.Based on the simulation results for the magnetic field in the fountain clock,we applied the Monte Carlo method to simulate the relationship between the Majorana transition frequency shift and the magnetic field at the entrance of the magnetic shielding,as well as the initial atomic population.Measurement of the Majorana transition frequency shift was realized by state-selecting asymmetrically populated atoms.The relationship between the Majorana transition frequency shift and the axial magnetic field at the entrance of the magnetic shielding was obtained.The measured results were essentially consistent with the calculated results.Thus,the magnetic field at the entrance of the magnetic shielding was configured,and the Majorana transition frequency shift of the fountain clock was calculated to be 4.57×10^(-18).
基金supported by the Key Program of the National Natural Science Foundation of China(Grant Nos.61227902,61273067,and 6137210)SAST Foundation of China
文摘Enhancement factor K0, which characterizes NMR and EPR frequency shifts for Cs-129Xe, is measured for the first time. The enhancement factor r-o was measured to be (702±41) at 80 ℃ and (653±20) at 90 ℃, using the NMR frequency shift, detected by atomic magnetometer at a low magnetic field of 100 nT. This result is useful for predicting the EPR frequency shifts for Cs and the NMR frequency shifts for 129Xe in spin-exchange cells.
基金supported by the National Natural Science Foundation of China(60532030)
文摘The novel compensating method directly demodulates the signals without the carrier recovery processes, in which the carrier with original modulation frequency is used as the local coherent carrier. In this way, the phase offsets due to frequency shift are linear. Based on this premise, the compensation processes are: firstly, the phase offsets between the baseband neighbor-symbols after clock recovery is unbiasedly estimated among the reference symbols; then, the receiving signals symbols are adjusted by the phase estimation value; finally, the phase offsets after adjusting are compensated by the least mean squares (LMS) algorithm. In order to express the compensation processes and ability clearly, the quadrature phase shift keying (QPSK) modulation signals are regarded as examples for Matlab simulation. BER simulations are carried out using the Monte-Carlo method. The learning curves are obtained to study the algorithm's convergence ability. The constellation figures are also simulated to observe the compensation results directly.
基金Project supported by the National Natural Science Foundation of China(Nos.11272127 and51425006)the Research Fund for the Doctoral Program of Higher Education of China(No.20130142110022)the Grant from the Impact and Safety of Coastal Engineering Initiative Program of Zhejiang Provincial Government at Ningbo University(No.zj1213)
文摘The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inviscid and incompressible for simplicity. Dynamic equations of the coupled system are established. The added mass effect of liquid on micro-beams is discussed in detail. Characteristics of frequency shift are clarified for different liquid depths. Modal analysis shows that a drag effect of liquid has resulted in the change of phase of interaction(surface shear force), thus changing the system resonant frequency. The obtained results are useful in resonator design and applications.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304203)the Chang Jiang Scholars and Innovative Research Team in the University of the Ministry of Education of China(Grant No.IRT13076)+2 种基金the National Natural Science Foundation of China(Grant Nos.61722507,61675121,61705123,and 11434007)the Fund for Shanxi 1331 Project Key Subjects Construction,Chinathe Applied Basic Research Project of Shanxi Province,China(Grant No.201701D221002)
文摘We study the influence of external magnetic field on the shift of the resonant frequency in the photoassociation of ultracold Cs atoms, which are captured in a magnetically levitated optical crossed dipole trap. With the increase of the photoassociation laser intensity, the linear variation of the frequency shift is measured by recording the photoassociation spectra of the long-range 0_u^+ state of Cs molecule below the 6S_(1/2)+ 6P_(1/2) dissociation limit at different magnetic fields.The slope of the frequency shift to the intensity of the photoassociation laser exhibits a strong dependence on the external magnetic field. The experimental data is simulated with an analytic theory model, in which a single channel rectangular potential with the tunable well depth is introduced to acquire the influence of the magnetic field on the atomic behavior in the effective range where photoassociation occurs.
文摘The orthometric height (OH) system plays a key role in geodesy, and it has broad applications in various fields and activities. Based on general relativity theory (GRT), on an arbitrary equi-geo- potential surface, there does not exist the gravity frequency shift of an electromagnetic wave signal. However, between arbitrary two different equi-geopotential surfaces, there exists the gra- vity frequency shift of the signal. The relationship between the geopotential difference and the gravity frequency shift between arbitrary two points P and Q is referred to as the gravity frequency shift equation. Based on this equation, one can determine the geopotential difference as well as the OH difference between two separated points P and Q either by using electromagnetic wave signals propagated between P and Q, or by using the Global Positioning System (GPS) satellite signals received simultaneously by receivers at P and Q. Suppose an emitter at P emits a signal with frequency f towards a receiver at Q, and the received frequency of the signal at Q is , or suppose an emitter on board a flying GPS satellite emits signals with frequency f towards two receivers at P and Q on ground, and the received frequencies of the signals at P and Q are and , respectively, then, the geopoten-tial dif- ference between these two points can be determined based on the geopotential frequen- cy shift equation, using either the gravity frequency shift ? f or ? , and the corresponding OH difference is further determined based on the Bruns’ formula. Besides, using this approach a unified world height datum system might be realized, because P and Q could be chosen quite arbitrarily, e.g., they are located on two separated continents or islands.
基金The National Key Research and Development Program of China under contract No.2016YFC1402703the National Natural Science Foundation of China under contract Nos 61471136 and 61501130
文摘An improved frequency shift method is proposed to remove the flat earth phase in ATI-SAR ocean surface motion detection in this study. First, two conventional flat earth effect removal methods(i.e., the frequency shift method and the orbital parameter method) are introduced and compared. Then, two improvements to frequency shift method are suggested. In the first improvement, the phase diagram is divided into several sub-blocks to calculate the phase fringe frequency. In the second improvement, a function between the phase of land regions and position is fitted to correct the residual flat earth phase based on the phase of the land regions that tend toward zero in an along-track interferogram. It is found that the improved frequency shift method is greatly improved;and it agrees well with the orbital parameter method, and achieves similar accuracy.
基金supported by the National Science Foundation of China(Grants 11272127 and 51435006)Research Fund for the Doctoral Program of Higher Education of China(Grant 20130142110022)the Grant from the Impact and Safety of Coastal Engineering Initiative Program of Zhejiang Provincial Government at Ningbo University(Grant zj1213)
文摘With introduction of the first-order strain-gradient of surface micro-beams into the energy density function,we developed a two-dimensional dynamic model for a compound quartz crystal resonator(QCR) system,consisting of a QCR and surface micro-beam arrays.The frequency shift that was induced by micro-beams with consideration of strain-gradients is discussed in detail and some useful results are obtained,which have important significance in resonator design and applications.
基金Project supported by the Provincial Natural Science Funds of Shanxi Province, China (Grant No 20041037)the Industrial R&D Programme of Shanxi Province, China (Grant No 2006031118-04)
文摘Frequency shifts of the acetylene saturated absorption lines at 1.5μm with temperature, gas pressure and laser power have been investigated in detail. The second-order Doppler effect, the recoil effect, the Zeeman effect, the pressure shift and the power shift are taken into consideration. The magnitudes of those shifts caused by various effects are evaluated. In order to reproduce the stability of 5.7 × 10^-14 obtained by Edwards, all necessary conditions are given. The results show that when there is a larger external magnetic field, the Zeeman shift could not be neglected, so that the shield should be employed. And the design of a long cavity is advantageous to reduce the influence of the second-order Doppler effect. The results also show that at least 4-2.5℃ temperature control for cavity can effectively prevent several effects and improve the frequency stability.
基金Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2009JM1007)
文摘Molecular structure, vibrational frequency and infrared intensity of UF6 are investigated by using the revised Perdew Burke-Enzerhof function with the triple-zeta polarized basis set. The calculation results are in good agreement with the experimental values and indicate the existence of a stable U2F6 molecule with a multiple bonded U2 unit. The calculation results also predict that the D3d symmetry of U2F6 is more stable than D3h. The optimized geometries, vibrational frequencies, and infrared intensities are also reported for U2F6 molecules in D3d symmetry. In addition, the isotopic shift of vibrational frequencies of the two molecules under isotopic substitution of uranium atom are also investigated with the same method. The U2F6 molecule is predicted to be better than UF6 for laser uranic isotope separation.
文摘Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQPSK) and Gaussian Frequency Shift Keying (GFSK) can be non-coherently demodulated with simple algorithms. However, these types of demodulation are not robust and suffer from poor performance. This paper proposes a new method to enhance the performance of DQPSK and GFSK using Interactive Kalman Filtering (IKF) technique, in which a one Unscented Kalman Filter (UKF) and two Kalman Filters (KF) are coupled to optimize the demodulated signals. This method consists of simple but very effective algorithms without adding complexity to the demodulators comparing to other very complex methods. UKF is used in this method due to its superiority in approximating and estimating nonlinear systems and its ability to handle non-Gaussian noise environments. The proposed method has been validated by creating a MATLAB/SIMULINK Bluetooth system model, in which the IKF is integrated into the receiver, which implement both DQPSK and GFSK, and run simulation in Gaussian and Non-Gaussian noise environments. Results have shown the effectiveness of this method in optimizing the received signals, and that the UKF outperforms the Extended Kalman Filter (EKF).
基金the National Key R&D Program of China(Grant No.2016YFF0200202)the Maintenance and Reformation Program for the Major Science and Technology Fundamental Devices of the Chinese Academy of Sciences(Grant No.DSS-WXGZ-2020-0005)the Foundation for Western Young Scholars,China(Grant No.XAB2018A06)。
文摘Caesium atomic fountain clock is a primary frequency standard,which realizes the duration of second.Its performance is mostly dominated by the frequency accuracy,and the C-field induced second-order Zeeman frequency shift is the major effect,which limits the accuracy improvement.By applying a high-precision current supply and high-performance magnetic shieldings,the C-field stability has been improved significantly.In order to achieve a uniform C-field,this paper proposes a doubly wound C-field solenoid,which compensates the radial magnetic field along the atomic flight region generated by the lead-out single wire and improves the accuracy evaluation of second-order Zeeman frequency shift.Based on the stable and uniform C-field,we launch the selected atoms to different heights and record the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 central frequency,obtaining this frequency shift as 131.03×10^(-15)and constructing the C-field profile(σ=0.15 n T).Meanwhile,during normal operation,we lock NTSC-F2 to the central frequency of the magnetically sensitive Ramsey transition|F=3,mF=-1→|F=4,mF=-1 fringe for ten consecutive days and record this frequency fluctuation in time domain.The first evaluation of second-order Zeeman frequency shift uncertainty is 0.10×10^(-15).The total deviation of the frequency fluctuation on the clock transition induced by the C-field instability is less than 2.6×10^(-17).Compared with NTSC-F1,NTSC-F2,there appears a significant improvement.
基金the National Natural Science Foundation of China(No.10672065).
文摘2π phase ambiguity problem is very important in phase measurement when a deformed object has a large out of plane displacement. The dual-frequency projection grating phaseshifting profilometry (PSP) can be used to solve such an issue. In the measurement, two properchosen frequency gratings are utilized to synthesize an equivalent wavelength grating which ensures the computed phase in a principal phase range. Thus, the error caused by the phase unwrapping process with the conventional phase reconstruct algorithm can be eliminated. Finally, experimental result of a specimen with large plastic deformation is given to prove that the proposed method is effective to handle the phase discontinuity.
基金supported by the National Natural Science Foundation of China(Grant No.11264039)the Key Discipline of Theoretical Physics of Xinjiang,China(Grant Nos.LLWLY201202 and LLWLY201203)the Postgraduate Scientific and Theoretical Innovation Project of Xinjiang Normal University,China(Grant No.20131234)
文摘The damping and frequency-shift in Landau mechanism of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate are investigated by using the Hartree-Fock-Bogoliubov approximation. The practical relaxations of the elementary excitations and the orthometric relation among them are taken into account to obtain advisable calculation formula for damping as well as frequency-shift. The first approximation of Gaussian distribution function is employed for the ground-state wavefunction to suitably eliminate the divergence of the analytic three-mode coupling matrix elements. According to these methods, both Landau damping rate and frequency-shift of the quadrupole mode are analytically calculated. In addition, all the theoretical results agree with the experimental ones.
基金supported by Program for New Century Excellent Talents in University under Grand No. NCET-06-0925.
文摘High-speed and wide-band LiNbO3 waveguide electro-optic intensity modulator has drawn great attention in the field of optical fiber communication and sensor. This paper reports the research results on the measurement of frequency shift characteristics of Mach-Zehnder electro-optic intensity modulator. Two measurement methods of frequency shift characteristics for high and low frequency modulations are studied in theory and experiment and demonstrate different results. The realization of a multi-wavelength optical source based on Mach-Zehnder electro-optic intensity modulator has been introduced. The technique to reach the maximum intensity for interesting shift frequency, particularly for heterodyne detection of Brillouin distributed optical fiber sensing, has been given.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10476009 and 60478020).
文摘In order to measure the Brillouin frequency shift (BFS) of the medium, this paper proposes a method using mixtures in a two-cell stimulated Brillouin scattering system, which uses a medium to be measured as amplifier medium and a mixture medium as generator medium. The seed light from the generator gains effective amplification in the amplifier and the amplification ratio changes with the mixing fraction, Only when the BFS of the mixture medium is equal to that of the medium in the amplifier does the seed light obtain the maximum amplification ratio. The method has the advantage of independence of the wavelength of the incident light.
基金Project supported by the National Basic Research Program of China(Grant Nos.2010CB327605 and 2010CB328304)the National High-Technology Research and Development Program of China(Grant No.2013AA031501)+7 种基金the National Natural Science Foundation of China(Grant No.61307109)the Research Foundation from Ministry of Education of China(Grant No.109015)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NECT-11-0596)the Beijing Nova Program,China(Grant No.2011066)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120005120021)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.2013RC1202)the China Postdoctoral Science Foundation(Grant No.2012M511826)the Postdoctoral Science Foundation of Guangdong Province,China(Grant No.244331)
文摘In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/kin is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.