A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear reg...A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear regression,contained four descriptors solely extracted from the molecular structure of compounds. The statistical results of the final model show that R2= 0.982 4 and S=0.869 8 (where R is the correlation coefficient and S is the standard deviation). To test its predictive ability,the model was further used to predict the 13C NMR spectra of the carbinol carbon atoms of other nine compounds which were not included in the developed model. The average relative errors are 0.94% and 1.70%,respectively,for the training set and the predictive set. The model is statistically significant and shows good stability for data variation as tested by the leave-one-out (LOO) cross-validation. The comparison with other approaches also reveals good performance of this method.展开更多
After the geometry optimization at B3LYP/6-31+G(d,p) level,the calculations of the NMR chemical shifts of a series of stilbene analogues were carried out by means of Gauge Including Atomic Orbitals(GIAO) method a...After the geometry optimization at B3LYP/6-31+G(d,p) level,the calculations of the NMR chemical shifts of a series of stilbene analogues were carried out by means of Gauge Including Atomic Orbitals(GIAO) method at HF/6-31+G(d) level and B3LYP/6-311G+(2d,p) level,respectively.The 13C NMR chemical shifts calculated at both HF/6-31+G(d) and B3LYP/6-31+G(d,p) levels are in agreement with the observed values.By virtue of a series of linear correction equations(δpred.=a+bδcalcd.) of the 13C chemical shifts,accurate prediction of 13C chemical shifts was achieved for the new stilbene compounds.For the 13C NMR chemical shifts calculated at HF/6-31+G(d) level,the linear correlation of δpred.with δexptl.is excellent,and the square of correlation coefficient,r2,is 0.9985.The maximum absolute difference between δpred.and δexptl.,Δδ,is 2.3,and the root-mean-square error between δpred.and δexptl.is 0.98.In the meantime,for those obtained at B3LYP/6-31+G(d,p) level,the linear correlation of δpred.with δexptl.is also excellent,and the square of correlation coefficient,r2,is up to 0.9987.The maximum absolute difference between δpred.and δexptl.,Δδ,is 2.2,and the root-mean-square error between δpred.and δexptl.is only 0.88.展开更多
After the geometry optimization at B3LYP/6-31+G(d,p) level,the NMR calcula-tions of a series of fluorenone analogues have been carried out by GIAO method at HF/6-31+G(d) level and B3LYP/6-311G+(2d,p) level,re...After the geometry optimization at B3LYP/6-31+G(d,p) level,the NMR calcula-tions of a series of fluorenone analogues have been carried out by GIAO method at HF/6-31+G(d) level and B3LYP/6-311G+(2d,p) level,respectively.The 13C NMR chemical shifts calculated at HF/6-31+G(d) level show better agreement with the observed values.By a series of linear correction equations (δpred=a + bδcalc),accurate prediction of 13C chemical shifts was achieved for the new fluorenone compound.The linear correlation of δpred with δexptl is excellent,and the square of correlation coefficient,r2,is up to 0.994.The maximum absolute difference between δpred and δexptl,Δδ,is 4.6 ppm,and the root-mean-square error between δpred and δexptl is only 2.6 ppm.展开更多
Quantum chemical calculations on some possible equilibrium geometries of C24O2 isomers derived from C24 (D6) and C24O have been performed using density functional theory (DFT) method. The geometric and electronic ...Quantum chemical calculations on some possible equilibrium geometries of C24O2 isomers derived from C24 (D6) and C24O have been performed using density functional theory (DFT) method. The geometric and electronic structures as well as the relative energies and thermal stabilities of various C24O2 isomers at the ground state have been calculated at the B3LYP/6-31G(d) level of theory. And the 1,4,2,5-C24O2 isomer was found to be the most stable geometry where two oxygen atoms were added to the longest carbon-carbon bonds in the same pentagon from a thermodynamic point of view. Based on the optimized neutral geometries, the vertical ionization potential and vertical electron affinity have been obtained. Meanwhile, the vibrational frequencies, IR spectrum, and 13C chemical shifts of various C24O2 isomers have been calculated and analyzed.展开更多
After the geometry optimizations at the B3LYP/6-31+G(d,p) level, the NMR calculations of a series of 9,10-dihydrophenanthrene analogues have been carried out by GIAO method at the HF/6-31+G(d) level. The calcula...After the geometry optimizations at the B3LYP/6-31+G(d,p) level, the NMR calculations of a series of 9,10-dihydrophenanthrene analogues have been carried out by GIAO method at the HF/6-31+G(d) level. The calculated ^13C NMR chemical shifts are in agreement with the observed values. By a series of linear correlation equations (δpred = a + bδcal.c) of the ^13C chemical shifts, accurate prediction of ^13C chemical shifts was achieved for the new 9,10- dihydrophenanthrene compound, for which the predicted ^13C NMR chemical shifts are in quite good agreement with the experimental values. The linear correlation between δpred and δexptl is excellent, and the square of correlation coefficient, r^2, is up to 0.9973. The maximum absolute difference between δpred and δexptl, △δ, is 4.5 ppm, and the rms error between δpred and δexpt is 2.55 ppm. In the meantime, according to the theoretical predicted result, we could confirm that the new 9,10-dihydrophenanthrene analogue is erianthridin (2,7-dihydroxy-3,4-dimethoxy-9,10-dihydro- phenanthrene).展开更多
Fifty-three samples of multi-substituted benzylideneanilines XArCH=NArYs (abbreviated XBAYs) were synthesized and their NMR spectra were determined. An extensional study of substituent effects on the 1H NMR chemical...Fifty-three samples of multi-substituted benzylideneanilines XArCH=NArYs (abbreviated XBAYs) were synthesized and their NMR spectra were determined. An extensional study of substituent effects on the 1H NMR chemical shifts (δH(CH=N)) and 13C NMR chemical shifts (δc(CH=N)) of the CH=N bridging group from di-substituted to multi-substituted XBAYs was made based on a total of 182 samples of XBAYs, together with the NMR data of other 129 samples of di-substituted XBAYs quoted from literatures. The results show thatthe substituent specific cross-interaction effect parameter (△(∑σ)2) plays an important role in quantifying the δc(CH=N) values of XBAYs, but it is negligible for quantifying the δH (CH=N) values; the other substituent parameters also present different influences on the δc (CH=N) and (δH (CH=N). On the whole, the contributions of X and Y to the δc (CH=N) of XBAYs are balanced, but the δH(CH=N) values of XBAYs mainly rely on the contributions of X.展开更多
Three ethylene-vinyl alcohol copolymers were studied by means of the substituent chemical shift (SCS) method. The SCS parameters of hydroxy (-OH) in two different solvents were obtained: in deuterium oxide/phenol (20/...Three ethylene-vinyl alcohol copolymers were studied by means of the substituent chemical shift (SCS) method. The SCS parameters of hydroxy (-OH) in two different solvents were obtained: in deuterium oxide/phenol (20/80 W/W ) the parameters are S_1 = 42.77±0.08ppm, S_2 = 7.15±0.06 ppm, S_3 (s)= -4.08±0.02ppm, S_3 (t) =-3.09±0.20ppm,S_4 = 0.48±0.03ppm, S_5 = 0.26±0.05ppm. In o-dichloro-benzen-d_4 S_1(s)=44.79±0.61ppm, S_2=7.40±0.00ppm, S_3(s)=-4.51±0.17ppm, S_3(t)=-3.13 ±0.00 ppm, S_4 =0.63±0.04ppm, S_5=0.36±0.00ppm.Simultaneously the ^(13)CNMR spectra of EVA copolymers were assigned by using the SCS parameters obtained.展开更多
On two dimensional maps of <sup>1</sup>H-<sup>13</sup>C correlation spectroscopy (H-C COSY) analysis for the mannan of <i>Candida tropicalis</i>, nine cross peaks of anomeric proton...On two dimensional maps of <sup>1</sup>H-<sup>13</sup>C correlation spectroscopy (H-C COSY) analysis for the mannan of <i>Candida tropicalis</i>, nine cross peaks of anomeric proton and carbon were useful for the purpose of obtaining information on the chemical structure of this molecule. Namely, the mannans was comb-like structure constructed with the linear <i>α</i>-1,6-linked polymannnosyl backbone and several oligomannnosyl side chains composed of <i>α</i>-1,2-, <i>α</i>-1,3-, and <i>β</i>-1,2-linkages. Therefore, in the structural investigation of comb-like mannan, two-dimensional H-C COSY analysis is as useful as two-dimensional nuclear Hartmann-Hahn (HOHAHA) analysis.展开更多
Five nopyl ethers and two nopyl esters have been synthesized, and their 13 C NMR spectra have been recorded. The C 6, C 7 chemical shifts in their 13 C NMR spectra have been discussed in terms of configuration structu...Five nopyl ethers and two nopyl esters have been synthesized, and their 13 C NMR spectra have been recorded. The C 6, C 7 chemical shifts in their 13 C NMR spectra have been discussed in terms of configuration structure. It is suggested that the C 1, C 2, C 3, C 4 and C 5 atoms are in the same plan and the 6,6 dimethylbicyclohept 2 ene part is in the Y shape. The ethers and esters obtained appeared to be derivatives of apopinene 6,6 dimethylbicyclohept 2 ene with substituents at the C 2 position . The effect of substituents occured mainly on the chemical shifts of C 1, C 2 and C 3. There seemes a weaker steric interaction of the substituents with other carbon atoms.展开更多
基金Projects(20775010, 21075011) supported by the National Natural Science Foundation of ChinaProject(2008AA05Z405) supported by the National High-tech Research and Development Program of China+2 种基金Project(09JJ3016) supported by the Natural Science Foundation of Hunan Province, ChinaProject(09C066) supported by the Scientific Research Fund of Hunan Provincial Education Department, ChinaProject(2010CL01) supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, China
文摘A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear regression,contained four descriptors solely extracted from the molecular structure of compounds. The statistical results of the final model show that R2= 0.982 4 and S=0.869 8 (where R is the correlation coefficient and S is the standard deviation). To test its predictive ability,the model was further used to predict the 13C NMR spectra of the carbinol carbon atoms of other nine compounds which were not included in the developed model. The average relative errors are 0.94% and 1.70%,respectively,for the training set and the predictive set. The model is statistically significant and shows good stability for data variation as tested by the leave-one-out (LOO) cross-validation. The comparison with other approaches also reveals good performance of this method.
基金Supported by the Scientific Research Foundation of Department of Education of Yunnan Province,China(No.09Y0181)
文摘After the geometry optimization at B3LYP/6-31+G(d,p) level,the calculations of the NMR chemical shifts of a series of stilbene analogues were carried out by means of Gauge Including Atomic Orbitals(GIAO) method at HF/6-31+G(d) level and B3LYP/6-311G+(2d,p) level,respectively.The 13C NMR chemical shifts calculated at both HF/6-31+G(d) and B3LYP/6-31+G(d,p) levels are in agreement with the observed values.By virtue of a series of linear correction equations(δpred.=a+bδcalcd.) of the 13C chemical shifts,accurate prediction of 13C chemical shifts was achieved for the new stilbene compounds.For the 13C NMR chemical shifts calculated at HF/6-31+G(d) level,the linear correlation of δpred.with δexptl.is excellent,and the square of correlation coefficient,r2,is 0.9985.The maximum absolute difference between δpred.and δexptl.,Δδ,is 2.3,and the root-mean-square error between δpred.and δexptl.is 0.98.In the meantime,for those obtained at B3LYP/6-31+G(d,p) level,the linear correlation of δpred.with δexptl.is also excellent,and the square of correlation coefficient,r2,is up to 0.9987.The maximum absolute difference between δpred.and δexptl.,Δδ,is 2.2,and the root-mean-square error between δpred.and δexptl.is only 0.88.
文摘After the geometry optimization at B3LYP/6-31+G(d,p) level,the NMR calcula-tions of a series of fluorenone analogues have been carried out by GIAO method at HF/6-31+G(d) level and B3LYP/6-311G+(2d,p) level,respectively.The 13C NMR chemical shifts calculated at HF/6-31+G(d) level show better agreement with the observed values.By a series of linear correction equations (δpred=a + bδcalc),accurate prediction of 13C chemical shifts was achieved for the new fluorenone compound.The linear correlation of δpred with δexptl is excellent,and the square of correlation coefficient,r2,is up to 0.994.The maximum absolute difference between δpred and δexptl,Δδ,is 4.6 ppm,and the root-mean-square error between δpred and δexptl is only 2.6 ppm.
文摘Quantum chemical calculations on some possible equilibrium geometries of C24O2 isomers derived from C24 (D6) and C24O have been performed using density functional theory (DFT) method. The geometric and electronic structures as well as the relative energies and thermal stabilities of various C24O2 isomers at the ground state have been calculated at the B3LYP/6-31G(d) level of theory. And the 1,4,2,5-C24O2 isomer was found to be the most stable geometry where two oxygen atoms were added to the longest carbon-carbon bonds in the same pentagon from a thermodynamic point of view. Based on the optimized neutral geometries, the vertical ionization potential and vertical electron affinity have been obtained. Meanwhile, the vibrational frequencies, IR spectrum, and 13C chemical shifts of various C24O2 isomers have been calculated and analyzed.
基金supported by the Scientific Research Foundation of Department of Education of Yunnan Province (No. 2010Z035)
文摘After the geometry optimizations at the B3LYP/6-31+G(d,p) level, the NMR calculations of a series of 9,10-dihydrophenanthrene analogues have been carried out by GIAO method at the HF/6-31+G(d) level. The calculated ^13C NMR chemical shifts are in agreement with the observed values. By a series of linear correlation equations (δpred = a + bδcal.c) of the ^13C chemical shifts, accurate prediction of ^13C chemical shifts was achieved for the new 9,10- dihydrophenanthrene compound, for which the predicted ^13C NMR chemical shifts are in quite good agreement with the experimental values. The linear correlation between δpred and δexptl is excellent, and the square of correlation coefficient, r^2, is up to 0.9973. The maximum absolute difference between δpred and δexptl, △δ, is 4.5 ppm, and the rms error between δpred and δexpt is 2.55 ppm. In the meantime, according to the theoretical predicted result, we could confirm that the new 9,10-dihydrophenanthrene analogue is erianthridin (2,7-dihydroxy-3,4-dimethoxy-9,10-dihydro- phenanthrene).
基金supported by the National Natural Science Foundation of China(No.21672058 and No.21272063)
文摘Fifty-three samples of multi-substituted benzylideneanilines XArCH=NArYs (abbreviated XBAYs) were synthesized and their NMR spectra were determined. An extensional study of substituent effects on the 1H NMR chemical shifts (δH(CH=N)) and 13C NMR chemical shifts (δc(CH=N)) of the CH=N bridging group from di-substituted to multi-substituted XBAYs was made based on a total of 182 samples of XBAYs, together with the NMR data of other 129 samples of di-substituted XBAYs quoted from literatures. The results show thatthe substituent specific cross-interaction effect parameter (△(∑σ)2) plays an important role in quantifying the δc(CH=N) values of XBAYs, but it is negligible for quantifying the δH (CH=N) values; the other substituent parameters also present different influences on the δc (CH=N) and (δH (CH=N). On the whole, the contributions of X and Y to the δc (CH=N) of XBAYs are balanced, but the δH(CH=N) values of XBAYs mainly rely on the contributions of X.
文摘Three ethylene-vinyl alcohol copolymers were studied by means of the substituent chemical shift (SCS) method. The SCS parameters of hydroxy (-OH) in two different solvents were obtained: in deuterium oxide/phenol (20/80 W/W ) the parameters are S_1 = 42.77±0.08ppm, S_2 = 7.15±0.06 ppm, S_3 (s)= -4.08±0.02ppm, S_3 (t) =-3.09±0.20ppm,S_4 = 0.48±0.03ppm, S_5 = 0.26±0.05ppm. In o-dichloro-benzen-d_4 S_1(s)=44.79±0.61ppm, S_2=7.40±0.00ppm, S_3(s)=-4.51±0.17ppm, S_3(t)=-3.13 ±0.00 ppm, S_4 =0.63±0.04ppm, S_5=0.36±0.00ppm.Simultaneously the ^(13)CNMR spectra of EVA copolymers were assigned by using the SCS parameters obtained.
文摘On two dimensional maps of <sup>1</sup>H-<sup>13</sup>C correlation spectroscopy (H-C COSY) analysis for the mannan of <i>Candida tropicalis</i>, nine cross peaks of anomeric proton and carbon were useful for the purpose of obtaining information on the chemical structure of this molecule. Namely, the mannans was comb-like structure constructed with the linear <i>α</i>-1,6-linked polymannnosyl backbone and several oligomannnosyl side chains composed of <i>α</i>-1,2-, <i>α</i>-1,3-, and <i>β</i>-1,2-linkages. Therefore, in the structural investigation of comb-like mannan, two-dimensional H-C COSY analysis is as useful as two-dimensional nuclear Hartmann-Hahn (HOHAHA) analysis.
文摘Five nopyl ethers and two nopyl esters have been synthesized, and their 13 C NMR spectra have been recorded. The C 6, C 7 chemical shifts in their 13 C NMR spectra have been discussed in terms of configuration structure. It is suggested that the C 1, C 2, C 3, C 4 and C 5 atoms are in the same plan and the 6,6 dimethylbicyclohept 2 ene part is in the Y shape. The ethers and esters obtained appeared to be derivatives of apopinene 6,6 dimethylbicyclohept 2 ene with substituents at the C 2 position . The effect of substituents occured mainly on the chemical shifts of C 1, C 2 and C 3. There seemes a weaker steric interaction of the substituents with other carbon atoms.