The Paleocene coals of the Salt Range in the Punjab Province of Pakistan have great economic potential;however,their trace element and stable isotopic characteristics have not been studied in detail except for a few s...The Paleocene coals of the Salt Range in the Punjab Province of Pakistan have great economic potential;however,their trace element and stable isotopic characteristics have not been studied in detail except for a few sporadic samples.In this study,a total of 59 coal samples of which 14 are obtained from open cast mines have been investigated for elemental composition andδ^(13)C-δ^(15)N isotopic signatures.Average contents of trace elements such as Co,Cr,Cu,Pb,Sr,Th,U,V,and Zn are 7.4,41.7,11.2,12.5,90.2,4.0,1.9,128,and 31.1 mg/kg,respectively.These values,when compared with the World Coal Clarke values,were relatively higher in low-rank coals in comparison with Clarke values for brown coals.Likewise,As(20.4 mg/kg),Co(6.6 mg/kg),Cr(22.4 mg/kg),Cu(^(13).3 mg/kg),Pb(19.2 mg/kg),Sr(^(15)4.7 mg/kg),Th(2.5 mg/kg),V(47.8 mg/kg),and Zn(75.1 mg/kg)were significantly higher in the sub-bituminous to bituminous coals of the Salt Range.Mineralogical analysis,based on X-ray diffraction and energy dispersive X-ray spectroscopy,revealed that the studied samples contain illite,kaolinite calcite,gypsum,pyrite,and quartz.Elemental affinity with organic and inorganic phases of coals calculated by an indirect statistical approach indicated a positive association of ash content with Ag,Al,Co,Cr,Cs,Cu,Mn,P,Rb,Pb,Th,U,and V,suggesting the presence of inorganic components in studied coals.However,As,Fe,Sr,and Zn exhibit negative correlations that imply their association with the organic fraction.Theδ^(13)C andδ^(15)N isotopic range and average−24.94‰to−25.86‰(−25.41‰)and−2.77‰to 3.22‰(0.96‰),respectively,reflecting 3C type modern terrestrial vegetation were common in the palaeomires of studied coal seams.In addition,the trivial variations of 0.92‰and 0.45‰among^(13)C and^(15)N values can be attributed to water level fluctuations and plant assemblies.展开更多
The objectives of this investigation are to study nitrogen uptake,translocation,accumulation and distribution in mango tree organs using labeled nitrogen(^(15)N)and to understand the mechanism of boron action in incre...The objectives of this investigation are to study nitrogen uptake,translocation,accumulation and distribution in mango tree organs using labeled nitrogen(^(15)N)and to understand the mechanism of boron action in increasing fruit yield in the off-year.A field experiment was conducted using fifteen-year-old mango trees(cv.Zebda)grown at Al Malak Valley Farm,El-Sharkeya Governorate-Egypt.Treatments included the application of(^(15)NH4)2SO4,“in the on-year”,at a rate of 50 g nitrogen/tree through the stem injection technique.While boron was sprayed on the same trees“in the off-year”at the following rates:0.0(control),250 and 500 mg·L^(-1).The authors hypothesize that boron and nitrogen act synergistically to increase mango fruit yield in the off-year.Results indicated that the highest ^(15)N uptake and accumulation in the on and off-years was observed in the upper(young leaves).When boron was applied at 250 mg·L^(-1),in the off-year,the upper(young leaves)recorded the highest ^(15)N uptake and accumulation(%^(15)Ndff=13.93)relative to the other two leaf categories and those of the on-year.In the on-year fruit accumulated higher ^(15)N than leaf or bud.In the off-year,bud exhibited the highest ^(15)N accumulation without boron application,while leaves exhibited the highest ^(15)N with boron application.The highest%^(15)Ndff in all tree organs was observed at 250 mg·L^(-1) boron rate.Boron increased nitrogen uptake,translocation and accumulation in mango tree organs.A synergistic relationship was observed between boron and nitrogen which led to an increase in fruit yield in the off-year.展开更多
A variable-charge (VC) and a permanent-charge paddy soil (PC) were selected to study nitrate-N (NO3^--N) and ammonium-N (NH4^+-N) leaching with N isotopes for one consecutive year. An irrigation and intermitt...A variable-charge (VC) and a permanent-charge paddy soil (PC) were selected to study nitrate-N (NO3^--N) and ammonium-N (NH4^+-N) leaching with N isotopes for one consecutive year. An irrigation and intermittent drainage pattern was adopted to mimic natural occurrence of rainfall during the upland crop season and drainage management during the flooded rice season. Treatments to each soil type were no-N controls (CK), ^15N-labeled (NH4)2SO4 (NS), and milk vetch (NV) applied at a rate equivalent to 238 kg N ha^-1 to unplanted lysimeters, totaling six treatments in triplicates. Results indicated that the soil type dominated N leaching characteristics. In the case of PC, NO3^--N accounted for 78% of the total leached inorganic N; NS was prone to leach three times more than the NV, being 8.2% and 2.4% of added ^15N respectively; and 〉 85% of leached NO3-N came from of the total inorganic N in leachate. Moreover, NH4^+-N native N in the soil. In the case of VC, NH4^+-N made up to 92% leaching was detected throughout the whole incubation, and was particularly high during the flooded season. NO3^--N leaching in VC occurred later at a lower rate compared to that in PC. The findings of this study indicate that NO3^--N leaching during the drained season in permanent-charge paddy soils and NH4^+-N leaching in variable-charge soils deserve more attention for regional environmental control.展开更多
Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition w...Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing’an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory usingN tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO~-) was primarily produced via oxidation of NH~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO~- consumption rates,resulting in a build-up of NO~-, which highlights the high risk of N losses via NO~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation.展开更多
The problem of nitrate accumulation in aerobic tank and total nitrogen excessive discharge in effluent was very common in traditional livestock and poultry farming wastewater treatment systems owing to the lengthy pro...The problem of nitrate accumulation in aerobic tank and total nitrogen excessive discharge in effluent was very common in traditional livestock and poultry farming wastewater treatment systems owing to the lengthy process flow and low process control level.A strain LYX of aerobic bacterium was isolated from the activated sludge of a wastewater treatment system in a pig farm,which could remove nitrate effectively in aerobic tank and was identified Pseudomonas mendocina by 16S rRNA sequencing.Under the condition of nitrate as the sole nitrogen source,this strain removed over 90%of NO_(3)^(−)-N with an initial concentration of 110 mg/L under aerobic conditions within 48 hours.Among them,37.9%of NO_(3)^(−)-N was assimilated into Bio-N,about 51.9%was reduced to gaseous nitrogen and less than 0.5%of nitrogen was replaced by NO_(3)^(−)-N and NH_(4)^(+)-N,9.7%NO_(3)^(−)-N remained in the effluent at the end.At the same time,four key genes(napA,nirK,norB and nosZ)related to nitrate nitrogen removal were expressed during the denitrification process of P.mendocina LYX,in which the transcription level of the indicator genes of this aerobic denitrifying bacterium(napA)was the highest.In addition,it was found with the 15N tracer technique that inoculation of this strain on sludge increased the amount of nitrogen loss from 9.26 nmol N/(g·h)to 23.835 nmol N/(g·h).Therefore,P.medocina LYX is a potential bioagent for advanced nitrogen removal by assimilating and reducing nitrate simultaneously in aerobic tanks.展开更多
Wetlands are important for the protection of water quality of rivers and lakes, especially those adjacent to agricultural landscapes, by intercepting and removing nutrients in runoff. In this study, the ^15N tracer te...Wetlands are important for the protection of water quality of rivers and lakes, especially those adjacent to agricultural landscapes, by intercepting and removing nutrients in runoff. In this study, the ^15N tracer technique was applied to study the distribution and fate of anthropogenic nitrogen (^15N-fertilizer) in Calamagrostis angustifolia Kom wetland plant-soil microcosms to identify the main ecological effects of it. ^15NH4^15NO3 solution (14.93 mg N/L, 20.28 at.% ^15N) was added to each microcosm of the first group, which was approximate to the current nitrogen concentration (CNC) of farm drainage, and 29.86 mg NIL ^15NH4^15NO3 solution was added to another group, which was approximate to the double nitrogen concentration (DNC) of farm drainage, while no nitrogen (NN) was added to the third group. The results suggest that the input of anthropogenic nitrogen has positive effects on the biomass and total nitrogen content of plant, and the positive effects will be elevated as the increase of its input amount. The increase of ^15N-fertilizer can also elevate its amounts and proportions in plant nitrogen. Soil nitrogen is still the main source of plant nitrogen, but its proportion will be reduced as the increase of ^15 N-fertilizer. The study of the fate of ^15N-fertilizer indicates that, in CNC treatment, only a small proportion is water-dissolved (0,13 ± 0.20%), a considerable proportion is soil-immobilized (17.02 ± 8.62%), or plant-assimilated (23.70 ± 0.92%), and most is lost by gaseous forms (59.15 ± 8.35%). While in DNC treatment, about 0.09 ± 0.15% is water-dissolved, 15.33 ± 7.46% is soil-immobilized, 23.55±2.86% is plant-assimilated, and 61.01±5.59% is lost by gaseous forms. The double input of anthropogenic nitrogen can not elevate the proportions of plant-assimilation, soil-immobilization and water-dissolution, but it can enhance the gaseous losses.展开更多
Rice-paddies are regarded as one of the main agricultural sources of N 2O and NO emissions. To date, however, specific N2O and NO production pathways are poorly understood in paddy soils. ^15N-tracing experiments were...Rice-paddies are regarded as one of the main agricultural sources of N 2O and NO emissions. To date, however, specific N2O and NO production pathways are poorly understood in paddy soils. ^15N-tracing experiments were carded out to investigate the processes responsible for N2O and NO production in two paddy soils with substantially different soil properties. Laboratory incubation experiments were carried out under aerobic conditions at moisture contents corresponding to 60% of water holding capacity. The relative importance of nitrification and denitrification to the flux of NaO was quantified by periodically measuring and comparing the enrichments of the N2O, NH^-N and NO3-N pools. The results showed that both N2O and NO emission rates in an alkaline paddy soil with clayey texture were substantially higher than those in a neutral paddy soil with silty loamy texture. In accordance with most published results, the ammonium N pool was the main source of N2O emission across the soil profiles of the two paddy soils, being responsible for 59.7% to 97.7% of total N2O emissions. The NO3-N pool of N2O emission was relatively less important under the given aerobic conditions. The rates of N2O emission from nitrification (N2On) among different soil layers were significantly different, which could be attributed to both the differences in gross N nitrification rates and to the ratios of nitrified N emitted as NzO among soil layers. Furthermore, NO fluxes were positively correlated with the changes in gross nitrification rates and the ratios of NO/N2O in the two paddy soils were always greater than one (from 1.26 to 6.47). We therefore deduce that, similar to N2O, nitrification was also the dominant source of NO in the tested paddy soils at water contents below 60% water holding capacity.展开更多
A better understanding of nitrogen transformation in soils could reveal the capacity for biological inorganic N supply and improve the efficiency of N fertilizers. In this study, a15 N tracing study was carried out to...A better understanding of nitrogen transformation in soils could reveal the capacity for biological inorganic N supply and improve the efficiency of N fertilizers. In this study, a15 N tracing study was carried out to investigate the effects of converting woodland to orchard, and orchard age on the gross rates of N transformation occurring simultaneously in subtropical soils in Eastern China. The results showed that inorganic N supply rate was remained constant with soil organic C and N contents increased after converting woodland into citrus orchard and with increasing orchard age. This phenomenon was most probably due to the increase in the turnover time of recalcitrant organic-N, which increased with decreasing soil p H along with increasing orchard age significantly. The amo A gene copy numbers of both archaeal and bacterial were stimulated by orchard planting and increased with increasing orchard age. The nitrification capacity(defined as the ratio of gross rate of nitrification to total gross rate of mineralization) increased following the Michaelis–Menten equation, sharply in the first 10 years after woodland conversion to orchard, and increased continuously but much more slowly till 30 years. Due to the increase in nitrification capacity and unchanged NO3-consumption, the dominance of ammonium in inorganic N in woodland soil was shifted to nitrate dominance in orchard soils. These results indicated that the risk of NO3-loss was expected to increase and the amount of N needed from fertilizers for fruit growth did not change although soil organic N accumulated with orchard age.展开更多
基金the Higher Education Commission Pakistan for funding the lab research under its International Research Support Initiative Program (IRSIP) programthe Department of Environmental Science, Quaid-i-Azam University, Islamabad (especially Environmental Hydro geochemistry Lab)the Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, for technical support in conducting lab analysis
文摘The Paleocene coals of the Salt Range in the Punjab Province of Pakistan have great economic potential;however,their trace element and stable isotopic characteristics have not been studied in detail except for a few sporadic samples.In this study,a total of 59 coal samples of which 14 are obtained from open cast mines have been investigated for elemental composition andδ^(13)C-δ^(15)N isotopic signatures.Average contents of trace elements such as Co,Cr,Cu,Pb,Sr,Th,U,V,and Zn are 7.4,41.7,11.2,12.5,90.2,4.0,1.9,128,and 31.1 mg/kg,respectively.These values,when compared with the World Coal Clarke values,were relatively higher in low-rank coals in comparison with Clarke values for brown coals.Likewise,As(20.4 mg/kg),Co(6.6 mg/kg),Cr(22.4 mg/kg),Cu(^(13).3 mg/kg),Pb(19.2 mg/kg),Sr(^(15)4.7 mg/kg),Th(2.5 mg/kg),V(47.8 mg/kg),and Zn(75.1 mg/kg)were significantly higher in the sub-bituminous to bituminous coals of the Salt Range.Mineralogical analysis,based on X-ray diffraction and energy dispersive X-ray spectroscopy,revealed that the studied samples contain illite,kaolinite calcite,gypsum,pyrite,and quartz.Elemental affinity with organic and inorganic phases of coals calculated by an indirect statistical approach indicated a positive association of ash content with Ag,Al,Co,Cr,Cs,Cu,Mn,P,Rb,Pb,Th,U,and V,suggesting the presence of inorganic components in studied coals.However,As,Fe,Sr,and Zn exhibit negative correlations that imply their association with the organic fraction.Theδ^(13)C andδ^(15)N isotopic range and average−24.94‰to−25.86‰(−25.41‰)and−2.77‰to 3.22‰(0.96‰),respectively,reflecting 3C type modern terrestrial vegetation were common in the palaeomires of studied coal seams.In addition,the trivial variations of 0.92‰and 0.45‰among^(13)C and^(15)N values can be attributed to water level fluctuations and plant assemblies.
文摘The objectives of this investigation are to study nitrogen uptake,translocation,accumulation and distribution in mango tree organs using labeled nitrogen(^(15)N)and to understand the mechanism of boron action in increasing fruit yield in the off-year.A field experiment was conducted using fifteen-year-old mango trees(cv.Zebda)grown at Al Malak Valley Farm,El-Sharkeya Governorate-Egypt.Treatments included the application of(^(15)NH4)2SO4,“in the on-year”,at a rate of 50 g nitrogen/tree through the stem injection technique.While boron was sprayed on the same trees“in the off-year”at the following rates:0.0(control),250 and 500 mg·L^(-1).The authors hypothesize that boron and nitrogen act synergistically to increase mango fruit yield in the off-year.Results indicated that the highest ^(15)N uptake and accumulation in the on and off-years was observed in the upper(young leaves).When boron was applied at 250 mg·L^(-1),in the off-year,the upper(young leaves)recorded the highest ^(15)N uptake and accumulation(%^(15)Ndff=13.93)relative to the other two leaf categories and those of the on-year.In the on-year fruit accumulated higher ^(15)N than leaf or bud.In the off-year,bud exhibited the highest ^(15)N accumulation without boron application,while leaves exhibited the highest ^(15)N with boron application.The highest%^(15)Ndff in all tree organs was observed at 250 mg·L^(-1) boron rate.Boron increased nitrogen uptake,translocation and accumulation in mango tree organs.A synergistic relationship was observed between boron and nitrogen which led to an increase in fruit yield in the off-year.
基金Project supported by the National Natural Science Foundation of China (No. 30390080)the Nanjing Science and Technology Bureau,China (No. 200901063)
文摘A variable-charge (VC) and a permanent-charge paddy soil (PC) were selected to study nitrate-N (NO3^--N) and ammonium-N (NH4^+-N) leaching with N isotopes for one consecutive year. An irrigation and intermittent drainage pattern was adopted to mimic natural occurrence of rainfall during the upland crop season and drainage management during the flooded rice season. Treatments to each soil type were no-N controls (CK), ^15N-labeled (NH4)2SO4 (NS), and milk vetch (NV) applied at a rate equivalent to 238 kg N ha^-1 to unplanted lysimeters, totaling six treatments in triplicates. Results indicated that the soil type dominated N leaching characteristics. In the case of PC, NO3^--N accounted for 78% of the total leached inorganic N; NS was prone to leach three times more than the NV, being 8.2% and 2.4% of added ^15N respectively; and 〉 85% of leached NO3-N came from of the total inorganic N in leachate. Moreover, NH4^+-N native N in the soil. In the case of VC, NH4^+-N made up to 92% leaching was detected throughout the whole incubation, and was particularly high during the flooded season. NO3^--N leaching in VC occurred later at a lower rate compared to that in PC. The findings of this study indicate that NO3^--N leaching during the drained season in permanent-charge paddy soils and NH4^+-N leaching in variable-charge soils deserve more attention for regional environmental control.
基金supported by Grants from the ‘‘973’’ Project(2014CB953803)the Fundamental Research Funds for the Central Universities(2572017EA02)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,164320H116)
文摘Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing’an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory usingN tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO~-) was primarily produced via oxidation of NH~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO~- consumption rates,resulting in a build-up of NO~-, which highlights the high risk of N losses via NO~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation.
基金This work was financially supported by the National Key R&D Program of China(Grant No.2016YFC0400706)the National Natural Science Foundation of China(Grant Nos.41671481 and 41977340)+1 种基金the Science&Technology Plan Project of Guangdong(No.2016B020240003)Key-Area Research and Development Program of Guangdong Province(No.2019B110205004).We would like to thank Professor Hong YG and Dr.Wu JP(Guangzhou University)for their warmful help on 15N labeling test and analysis.
文摘The problem of nitrate accumulation in aerobic tank and total nitrogen excessive discharge in effluent was very common in traditional livestock and poultry farming wastewater treatment systems owing to the lengthy process flow and low process control level.A strain LYX of aerobic bacterium was isolated from the activated sludge of a wastewater treatment system in a pig farm,which could remove nitrate effectively in aerobic tank and was identified Pseudomonas mendocina by 16S rRNA sequencing.Under the condition of nitrate as the sole nitrogen source,this strain removed over 90%of NO_(3)^(−)-N with an initial concentration of 110 mg/L under aerobic conditions within 48 hours.Among them,37.9%of NO_(3)^(−)-N was assimilated into Bio-N,about 51.9%was reduced to gaseous nitrogen and less than 0.5%of nitrogen was replaced by NO_(3)^(−)-N and NH_(4)^(+)-N,9.7%NO_(3)^(−)-N remained in the effluent at the end.At the same time,four key genes(napA,nirK,norB and nosZ)related to nitrate nitrogen removal were expressed during the denitrification process of P.mendocina LYX,in which the transcription level of the indicator genes of this aerobic denitrifying bacterium(napA)was the highest.In addition,it was found with the 15N tracer technique that inoculation of this strain on sludge increased the amount of nitrogen loss from 9.26 nmol N/(g·h)to 23.835 nmol N/(g·h).Therefore,P.medocina LYX is a potential bioagent for advanced nitrogen removal by assimilating and reducing nitrate simultaneously in aerobic tanks.
基金the Knowledge Innovation Program of the Chinese Academyof Science (KZCX2-YW-309 and KZCX3-SW-332)the National ScienceFoundation of China (90211003)
文摘Wetlands are important for the protection of water quality of rivers and lakes, especially those adjacent to agricultural landscapes, by intercepting and removing nutrients in runoff. In this study, the ^15N tracer technique was applied to study the distribution and fate of anthropogenic nitrogen (^15N-fertilizer) in Calamagrostis angustifolia Kom wetland plant-soil microcosms to identify the main ecological effects of it. ^15NH4^15NO3 solution (14.93 mg N/L, 20.28 at.% ^15N) was added to each microcosm of the first group, which was approximate to the current nitrogen concentration (CNC) of farm drainage, and 29.86 mg NIL ^15NH4^15NO3 solution was added to another group, which was approximate to the double nitrogen concentration (DNC) of farm drainage, while no nitrogen (NN) was added to the third group. The results suggest that the input of anthropogenic nitrogen has positive effects on the biomass and total nitrogen content of plant, and the positive effects will be elevated as the increase of its input amount. The increase of ^15N-fertilizer can also elevate its amounts and proportions in plant nitrogen. Soil nitrogen is still the main source of plant nitrogen, but its proportion will be reduced as the increase of ^15 N-fertilizer. The study of the fate of ^15N-fertilizer indicates that, in CNC treatment, only a small proportion is water-dissolved (0,13 ± 0.20%), a considerable proportion is soil-immobilized (17.02 ± 8.62%), or plant-assimilated (23.70 ± 0.92%), and most is lost by gaseous forms (59.15 ± 8.35%). While in DNC treatment, about 0.09 ± 0.15% is water-dissolved, 15.33 ± 7.46% is soil-immobilized, 23.55±2.86% is plant-assimilated, and 61.01±5.59% is lost by gaseous forms. The double input of anthropogenic nitrogen can not elevate the proportions of plant-assimilation, soil-immobilization and water-dissolution, but it can enhance the gaseous losses.
基金supported by the Sino-German collaborative project:"Innovative nitrogen management technologies to improve agricultural production and environmental protection in intensive Chinese agriculture"co-funded by the Chinese Ministry of Science and Technology(MOST grant no.2007DFA30850)the German Ministry of Education and Research(BMBF FKZ:0330800C)
文摘Rice-paddies are regarded as one of the main agricultural sources of N 2O and NO emissions. To date, however, specific N2O and NO production pathways are poorly understood in paddy soils. ^15N-tracing experiments were carded out to investigate the processes responsible for N2O and NO production in two paddy soils with substantially different soil properties. Laboratory incubation experiments were carried out under aerobic conditions at moisture contents corresponding to 60% of water holding capacity. The relative importance of nitrification and denitrification to the flux of NaO was quantified by periodically measuring and comparing the enrichments of the N2O, NH^-N and NO3-N pools. The results showed that both N2O and NO emission rates in an alkaline paddy soil with clayey texture were substantially higher than those in a neutral paddy soil with silty loamy texture. In accordance with most published results, the ammonium N pool was the main source of N2O emission across the soil profiles of the two paddy soils, being responsible for 59.7% to 97.7% of total N2O emissions. The NO3-N pool of N2O emission was relatively less important under the given aerobic conditions. The rates of N2O emission from nitrification (N2On) among different soil layers were significantly different, which could be attributed to both the differences in gross N nitrification rates and to the ratios of nitrified N emitted as NzO among soil layers. Furthermore, NO fluxes were positively correlated with the changes in gross nitrification rates and the ratios of NO/N2O in the two paddy soils were always greater than one (from 1.26 to 6.47). We therefore deduce that, similar to N2O, nitrification was also the dominant source of NO in the tested paddy soils at water contents below 60% water holding capacity.
基金supported by the National Natural Science Foundation of China (Nos.41401339, 41330744)the Natural Science Foundation of Jiangsu Province (No.BK20140062)and Fujian Province (No.2014J01145)
文摘A better understanding of nitrogen transformation in soils could reveal the capacity for biological inorganic N supply and improve the efficiency of N fertilizers. In this study, a15 N tracing study was carried out to investigate the effects of converting woodland to orchard, and orchard age on the gross rates of N transformation occurring simultaneously in subtropical soils in Eastern China. The results showed that inorganic N supply rate was remained constant with soil organic C and N contents increased after converting woodland into citrus orchard and with increasing orchard age. This phenomenon was most probably due to the increase in the turnover time of recalcitrant organic-N, which increased with decreasing soil p H along with increasing orchard age significantly. The amo A gene copy numbers of both archaeal and bacterial were stimulated by orchard planting and increased with increasing orchard age. The nitrification capacity(defined as the ratio of gross rate of nitrification to total gross rate of mineralization) increased following the Michaelis–Menten equation, sharply in the first 10 years after woodland conversion to orchard, and increased continuously but much more slowly till 30 years. Due to the increase in nitrification capacity and unchanged NO3-consumption, the dominance of ammonium in inorganic N in woodland soil was shifted to nitrate dominance in orchard soils. These results indicated that the risk of NO3-loss was expected to increase and the amount of N needed from fertilizers for fruit growth did not change although soil organic N accumulated with orchard age.