With the development of parallel computing technology,non-linear inversion calculation efficiency has been improving.However,for single-point search-based non-linear inversion methods,the implementation of parallel al...With the development of parallel computing technology,non-linear inversion calculation efficiency has been improving.However,for single-point search-based non-linear inversion methods,the implementation of parallel algorithms is a difficult issue.We introduce the idea of group search to the single-point search-based non-linear inversion algorithm, taking the quantum Monte Carlo method as an example for two-dimensional seismic wave velocity inversion and practical impedance inversion and test the calculation efficiency of using different node numbers.The results show the parallel algorithm in theoretical and practical data inversion is feasible and effective.The parallel algorithm has good versatility. The algorithm efficiency increases with increasing node numbers but the algorithm efficiency rate of increase gradually decreases as the node numbers increase.展开更多
The similarity search is one of the fundamental components in time series data mining,e.g.clustering,classification,association rules mining.Many methods have been proposed to measure the similarity between time serie...The similarity search is one of the fundamental components in time series data mining,e.g.clustering,classification,association rules mining.Many methods have been proposed to measure the similarity between time series,including Euclidean distance,Manhattan distance,and dynamic time warping(DTW).In contrast,DTW has been suggested to allow more robust similarity measure and be able to find the optimal alignment in time series.However,due to its quadratic time and space complexity,DTW is not suitable for large time series datasets.Many improving algorithms have been proposed for DTW search in large databases,such as approximate search or exact indexed search.Unlike the previous modified algorithm,this paper presents a novel parallel scheme for fast similarity search based on DTW,which is called MRDTW(MapRedcuebased DTW).The experimental results show that our approach not only retained the original accuracy as DTW,but also greatly improved the efficiency of similarity measure in large time series.展开更多
The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer s...The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer set. These tables are implemented using column-based techniques and are used to store graphs of database, frequent sub-graphs and the neighborhood of nodes. In order to exact checking of remaining graphs, the vertex invariant is used for isomorphism test which can be parallel implemented. The results of evaluation indicate that proposed method outperforms existing methods.展开更多
This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very u...This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture.展开更多
In order to make cloud users get credible, high-quality composition of services, the trust quality of service aware(TQoS-aware) based parallel ant colony algorithm is proposed. Our approach takes the service credibili...In order to make cloud users get credible, high-quality composition of services, the trust quality of service aware(TQoS-aware) based parallel ant colony algorithm is proposed. Our approach takes the service credibility as the weight of the quality of service, then calculates the trust service quality T-QoS for each service, making the service composition situated in a credible environment. Through the establishment on a per-service T-QoS initialization pheromone matrix, we can reduce the colony's initial search time. By modifying the pheromone updating rules and introducing two ant colonies to search from different angles in parallel,we can avoid falling into the local optimal solution, and quickly find the optimal combination of global solutions. Experiments show that our approach can combine high-quality services and the improvement of the operational success rate. Also, the convergence rate and the accuracy of optimal combination are improved.展开更多
基金supported by National Key S&T Special Projects of Marine Carbonate(No.2008ZX05000-004)CNPC Projects(No.2008E-0610-10)
文摘With the development of parallel computing technology,non-linear inversion calculation efficiency has been improving.However,for single-point search-based non-linear inversion methods,the implementation of parallel algorithms is a difficult issue.We introduce the idea of group search to the single-point search-based non-linear inversion algorithm, taking the quantum Monte Carlo method as an example for two-dimensional seismic wave velocity inversion and practical impedance inversion and test the calculation efficiency of using different node numbers.The results show the parallel algorithm in theoretical and practical data inversion is feasible and effective.The parallel algorithm has good versatility. The algorithm efficiency increases with increasing node numbers but the algorithm efficiency rate of increase gradually decreases as the node numbers increase.
基金supported in part by National High-tech R&D Program of China under Grants No.2012AA012600,2011AA010702,2012AA01A401,2012AA01A402National Natural Science Foundation of China under Grant No.60933005+1 种基金National Science and Technology Ministry of China under Grant No.2012BAH38B04National 242 Information Security of China under Grant No.2011A010
文摘The similarity search is one of the fundamental components in time series data mining,e.g.clustering,classification,association rules mining.Many methods have been proposed to measure the similarity between time series,including Euclidean distance,Manhattan distance,and dynamic time warping(DTW).In contrast,DTW has been suggested to allow more robust similarity measure and be able to find the optimal alignment in time series.However,due to its quadratic time and space complexity,DTW is not suitable for large time series datasets.Many improving algorithms have been proposed for DTW search in large databases,such as approximate search or exact indexed search.Unlike the previous modified algorithm,this paper presents a novel parallel scheme for fast similarity search based on DTW,which is called MRDTW(MapRedcuebased DTW).The experimental results show that our approach not only retained the original accuracy as DTW,but also greatly improved the efficiency of similarity measure in large time series.
文摘The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer set. These tables are implemented using column-based techniques and are used to store graphs of database, frequent sub-graphs and the neighborhood of nodes. In order to exact checking of remaining graphs, the vertex invariant is used for isomorphism test which can be parallel implemented. The results of evaluation indicate that proposed method outperforms existing methods.
文摘This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture.
基金supported by the National Natural Science Foundation of China(6140224161170065+13 种基金61373017611710536110319561203217612011636120200461202354)Scientific&Technological Support Project(Industry)of Jiangsu Province(BE2012183BE2012755)Natural Science Key Fund for Colleges and Universities of Jiangsu Province(11KJA52000112KJA520002)the Natural Science Fund for Colleges and Universities of Jiangsu Province(13KJB520017)Scientific Research&Industry Promotion Project for Higher Education Institutions(JHB2012-7)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(yx002001)
文摘In order to make cloud users get credible, high-quality composition of services, the trust quality of service aware(TQoS-aware) based parallel ant colony algorithm is proposed. Our approach takes the service credibility as the weight of the quality of service, then calculates the trust service quality T-QoS for each service, making the service composition situated in a credible environment. Through the establishment on a per-service T-QoS initialization pheromone matrix, we can reduce the colony's initial search time. By modifying the pheromone updating rules and introducing two ant colonies to search from different angles in parallel,we can avoid falling into the local optimal solution, and quickly find the optimal combination of global solutions. Experiments show that our approach can combine high-quality services and the improvement of the operational success rate. Also, the convergence rate and the accuracy of optimal combination are improved.