The dynanaic model of a novel electric power steering(EPS) system integrated with active front steer- ing function and the three-freedom steering model are built. Based on these models, the concepts and the quanti- ...The dynanaic model of a novel electric power steering(EPS) system integrated with active front steer- ing function and the three-freedom steering model are built. Based on these models, the concepts and the quanti- tative expressions of road feel, sensitivity, and operation stability of the steering are introduced. Then, according to constrained optimization features of multi-variable function, a genetic algorithm is designed. Making the road feel of the steering as optimization objective, and operation stability and sensitivity of the steering as constraints, the system parameters are optimized by the genetic and the coordinate rotation algorithms. Simulation results show that the optimization of the novel EPS system by the genetic algorithm can effectively improve the road feel, thus providing a theoretical basis for the design and optimization of the novel EPS system.展开更多
The performances of a well-known GHR car-following model was investigated by using numerical simulations in describing the acceleration and deceleration process induced by the motion of a leading car. It is shown that...The performances of a well-known GHR car-following model was investigated by using numerical simulations in describing the acceleration and deceleration process induced by the motion of a leading car. It is shown that in GHR model vehicle is allowed to run arbitrarily close together if their speed are identical,and it waves aside even though the separation is larger than its desired distance. Based on these investigations, a modified GHR model which features a new nonlinear term which attempts to adjust the inter-vehicle spacing to a certain desired value was proposed accordingly to overcome these deficiencies. In addition, the analysis of the additive nonlinear term and steady-state flow of the new model were studied to prove its rationality.展开更多
The shift scheduling system of the transmission has an important effect on the dynamic and economic performance of hybrid vehicles. In this work, shift scheduling strategies are developed for parallel hybrid construct...The shift scheduling system of the transmission has an important effect on the dynamic and economic performance of hybrid vehicles. In this work, shift scheduling strategies are developed for parallel hybrid construction vehicles. The effect of power distribution and direction on shift characteristics of the parallel hybrid vehicle with operating loads is evaluated, which must be considered for optimal shift control. A power distribution factor is defined to accurately describe the power distribution and direction in various parallel hybrid systems. This paper proposes a Levenberg-Marquardt algorithm optimized neural network shift scheduling strategy. The methodology contains two objective functions, it is a dynamic combination of a dynamic shift schedule for optimal vehicle acceleration, and an energy-efficient shift schedule for optimal powertrain efficiency. The study is performed on a test bench under typical operating conditions of a wheel loader. The experimental results show that the proposed strategies offer effective and competitive shift performance.展开更多
To improve the accuracy of the vehicle crashworthiness simulation, it is necessary as well as important to integrate the valid forming effects of key parts. It has been agreed by many that one-step simulation results ...To improve the accuracy of the vehicle crashworthiness simulation, it is necessary as well as important to integrate the valid forming effects of key parts. It has been agreed by many that one-step simulation results should be used only as a qualitative trend of the part but not as an engineering result for further structural analysis, especially for a relatively complex part. The study shows that it is inaccurate to analyze the forming effects with one-step simulation based on the geometry of the final part through comparison with the incremental simulation and verification with the actual part, whether in thickness or in plastic strain. However, incremental simulation is very time consuming and infeasible in the early stage of vehicle design due to lack- ing of forming tools and process parameters. An engineering approach is proposed to meet the requirement of accuracy as well as the time efficiency, where one-step simulation is conducted based on the geometry of the transformed part instead of the fi- nN part. The geometry of the transformed part is generated by simple die design engineering and proves to offer much more accuracy than the one-step simulation based on the final part geometry.展开更多
基金Supported by the National Natural Science Foundation of China(51005115)the Risiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University(SKLMT-KFKT-201105)theScience Fund of State Key Laboratory of Automotive Satefy and Energy in Tsinghua University(KF11202)~~
文摘The dynanaic model of a novel electric power steering(EPS) system integrated with active front steer- ing function and the three-freedom steering model are built. Based on these models, the concepts and the quanti- tative expressions of road feel, sensitivity, and operation stability of the steering are introduced. Then, according to constrained optimization features of multi-variable function, a genetic algorithm is designed. Making the road feel of the steering as optimization objective, and operation stability and sensitivity of the steering as constraints, the system parameters are optimized by the genetic and the coordinate rotation algorithms. Simulation results show that the optimization of the novel EPS system by the genetic algorithm can effectively improve the road feel, thus providing a theoretical basis for the design and optimization of the novel EPS system.
基金Key Foundation Project of Shanghai (No.032912066)
文摘The performances of a well-known GHR car-following model was investigated by using numerical simulations in describing the acceleration and deceleration process induced by the motion of a leading car. It is shown that in GHR model vehicle is allowed to run arbitrarily close together if their speed are identical,and it waves aside even though the separation is larger than its desired distance. Based on these investigations, a modified GHR model which features a new nonlinear term which attempts to adjust the inter-vehicle spacing to a certain desired value was proposed accordingly to overcome these deficiencies. In addition, the analysis of the additive nonlinear term and steady-state flow of the new model were studied to prove its rationality.
基金Project(51805200)supported by the National Natural Science Foundation of ChinaProject(20170520096JH)supported by the Science and Technology Development Plan of Jilin Province,ChinaProject(2016YFC0802900)supported by the National Key R&D Program of China
文摘The shift scheduling system of the transmission has an important effect on the dynamic and economic performance of hybrid vehicles. In this work, shift scheduling strategies are developed for parallel hybrid construction vehicles. The effect of power distribution and direction on shift characteristics of the parallel hybrid vehicle with operating loads is evaluated, which must be considered for optimal shift control. A power distribution factor is defined to accurately describe the power distribution and direction in various parallel hybrid systems. This paper proposes a Levenberg-Marquardt algorithm optimized neural network shift scheduling strategy. The methodology contains two objective functions, it is a dynamic combination of a dynamic shift schedule for optimal vehicle acceleration, and an energy-efficient shift schedule for optimal powertrain efficiency. The study is performed on a test bench under typical operating conditions of a wheel loader. The experimental results show that the proposed strategies offer effective and competitive shift performance.
基金supported from the National Natural Science Foundation of China (Grant No. 51005144)the Innovation Program of Shanghai Municipal Education Commission and Shanghai Automotive Industry Science and Technology Development Foundation (Grant No. 1009)
文摘To improve the accuracy of the vehicle crashworthiness simulation, it is necessary as well as important to integrate the valid forming effects of key parts. It has been agreed by many that one-step simulation results should be used only as a qualitative trend of the part but not as an engineering result for further structural analysis, especially for a relatively complex part. The study shows that it is inaccurate to analyze the forming effects with one-step simulation based on the geometry of the final part through comparison with the incremental simulation and verification with the actual part, whether in thickness or in plastic strain. However, incremental simulation is very time consuming and infeasible in the early stage of vehicle design due to lack- ing of forming tools and process parameters. An engineering approach is proposed to meet the requirement of accuracy as well as the time efficiency, where one-step simulation is conducted based on the geometry of the transformed part instead of the fi- nN part. The geometry of the transformed part is generated by simple die design engineering and proves to offer much more accuracy than the one-step simulation based on the final part geometry.