^ 15N isotope tracer techniques and ecological modeling were adopted to investigate the fractionation of nitrogen, its uptake and transformation in algae and snail (Bellamya aeruginosa Reeve). Different algal specie...^ 15N isotope tracer techniques and ecological modeling were adopted to investigate the fractionation of nitrogen, its uptake and transformation in algae and snail (Bellamya aeruginosa Reeve). Different algal species were found to differ in their uptake of nitrogen isotopes. Microcystis aeruginisa Ktitz. demonstrated the greatest ^15N accumulation capacity, with the natural variation in isotopic ratio (δ^15N) and the isotope fractionation factor (ε,‰) being the highest among the species investigated. The transformation and utilization of ^15N by snails differed depending on the specific algae consumed (highest for Chlorella pyrenoidosa Chick., lowest for M. aeruginisa). When snails was seeded in the experimental pond, the algae population structure changed significantly, and total algal biomass as well as the concentration of all nitrogen species decreased, causing an increase in water transparency. A model, incorporating several chemical and biological parameters, was developed to predict algal biomass in an aquatic system when snails was present. The data collected during this investigation indicated that the gastropods such as snails could significantly impact biological community and water quality of small water bodies, suggesting a role for biological control of noxious algal blooms associated with eutrophication.展开更多
Leguminous crops play a vital role in enhancing crop yield and improving soil fertility. Therefore, it can be used as an organic N source for improving soil fertility. The purpose of this study was to(i) quantify the ...Leguminous crops play a vital role in enhancing crop yield and improving soil fertility. Therefore, it can be used as an organic N source for improving soil fertility. The purpose of this study was to(i) quantify the amounts of N derived from rhizodeposition, root and above-ground biomass of peanut residue in comparison with wheat and(ii) estimate the effect of the residual N on the wheat-growing season in the subsequent year. The plants of peanut and wheat were stem fed with 15 N urea using the cotton-wick method at the Wuqiao Station of China Agricultural University in 2014. The experiment consisted of four residue-returning strategies in a randomized complete-block design:(i) no return of crop residue(CR0);(ii) return of above-ground biomass of peanut crop(CR1);(iii) return of peanut root biomass(CR2); and(iv) return of all residue of the whole peanut plant(CR3). The 31.5 and 21% of the labeled 15 N isotope were accumulated in the above-ground tissues(leaves and stems) of peanuts and wheat, respectively. N rhizodeposition of peanuts and wheat accounted for 14.91 and 3.61% of the BG15 N, respectively. The 15 N from the below-ground 15 N-labeled of peanuts were supplied 11.3, 5.9, 13.5, and 6.1% of in the CR0, CR1, CR2, and CR3 treatments, respectively. Peanut straw contributes a significant proportion of N to the soil through the decomposition of plant residues and N rhizodeposition. With the current production level on the NCP, it is estimated that peanut straw can potentially replace 104 500 tons of synthetic N fertilizer per year. The inclusion of peanut in rotation with cereal can significantly reduce the use of N fertilizer and enhance the system sustainability.展开更多
Nitrogen (N) use efficiency is usually less than 50%, and it remains a major problem in rice cultivation. Controlled release fertilizer (CRF) technology is one of the well-known efforts to overcome this problem. T...Nitrogen (N) use efficiency is usually less than 50%, and it remains a major problem in rice cultivation. Controlled release fertilizer (CRF) technology is one of the well-known efforts to overcome this problem. The efficiency of CRF, however, is very much dependent on the timing of nutrient release. This study was conducted to determine the precise time of N uptake by rice as a guideline to develop efficient CRF. Fertilizer N uptake by rice at different growth stages was investigated by using 15N isotopic technique. Rice was planted in pots, with 15N urea as N source at the rate of 120 kg/hm2. Potassium and phosphorus were applied at the same rate of 50 kg/hm2. Standard agronomic practices were employed throughout the growing periods. Rice plants were harvested every two weeks until maturation at the 14th week and analyzed for total N and 15N content. Nitrogen derived from fertilizer was calculated. Total N uptake in plants consistently increased until the 11th week. After that, it started to plateau and finally declined. Moreover, N utilization by rice plants peaked at 50%, which occurred during the 11th week after transplanting. N derived from fertilizer in rice plants were in the range of 18.7% to 40.0% in all plant tissues. The remaining N was derived from soil. Based on this study, N release from CRF should complete by the 11th week after planting to ensure the maximum fertilizer N uptake by rice plants. Efficient CRF should contribute to higher N derived from fertilizer which also resulted in a higher total N uptake by rice plants, increasing the potential of rice to produce higher yield while at the same time of reducina loss.展开更多
Nitrogen is one of the essential nutrient elements for plant growth,which plays an important role in the growth and development of sugarcane. The whole growth cycle of sugarcane needs a large amount of nitrogen. Incre...Nitrogen is one of the essential nutrient elements for plant growth,which plays an important role in the growth and development of sugarcane. The whole growth cycle of sugarcane needs a large amount of nitrogen. Increasing the application of nitrogen can improve the yield of sugarcane,but it will also cause environmental pollution. Therefore,how to control or reduce the application of nitrogen fertilizer while continuously increasing sugarcane yield,reduce the increase of sugarcane production cost and environmental pollution caused by excessive application of nitrogen fertilizer has become an important scientific problem faced by sugarcane industry in China.^15N stable isotope labeling technology has been applied to many crops as a nitrogen research tool. In order to better understand the demand of nitrogen fertilizer in soil-cane system,this paper reviewed nitrogen allocation in plants,nitrogen loss,nitrogen recycling and endogenous nitrogen fixation of sugarcane based on^15N stable isotope labeling technology used in the nitrogen uptake and utilization,providing a theoretical basis for the improvement of sugarcane nitrogen use efficiency and the efficient nitrogen fertilizer management of sugarcane.展开更多
Fish otolithδ^(15) N(δ^(15) N_(oto))is a demonstrated source of information of dietary history for marine fi sh as it is available iN_(oto)lith archives and sedimentary deposits unlike white muscle tissue(WMT).WMT a...Fish otolithδ^(15) N(δ^(15) N_(oto))is a demonstrated source of information of dietary history for marine fi sh as it is available iN_(oto)lith archives and sedimentary deposits unlike white muscle tissue(WMT).WMT and stomach content data are insufficient for trophic level(TL)data of past fi shes which is important for the changes of marine fi shery resources over long time scales.To determine the correlation betweenδ^(15) N_(oto) and fi sh WMTδ^(15) N(δ^(15) N_(wmt))and the feasibility of usingδ^(15) N_(oto) in characterizing the TLs of marine fi shes,we conducted nitrogen stable isotope analysis(SIA)in the otolith and WMT of 36 marine fi sh species sampled from the Yellow Sea and northern East China Sea in 2011-2014.Bothδ^(15) N_(oto) andδ^(15) N_(wmt) were analyzed using an elemental analyzer coupled with an isotope ratio mass spectrometer(EA-IRMS).Multiple otoliths were combined to make each otolith measurement and were analyzed as-is without a carbonate dissolution pre-processing step.δ^(15) N_(oto) andδ^(15) N_(wmt) comparisons for species in the Yellow Sea and northern East China Sea are currently lacking and would be helpful for both regional studies and for increasing the number of species for whichδ^(15) N_(oto) andδ^(15) N_(wmt) have been compared.Additionally,to determine the relative accuracy of trophic level calculated usingδ^(15) N_(oto),we compared TL calculated fromδ^(15) N_(oto) to traditional trophic level metrics calculated usingδ^(15) N_(wmt).The results showed a positive and highly signifi cant correlation(R=0.780,P<0.001)betweenδ^(15) N_(oto) andδ^(15) N_(wmt).Trophic level estimation using WMT(TL wmt)and otolith(TL oto)showed congruence in our study,which is not entirely surprising given thatδ^(15) N_(oto) was regressed againstδ^(15) N_(wmt) and the resulting regression coefficient was used to convertδ^(15) N_(oto) toδ^(15) N_(wmt) prior to calculating TL oto.This conversion was required in order to be consistent with previousδ^(15) N_(wmt)-based calculations of TL for comparison.TL oto calculations resulted in TL values that were largely within 5%-10%of TL values calculated withδ^(15) N_(wmt).Our fi ndings show thatδ^(15) N_(oto) is a feasible technique for characterizing the TLs of marine fi sh and can also assist in food web and marine ecosystem studies.展开更多
A pot experiment combined with15N isotope techniques was conducted to evaluate effects of the varying rates of urea-N fertilizer application on yields,quality,and nitrogen use efficiency (NUE) of pakchoi cabbage (Bras...A pot experiment combined with15N isotope techniques was conducted to evaluate effects of the varying rates of urea-N fertilizer application on yields,quality,and nitrogen use efficiency (NUE) of pakchoi cabbage (Brassica chinensis L.) and asparagus lettuce (Lactuca saiva L.).15N-labbled urea (5.3515N atom %) was added to pots with 6.5 kg soil of 0.14,0.18,0.21,0.25,and 0.29 g N/kg soil,and applied in two splits:60 percent as basal dressing in the mixture and 40 percent as topdressing.The fresh yields of two vegetable species increased with the increasing input of urea-N,but there was a significant quadratic relationship between the dose of urea-N fertilizer application and the fresh yields.When the dosage of urea-N fertilizer reached a certain value,nitrate readily accumulated in the two kinds of plants due to the decrease in NR activity; furthermore,there was a linear negative correlation between nitrate content and NR activity.With the increasing input of urea-N,ascorbic acid and soluble sugar initially increased,declined after a while,and crude fiber rapidly decreased too.Total absorbed N (TAN),N derived from fertilizer (Ndff),and N derived from soil (Ndfs) increased,and the ratio of Ndff and TAN also increased,but the ratio of Ndfs and TAN as well as NUE of urea-N fertilizer decreased with the increasing input of urea-N.These results suggested that the increasing application of labeled N fertilizer led to the increase in unlabeled N (namely,Ndfs) presumably due to "added nitrogen interaction" (ANI),the decease in NUE of urea-N fertilizer may be due to excess fertilization beyond the levels of plant requirements and the ANI,and the decrease in the two vegetable yields with the increasing addition of urea-N possibly because the excess accumulation of nitrate reached a toxic level.展开更多
Soil water content significantly influenced uptake and distribution of ^15N in both Newhall and Yamasitaka. The content of ^15N uptake in treated plants was less than that in controlled plants, under 20% soil water co...Soil water content significantly influenced uptake and distribution of ^15N in both Newhall and Yamasitaka. The content of ^15N uptake in treated plants was less than that in controlled plants, under 20% soil water content, ^15N was only taken up 16.02% by Newhall and 10.11% by Yamasitaka. The most ^15N was detained in root and old shoots under water stress. Protein concentration in two cultivars significantly decreased by water deficit stress, protein content of Newhall and Yamasitaka in controlled plants was 16.29 mg/g fresh weight and 15.89 mg/g fresh weight, but at 20% of water content, these were 9.60 mg/g fresh weight and 9.02 mg/g fresh weight. Water stress increased concentration of NH3-NH4^+, Arginine and Proline. Compared with control plants, concentrations of NH3-NH4^+ in both Newhall and Yamasitaka at 20% water content treatment increased 5.83 fold and 5.71 fold, Arginine increased 197% and 205%, and Proline increased 112% and 132%.展开更多
The high-resolution absorption spectra of the (2,0),(3,1),and (8,5) bands of the A^2Π^u-X^2∑g^+ system of ^15N2^+ have been recorded by using velocity modulation spectroscopy technique in the near infrared r...The high-resolution absorption spectra of the (2,0),(3,1),and (8,5) bands of the A^2Π^u-X^2∑g^+ system of ^15N2^+ have been recorded by using velocity modulation spectroscopy technique in the near infrared region.The rotational constants of the X^2∑g^+ and A^2Πu states of ^15N2^+ were derived from the spectroscopic data.The isotope shifts of these bands of the A^2Πu-X^2∑g^+ system of ^14N2^+ and ^15N2^+ were also analyzed and discussed.展开更多
Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and a...Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and agriculture, a series of groundwater environmental problems are created. In the paper, the situation of groundwater pollution in Shijiazhuang city is reported. Based on the groundwater chemical data and ^(15)N measurement results both on groundwater and soils, the reason of groundwater nitra...展开更多
Nitrogen fixation is one of the most important sources of new nitrogen in the ocean and thus profoundly affects the nitrogen and carbon biogeochemical processes.The distribution,controlling factors,and flux of N2 fixa...Nitrogen fixation is one of the most important sources of new nitrogen in the ocean and thus profoundly affects the nitrogen and carbon biogeochemical processes.The distribution,controlling factors,and flux of N2 fixation in the global ocean remain uncertain,partly because of the lack of methodological uniformity.The^(15)N_(2)tracer assay(the original bubble method→the^(15)N_(2)-enriched seawater method→the modified bubble method)is the mainstream method for field measurements of N2 fixation rates(NFRs),among which the original bubble method is the most frequently used.However,accumulating evidence has suggested an underestimation of NFRs when using this method.To improve the availability of previous data,we compared NFRs measured by three^(15)N_(2)tracer assays in the South China Sea.Our results indicate that the relationship between NFRs measured by the original bubble method and the^(15)N_(2)-enriched seawater method varies obviously with area and season,which may be influenced by incubation time,diazotrophic composition,and environmental factors.In comparison,the relationship between NFRs measured by the original bubble method and the modified bubble method is more stable,indicating that the N2 fixation rates based on the original bubble methods may be underestimated by approximately 50%.Based on this result,we revised the flux of N2 fixation in the South China Sea to 40 mmol/(m2·a).Our results improve the availability and comparability of literature NFR data in the South China Sea.The comparison of the^(15)N_(2)tracer assay for NFRs measurements on a larger scale is urgently necessary over the global ocean for a more robust understanding of the role of N2 fixation in the marine nitrogen cycle.展开更多
基金supported by the National Natural Science Foundation of China (No.30870452)the National Chaohu Lake Special Project of China (No.2008ZX07103-005)
文摘^ 15N isotope tracer techniques and ecological modeling were adopted to investigate the fractionation of nitrogen, its uptake and transformation in algae and snail (Bellamya aeruginosa Reeve). Different algal species were found to differ in their uptake of nitrogen isotopes. Microcystis aeruginisa Ktitz. demonstrated the greatest ^15N accumulation capacity, with the natural variation in isotopic ratio (δ^15N) and the isotope fractionation factor (ε,‰) being the highest among the species investigated. The transformation and utilization of ^15N by snails differed depending on the specific algae consumed (highest for Chlorella pyrenoidosa Chick., lowest for M. aeruginisa). When snails was seeded in the experimental pond, the algae population structure changed significantly, and total algal biomass as well as the concentration of all nitrogen species decreased, causing an increase in water transparency. A model, incorporating several chemical and biological parameters, was developed to predict algal biomass in an aquatic system when snails was present. The data collected during this investigation indicated that the gastropods such as snails could significantly impact biological community and water quality of small water bodies, suggesting a role for biological control of noxious algal blooms associated with eutrophication.
基金supported by the National Natural Science Foundation of China(31671640)the Special Fund for Agro-scientific Research in the Public Interest,China(201503121-11)the National Key Research and Development Program of China(2016YFD0300205-01)
文摘Leguminous crops play a vital role in enhancing crop yield and improving soil fertility. Therefore, it can be used as an organic N source for improving soil fertility. The purpose of this study was to(i) quantify the amounts of N derived from rhizodeposition, root and above-ground biomass of peanut residue in comparison with wheat and(ii) estimate the effect of the residual N on the wheat-growing season in the subsequent year. The plants of peanut and wheat were stem fed with 15 N urea using the cotton-wick method at the Wuqiao Station of China Agricultural University in 2014. The experiment consisted of four residue-returning strategies in a randomized complete-block design:(i) no return of crop residue(CR0);(ii) return of above-ground biomass of peanut crop(CR1);(iii) return of peanut root biomass(CR2); and(iv) return of all residue of the whole peanut plant(CR3). The 31.5 and 21% of the labeled 15 N isotope were accumulated in the above-ground tissues(leaves and stems) of peanuts and wheat, respectively. N rhizodeposition of peanuts and wheat accounted for 14.91 and 3.61% of the BG15 N, respectively. The 15 N from the below-ground 15 N-labeled of peanuts were supplied 11.3, 5.9, 13.5, and 6.1% of in the CR0, CR1, CR2, and CR3 treatments, respectively. Peanut straw contributes a significant proportion of N to the soil through the decomposition of plant residues and N rhizodeposition. With the current production level on the NCP, it is estimated that peanut straw can potentially replace 104 500 tons of synthetic N fertilizer per year. The inclusion of peanut in rotation with cereal can significantly reduce the use of N fertilizer and enhance the system sustainability.
基金Long-Term Research Grant Scheme of the Ministry of Education, Malaysia under the project ‘One BAJA: The Next Generation Green and Economical Urea’
文摘Nitrogen (N) use efficiency is usually less than 50%, and it remains a major problem in rice cultivation. Controlled release fertilizer (CRF) technology is one of the well-known efforts to overcome this problem. The efficiency of CRF, however, is very much dependent on the timing of nutrient release. This study was conducted to determine the precise time of N uptake by rice as a guideline to develop efficient CRF. Fertilizer N uptake by rice at different growth stages was investigated by using 15N isotopic technique. Rice was planted in pots, with 15N urea as N source at the rate of 120 kg/hm2. Potassium and phosphorus were applied at the same rate of 50 kg/hm2. Standard agronomic practices were employed throughout the growing periods. Rice plants were harvested every two weeks until maturation at the 14th week and analyzed for total N and 15N content. Nitrogen derived from fertilizer was calculated. Total N uptake in plants consistently increased until the 11th week. After that, it started to plateau and finally declined. Moreover, N utilization by rice plants peaked at 50%, which occurred during the 11th week after transplanting. N derived from fertilizer in rice plants were in the range of 18.7% to 40.0% in all plant tissues. The remaining N was derived from soil. Based on this study, N release from CRF should complete by the 11th week after planting to ensure the maximum fertilizer N uptake by rice plants. Efficient CRF should contribute to higher N derived from fertilizer which also resulted in a higher total N uptake by rice plants, increasing the potential of rice to produce higher yield while at the same time of reducina loss.
基金Supported by National Natural Science Foundation of China(31860350)Guangxi Project(GK AA17202042-6)+2 种基金Earmarked Fund for China Agriculture Research System(CARS-170105)Guangxi Innovation Team Program(gjnytxgxcxtd-03-01)Fund of Guangxi Academy of Agricultural Sciences(GNK2018YT02,2018YM01,2020YM24)。
文摘Nitrogen is one of the essential nutrient elements for plant growth,which plays an important role in the growth and development of sugarcane. The whole growth cycle of sugarcane needs a large amount of nitrogen. Increasing the application of nitrogen can improve the yield of sugarcane,but it will also cause environmental pollution. Therefore,how to control or reduce the application of nitrogen fertilizer while continuously increasing sugarcane yield,reduce the increase of sugarcane production cost and environmental pollution caused by excessive application of nitrogen fertilizer has become an important scientific problem faced by sugarcane industry in China.^15N stable isotope labeling technology has been applied to many crops as a nitrogen research tool. In order to better understand the demand of nitrogen fertilizer in soil-cane system,this paper reviewed nitrogen allocation in plants,nitrogen loss,nitrogen recycling and endogenous nitrogen fixation of sugarcane based on^15N stable isotope labeling technology used in the nitrogen uptake and utilization,providing a theoretical basis for the improvement of sugarcane nitrogen use efficiency and the efficient nitrogen fertilizer management of sugarcane.
基金Supported by the National Key Basic Research Development Program of China(973 Program)(No.2015CB453303)the National Science Foundation for Young Scientists of China(No.41606195)。
文摘Fish otolithδ^(15) N(δ^(15) N_(oto))is a demonstrated source of information of dietary history for marine fi sh as it is available iN_(oto)lith archives and sedimentary deposits unlike white muscle tissue(WMT).WMT and stomach content data are insufficient for trophic level(TL)data of past fi shes which is important for the changes of marine fi shery resources over long time scales.To determine the correlation betweenδ^(15) N_(oto) and fi sh WMTδ^(15) N(δ^(15) N_(wmt))and the feasibility of usingδ^(15) N_(oto) in characterizing the TLs of marine fi shes,we conducted nitrogen stable isotope analysis(SIA)in the otolith and WMT of 36 marine fi sh species sampled from the Yellow Sea and northern East China Sea in 2011-2014.Bothδ^(15) N_(oto) andδ^(15) N_(wmt) were analyzed using an elemental analyzer coupled with an isotope ratio mass spectrometer(EA-IRMS).Multiple otoliths were combined to make each otolith measurement and were analyzed as-is without a carbonate dissolution pre-processing step.δ^(15) N_(oto) andδ^(15) N_(wmt) comparisons for species in the Yellow Sea and northern East China Sea are currently lacking and would be helpful for both regional studies and for increasing the number of species for whichδ^(15) N_(oto) andδ^(15) N_(wmt) have been compared.Additionally,to determine the relative accuracy of trophic level calculated usingδ^(15) N_(oto),we compared TL calculated fromδ^(15) N_(oto) to traditional trophic level metrics calculated usingδ^(15) N_(wmt).The results showed a positive and highly signifi cant correlation(R=0.780,P<0.001)betweenδ^(15) N_(oto) andδ^(15) N_(wmt).Trophic level estimation using WMT(TL wmt)and otolith(TL oto)showed congruence in our study,which is not entirely surprising given thatδ^(15) N_(oto) was regressed againstδ^(15) N_(wmt) and the resulting regression coefficient was used to convertδ^(15) N_(oto) toδ^(15) N_(wmt) prior to calculating TL oto.This conversion was required in order to be consistent with previousδ^(15) N_(wmt)-based calculations of TL for comparison.TL oto calculations resulted in TL values that were largely within 5%-10%of TL values calculated withδ^(15) N_(wmt).Our fi ndings show thatδ^(15) N_(oto) is a feasible technique for characterizing the TLs of marine fi sh and can also assist in food web and marine ecosystem studies.
基金Supported by International Plant Nutrition Institute (IPNI China Program: Hunan-11 )Hunan Provincial Key Subject ( Grant No.04NK2006)
文摘A pot experiment combined with15N isotope techniques was conducted to evaluate effects of the varying rates of urea-N fertilizer application on yields,quality,and nitrogen use efficiency (NUE) of pakchoi cabbage (Brassica chinensis L.) and asparagus lettuce (Lactuca saiva L.).15N-labbled urea (5.3515N atom %) was added to pots with 6.5 kg soil of 0.14,0.18,0.21,0.25,and 0.29 g N/kg soil,and applied in two splits:60 percent as basal dressing in the mixture and 40 percent as topdressing.The fresh yields of two vegetable species increased with the increasing input of urea-N,but there was a significant quadratic relationship between the dose of urea-N fertilizer application and the fresh yields.When the dosage of urea-N fertilizer reached a certain value,nitrate readily accumulated in the two kinds of plants due to the decrease in NR activity; furthermore,there was a linear negative correlation between nitrate content and NR activity.With the increasing input of urea-N,ascorbic acid and soluble sugar initially increased,declined after a while,and crude fiber rapidly decreased too.Total absorbed N (TAN),N derived from fertilizer (Ndff),and N derived from soil (Ndfs) increased,and the ratio of Ndff and TAN also increased,but the ratio of Ndfs and TAN as well as NUE of urea-N fertilizer decreased with the increasing input of urea-N.These results suggested that the increasing application of labeled N fertilizer led to the increase in unlabeled N (namely,Ndfs) presumably due to "added nitrogen interaction" (ANI),the decease in NUE of urea-N fertilizer may be due to excess fertilization beyond the levels of plant requirements and the ANI,and the decrease in the two vegetable yields with the increasing addition of urea-N possibly because the excess accumulation of nitrate reached a toxic level.
基金Acknowledgment The authors acknowledge the financial support of the CARS-3 (China Agricultural Research System) and National Natural Science Foundation of China (31071763) and suggestions of Dr. C.J. Lovatt,Professor of Plant Physiology, University of California, Riverside.
文摘Soil water content significantly influenced uptake and distribution of ^15N in both Newhall and Yamasitaka. The content of ^15N uptake in treated plants was less than that in controlled plants, under 20% soil water content, ^15N was only taken up 16.02% by Newhall and 10.11% by Yamasitaka. The most ^15N was detained in root and old shoots under water stress. Protein concentration in two cultivars significantly decreased by water deficit stress, protein content of Newhall and Yamasitaka in controlled plants was 16.29 mg/g fresh weight and 15.89 mg/g fresh weight, but at 20% of water content, these were 9.60 mg/g fresh weight and 9.02 mg/g fresh weight. Water stress increased concentration of NH3-NH4^+, Arginine and Proline. Compared with control plants, concentrations of NH3-NH4^+ in both Newhall and Yamasitaka at 20% water content treatment increased 5.83 fold and 5.71 fold, Arginine increased 197% and 205%, and Proline increased 112% and 132%.
基金supported by the National Natural Science Foundation of China(Grant No.11674096)
文摘The high-resolution absorption spectra of the (2,0),(3,1),and (8,5) bands of the A^2Π^u-X^2∑g^+ system of ^15N2^+ have been recorded by using velocity modulation spectroscopy technique in the near infrared region.The rotational constants of the X^2∑g^+ and A^2Πu states of ^15N2^+ were derived from the spectroscopic data.The isotope shifts of these bands of the A^2Πu-X^2∑g^+ system of ^14N2^+ and ^15N2^+ were also analyzed and discussed.
基金supported by International Atomic Energy Agency (IAEA) (No. :11515/RBF)
文摘Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and agriculture, a series of groundwater environmental problems are created. In the paper, the situation of groundwater pollution in Shijiazhuang city is reported. Based on the groundwater chemical data and ^(15)N measurement results both on groundwater and soils, the reason of groundwater nitra...
基金The National Natural Science Foundation of China under contract Nos 42076042 and 41721005the Fund of Ministry of Science and Technology of China under contract No.2017FY201403the Fund of China Ocean Mineral Resources R&D Association under contract No.DY135-13-E2-03.
文摘Nitrogen fixation is one of the most important sources of new nitrogen in the ocean and thus profoundly affects the nitrogen and carbon biogeochemical processes.The distribution,controlling factors,and flux of N2 fixation in the global ocean remain uncertain,partly because of the lack of methodological uniformity.The^(15)N_(2)tracer assay(the original bubble method→the^(15)N_(2)-enriched seawater method→the modified bubble method)is the mainstream method for field measurements of N2 fixation rates(NFRs),among which the original bubble method is the most frequently used.However,accumulating evidence has suggested an underestimation of NFRs when using this method.To improve the availability of previous data,we compared NFRs measured by three^(15)N_(2)tracer assays in the South China Sea.Our results indicate that the relationship between NFRs measured by the original bubble method and the^(15)N_(2)-enriched seawater method varies obviously with area and season,which may be influenced by incubation time,diazotrophic composition,and environmental factors.In comparison,the relationship between NFRs measured by the original bubble method and the modified bubble method is more stable,indicating that the N2 fixation rates based on the original bubble methods may be underestimated by approximately 50%.Based on this result,we revised the flux of N2 fixation in the South China Sea to 40 mmol/(m2·a).Our results improve the availability and comparability of literature NFR data in the South China Sea.The comparison of the^(15)N_(2)tracer assay for NFRs measurements on a larger scale is urgently necessary over the global ocean for a more robust understanding of the role of N2 fixation in the marine nitrogen cycle.