当前新型核能利用系统及核数据评价的发展对快中子诱发^(239)Pu裂变核数据提出了更高的精度需求。本工作基于已提出并构建的Potential-driving模型,通过中子诱发^(239)Pu(n,f)裂变驱动势研究,计算了几个典型能量中子诱发^(239)Pu(n,f)...当前新型核能利用系统及核数据评价的发展对快中子诱发^(239)Pu裂变核数据提出了更高的精度需求。本工作基于已提出并构建的Potential-driving模型,通过中子诱发^(239)Pu(n,f)裂变驱动势研究,计算了几个典型能量中子诱发^(239)Pu(n,f)反应发射中子前裂变碎片质量分布,并与实验数据进行了对比。结果显示:Potential-driving模型计算数据能够很好地与实验数据符合。将Potential-driving模型植入GEANT4程序,开展了快中子诱发^(239)Pu(n,f)反应相关的模拟研究,给出了14 Me V中子诱发^(239)Pu(n,f)反应的裂变碎片独立产额质量分布和电荷分布、累积产额质量分布和电荷分布、动能分布、裂变中子能谱以及^(239)Pu(n,f)反应裂变碎片平均总动能随入射中子能量的变化等数据,并与GEANT4程序原有的参数化裂变模型(G4Para Fission Model)模拟结果、ENDF/B-VII.1库评价数据以及实验数据进行了比较。结果显示:所发展的Potential-driving模型能很好地预测快中子诱发^(239)Pu(n,f)反应裂变产物数据,为快中子诱发^(239)Pu(n,f)反应裂变产物核数据的研究提供了一种更可靠的计算方法。展开更多
文摘当前新型核能利用系统及核数据评价的发展对快中子诱发^(239)Pu裂变核数据提出了更高的精度需求。本工作基于已提出并构建的Potential-driving模型,通过中子诱发^(239)Pu(n,f)裂变驱动势研究,计算了几个典型能量中子诱发^(239)Pu(n,f)反应发射中子前裂变碎片质量分布,并与实验数据进行了对比。结果显示:Potential-driving模型计算数据能够很好地与实验数据符合。将Potential-driving模型植入GEANT4程序,开展了快中子诱发^(239)Pu(n,f)反应相关的模拟研究,给出了14 Me V中子诱发^(239)Pu(n,f)反应的裂变碎片独立产额质量分布和电荷分布、累积产额质量分布和电荷分布、动能分布、裂变中子能谱以及^(239)Pu(n,f)反应裂变碎片平均总动能随入射中子能量的变化等数据,并与GEANT4程序原有的参数化裂变模型(G4Para Fission Model)模拟结果、ENDF/B-VII.1库评价数据以及实验数据进行了比较。结果显示:所发展的Potential-driving模型能很好地预测快中子诱发^(239)Pu(n,f)反应裂变产物数据,为快中子诱发^(239)Pu(n,f)反应裂变产物核数据的研究提供了一种更可靠的计算方法。