目的建立基于^(87)Sr/^(86)Sr和δ^(13)C稳定同位素比质谱法(stable isotope ratio mass spectrometry,IRMS)的进口大麦产地溯源技术。方法样品干燥粉碎后,经硝酸消解,锶特效树脂净化后利用热电离质谱法(thermal ionization mass spectr...目的建立基于^(87)Sr/^(86)Sr和δ^(13)C稳定同位素比质谱法(stable isotope ratio mass spectrometry,IRMS)的进口大麦产地溯源技术。方法样品干燥粉碎后,经硝酸消解,锶特效树脂净化后利用热电离质谱法(thermal ionization mass spectrometry,TIMS)分析检测^(87)Sr/^(86);样品用锡囊包裹后,利用元素分析-稳定同位素比质谱法分析检测δ^(13)C;利用SPSS 25.0软件对进口大麦的^(87)Sr/^(86)Sr和δ^(13)C进行正态性验证、方差分析、事后多重比较分析和判别分析。结果不同进口国大麦中的^(87)Sr/^(86)Sr和δ^(13)C具有显著性差异,经判别分析,进口自澳大利亚、法国和美国的大麦可以达到100%正确判别率,整体正确判别率达到86.2%,若将美国和加拿大进口的大麦归类为北美洲进口大麦,则可实现进口自北美、法国和澳大利亚大麦的100%正确判别率。结论利用^(87)Sr/^(86)Sr和δ^(13)C可以对不同进口国大麦进行产地溯源分析。展开更多
We analyzed the ^(87)Sr/^(86)Sr ratios of basaltic rocks and basin water in Xuyi,China,and found a big difference,which may challenge conventional wisdom on the contribution of basalt weathering in end-member analysis...We analyzed the ^(87)Sr/^(86)Sr ratios of basaltic rocks and basin water in Xuyi,China,and found a big difference,which may challenge conventional wisdom on the contribution of basalt weathering in end-member analysis.Results of an in-house weathering experiment suggest that rainwater and dust are not responsible for the difference.By isolating the major minerals in basalt,we found that plagioclase has much higher ^(87)Sr/^(86)Sr ratios than bulk basalt and basin water,which might explain the difference in ^(87)Sr/^(86)Sr ratios of basalt and basin water.We inferthatlow-temperaturehydrothermalalteration increased the ^(87)Sr/^(86)Sr ratios of plagioclase.Future analyses of end-member contribution in a mixed-rock basin should take into account that basin water and plagioclase have higher ^(87)Sr/^(86)Sr ratios than basaltic rocks.展开更多
Understanding the hydrochemical characteristics and genesis mechanisms of strontium-rich groundwater is pivotal for supporting the exploitation and utilization of natural strontium-rich groundwater.In this research,27...Understanding the hydrochemical characteristics and genesis mechanisms of strontium-rich groundwater is pivotal for supporting the exploitation and utilization of natural strontium-rich groundwater.In this research,27 groundwater samples were collected.By analyzing major ion chemistry and strontium isotope data,and considering the hydrogeological context,various analytical approaches,including multivariate statistics,ion ratios,and isotopes,were used to reveal the characteristics and genesis mechanisms of strontium-rich groundwater in the study area.The findings indicate that the predominant hydrochemical type of groundwater is HCO_(3)-Ca,with Ca^(2+)and HCO_(3)^(-)as the primary cations and anions.The hydrochemistry of the strontium-rich groundwater is predominantly influenced by rock weathering processes.A combination of factors,including ion exchange,and anthropogenic activities,shapes the compositional characteristics of the groundwater in the region.The dissolution of calcite due to weathering emerges as the principal source of strontium in the groundwater.While ion exchange processes are not conducive to strontium enrichment in groundwater,their effect is relatively limited.The impact of human activities on the groundwater is minor.展开更多
To analyze the genesis of Sr isotopes in groundwater of Hebei plain, time-accumulative effect of ^87Sr/^86Sr ratio was studied. It is shown that ^87Sr/^86Sr ratio increases with the increasing age and depth of groundw...To analyze the genesis of Sr isotopes in groundwater of Hebei plain, time-accumulative effect of ^87Sr/^86Sr ratio was studied. It is shown that ^87Sr/^86Sr ratio increases with the increasing age and depth of groundwater and has a positive correlation to 4Heexc and a negative correlation to δ^18O and δD.The groundwater is divided into three groups to discuss the relation between ^87Sr/^86Sr ratio and Sr^2+ content: ① moderate Sr^2+ content and higher ^87Sr/^86Sr ratio (water Ⅰ); ② lower Sr^2+ content and higher ^87Sr/^86Sr ratio (water Ⅱ); and ③ higher Sr^2+ content and lower ^87Sr/^86Sr ratio (water Ⅲ), that is hot water. On the basis of integrated analysis, it was considered that ① the radiogenic Sr in the Quaternary groundwater (Q4-Q1) originates from weathering of silicate rich in Na and Rb, mainly from plagioclase; ② the radiogenic Sr of hot water in Huanghua port is attributed to carbonate dissolution, with lower ^87Sr/^86Sr ratio and higher Sr/Na ratio; ③ the recharge area is laterally recharged by the groundwater flowing through igneous and metamorphic rocks, with moderate ^87Sr/^86Sr ratio. However, the formation mechanism of Sr isotopes in Tertiary groundwater needs further studies.展开更多
文摘目的建立基于^(87)Sr/^(86)Sr和δ^(13)C稳定同位素比质谱法(stable isotope ratio mass spectrometry,IRMS)的进口大麦产地溯源技术。方法样品干燥粉碎后,经硝酸消解,锶特效树脂净化后利用热电离质谱法(thermal ionization mass spectrometry,TIMS)分析检测^(87)Sr/^(86);样品用锡囊包裹后,利用元素分析-稳定同位素比质谱法分析检测δ^(13)C;利用SPSS 25.0软件对进口大麦的^(87)Sr/^(86)Sr和δ^(13)C进行正态性验证、方差分析、事后多重比较分析和判别分析。结果不同进口国大麦中的^(87)Sr/^(86)Sr和δ^(13)C具有显著性差异,经判别分析,进口自澳大利亚、法国和美国的大麦可以达到100%正确判别率,整体正确判别率达到86.2%,若将美国和加拿大进口的大麦归类为北美洲进口大麦,则可实现进口自北美、法国和澳大利亚大麦的100%正确判别率。结论利用^(87)Sr/^(86)Sr和δ^(13)C可以对不同进口国大麦进行产地溯源分析。
基金Support for this work comes from National Natural Science Foundation of China(Grant No.41422205)
文摘We analyzed the ^(87)Sr/^(86)Sr ratios of basaltic rocks and basin water in Xuyi,China,and found a big difference,which may challenge conventional wisdom on the contribution of basalt weathering in end-member analysis.Results of an in-house weathering experiment suggest that rainwater and dust are not responsible for the difference.By isolating the major minerals in basalt,we found that plagioclase has much higher ^(87)Sr/^(86)Sr ratios than bulk basalt and basin water,which might explain the difference in ^(87)Sr/^(86)Sr ratios of basalt and basin water.We inferthatlow-temperaturehydrothermalalteration increased the ^(87)Sr/^(86)Sr ratios of plagioclase.Future analyses of end-member contribution in a mixed-rock basin should take into account that basin water and plagioclase have higher ^(87)Sr/^(86)Sr ratios than basaltic rocks.
基金supported by the Guangxi Natural Science Foundation(2020GXNSFAA297025)the Guangxi Natural Science Foundation(GuikeAB22080046)+3 种基金the Guangxi Natural Science Foundation(GuikeAB21196050)the National Natural Science Foundation of China(42177075)the Natural Resources Science and Technology Strategic Research Project(2023-ZL-23)the Survey and China Geological Survey(DD20221808 and DD20230547).
文摘Understanding the hydrochemical characteristics and genesis mechanisms of strontium-rich groundwater is pivotal for supporting the exploitation and utilization of natural strontium-rich groundwater.In this research,27 groundwater samples were collected.By analyzing major ion chemistry and strontium isotope data,and considering the hydrogeological context,various analytical approaches,including multivariate statistics,ion ratios,and isotopes,were used to reveal the characteristics and genesis mechanisms of strontium-rich groundwater in the study area.The findings indicate that the predominant hydrochemical type of groundwater is HCO_(3)-Ca,with Ca^(2+)and HCO_(3)^(-)as the primary cations and anions.The hydrochemistry of the strontium-rich groundwater is predominantly influenced by rock weathering processes.A combination of factors,including ion exchange,and anthropogenic activities,shapes the compositional characteristics of the groundwater in the region.The dissolution of calcite due to weathering emerges as the principal source of strontium in the groundwater.While ion exchange processes are not conducive to strontium enrichment in groundwater,their effect is relatively limited.The impact of human activities on the groundwater is minor.
基金This paper is supported by China Geological Survey Project (No. 200320150002).
文摘To analyze the genesis of Sr isotopes in groundwater of Hebei plain, time-accumulative effect of ^87Sr/^86Sr ratio was studied. It is shown that ^87Sr/^86Sr ratio increases with the increasing age and depth of groundwater and has a positive correlation to 4Heexc and a negative correlation to δ^18O and δD.The groundwater is divided into three groups to discuss the relation between ^87Sr/^86Sr ratio and Sr^2+ content: ① moderate Sr^2+ content and higher ^87Sr/^86Sr ratio (water Ⅰ); ② lower Sr^2+ content and higher ^87Sr/^86Sr ratio (water Ⅱ); and ③ higher Sr^2+ content and lower ^87Sr/^86Sr ratio (water Ⅲ), that is hot water. On the basis of integrated analysis, it was considered that ① the radiogenic Sr in the Quaternary groundwater (Q4-Q1) originates from weathering of silicate rich in Na and Rb, mainly from plagioclase; ② the radiogenic Sr of hot water in Huanghua port is attributed to carbonate dissolution, with lower ^87Sr/^86Sr ratio and higher Sr/Na ratio; ③ the recharge area is laterally recharged by the groundwater flowing through igneous and metamorphic rocks, with moderate ^87Sr/^86Sr ratio. However, the formation mechanism of Sr isotopes in Tertiary groundwater needs further studies.