The collecting power of tertiary amines(DRN,DEN and DPN) on kaolinite follows the order of DENDPNDRN.After reacting with DRN,DEN and DPN,the surface potentials of kaolinite increase remarkably,and the recruitments c...The collecting power of tertiary amines(DRN,DEN and DPN) on kaolinite follows the order of DENDPNDRN.After reacting with DRN,DEN and DPN,the surface potentials of kaolinite increase remarkably,and the recruitments caused by collectors also follow the order of DENDPNDRN.The results of dynamics simulation show that the geometries of substituent groups bonding to N are deflected and twisted,and some of bond angles are changed when tertiary amines cations adsorb on kaolinite(001) surface.Based on the results of dynamics simulations and quantum chemistry calculations,the electrostatic forces between three tertiary amines cations and 4×4×3(001) plane of kaolinite are 1.38×10?7 N(DRN12H+),1.44×10-6 N(DEN12H+),1.383×10-6 N(DPN12H+),respectively.展开更多
Ultrathin TiO_(2)nanosheets with coexposed{001}/{101}facets have attracted considerable attention because of their high photocatalytic activity.However,the charge-separated states in the TiO_(2)nanosheets must be exte...Ultrathin TiO_(2)nanosheets with coexposed{001}/{101}facets have attracted considerable attention because of their high photocatalytic activity.However,the charge-separated states in the TiO_(2)nanosheets must be extended to further enhance their photocatalytic activity for H_(2)evolution.Herein,we present a successful attempt to selectively dope lanthanide ions into the{101}facets of ultrathin TiO_(2)nanosheets with coexposed{001}/{101}facets through a facile one-step solvothermal method.The lanthanide doping slightly extended the light-harvesting region and markedly improved the charge-separated states of the TiO_(2)nanosheets as evidenced by UV-vis absorption and steady-state/transient photoluminescence spectra.Upon simulated sunlight irradiation,we observed a 4.2-fold enhancement in the photocatalytic H_(2)evolution activity of optimal Yb^(3+)-doped TiO_(2)nanosheets compared to that of their undoped counterparts.Furthermore,when Pt nanoparticles were used as cocatalysts to reduce the H_(2)overpotential in this system,the photocatalytic activity enhancement factor increased to 8.5.By combining these results with those of control experiments,we confirmed that the extended charge-separated states play the main role in the enhancement of the photocatalytic H_(2)evolution activity of lanthanide-doped TiO_(2)nanosheets with coexposed{001}/{101}facets.展开更多
The fabrication of well defined hierarchical structures of anatase TiO_(2) with a high percentage of reactive facets is of great importance and challenging.Hierarchically flower-like TiO_(2) superstructures(HFTS)self-...The fabrication of well defined hierarchical structures of anatase TiO_(2) with a high percentage of reactive facets is of great importance and challenging.Hierarchically flower-like TiO_(2) superstructures(HFTS)self-assembled from anatase TiO_(2) nanosheets with exposed{001}facets(up to 87%)were synthesized by a simple alcohothermal strategy in a HF-H_(2)O-C_(2)H_(5)OH mixed solution using titanate nanotubes as precursor.The samples were characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and N2 adsorption-desorption isotherms.The photocatalytic activity was evaluated by the photocatalytic oxidation decomposition of acetone in air and methyl orange in aqueous solution under UV illumination.The photocatalytic activity of HFTS was much higher than that of commercial Degussa P25 and tabular-shaped anatase TiO_(2) obtained using pure water as the synthesis medium.The enhancement in photocatalytic activity was related to several factors,including the hierarchically porous structure,exposed{001}facets,and increased light harvesting ability.The HFTS was also of interest for use in solar cells,photocatalytic H_(2) production,optoelectronic devices,sensors,and catalysis.展开更多
A sample of sulfated anatase TiO2 with high‐energy(001)facets(TiO2‐001)was prepared by a simple one‐step hydrothermal route using SO42-as a morphology‐controlling agent.After doping ceria,Ce/TiO2‐001 was used as ...A sample of sulfated anatase TiO2 with high‐energy(001)facets(TiO2‐001)was prepared by a simple one‐step hydrothermal route using SO42-as a morphology‐controlling agent.After doping ceria,Ce/TiO2‐001 was used as the catalyst for selective catalytic reduction(SCR)of NO with NH3.Compared with Ce/P25(Degussa P25 TiO2)and Ce/P25‐S(sulfated P25)catalysts,Ce/TiO2‐001 was more suitable for medium‐and high‐temperature SCR of NO due to the high surface area,sulfation,and the excellent properties of the active‐energy(001)facets.All of these facilitated the generation of abundant acidity,chemisorbed oxygen,and activated NOx‐adsorption species,which were the important factors for the SCR reaction.展开更多
Anatase Ti0_(2) nanosheet-based hierarchical spheres(HSs)with nearly 100%exposed{001}facets were synthesized via a facile solvothermal process.Using these hierarchical spheres as a scattering layer on nanocrystaline T...Anatase Ti0_(2) nanosheet-based hierarchical spheres(HSs)with nearly 100%exposed{001}facets were synthesized via a facile solvothermal process.Using these hierarchical spheres as a scattering layer on nanocrystaline TiO_(2)film,hi-layered dye-sensitized solar cells(DSSCs)have been fabricated by electrophoresis deposition method,which well preserved the fragile hierarchical structure.Owing to the superior dye adsorption and light scattering effect of HSs,an overall energy conversion efficiency of 7.38%is achieved,which is 26%higher than that of nanoparticle-based photoanode.展开更多
{001}facets dominated single crystalline anatase TiO_(2) nanosheet array(TNSA)was synthe-sized through an optimized organic solvothermal route on uorine-doped tin oxide substrate.The field emission scanning electron m...{001}facets dominated single crystalline anatase TiO_(2) nanosheet array(TNSA)was synthe-sized through an optimized organic solvothermal route on uorine-doped tin oxide substrate.The field emission scanning electron microscopy images and X-ray diffraction patterns re-vealed that the{001}synthesized facets dominated TNSA exhibited much higher orientation than that synthesized by hydrothermal route.The TNSAs were loaded with Pt nanoparti-cles in uniformly size by using a photodecomposition method,which were further con rmed by high resolution transmission electron microscopy(HRTEM).The HRTEM images also revealed that Pt nanoparticles preferred to deposit on{001}facets.With loading of Pt nanoparticles,the optical absorbance was significantly enhanced,while the photolumines-cence(PL)was inhibited.The photocatalytic activity of TNSA was signi cantly improved by Pt loading and reached the maximum with optimal amount of Pt loading.The optimal amount of Pt on{001}facets is far less than that on TiO_(2) nanoparticles,which may be attributed to the specific atom structure of reactive{001}facets.展开更多
Nitrogen-doped anatase TiO 2 microsheets with 65%(001) and 35%(101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by ...Nitrogen-doped anatase TiO 2 microsheets with 65%(001) and 35%(101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by scanning electron microscopy,X-ray diffraction,N2 adsorption,X-ray photoelectron spectroscopy,UV-visible spectroscopy,and electrochemical impedance spectroscopy. Their photocatalytic activity was evaluated using the photocatalytic reduction of CO2. The N-doped TiO 2 sample exhibited a much higher visible light photocatalytic activity for CO2 reduction than its precursor TiN and commercial TiO 2(P25). This was due to the synergistic effect of the formation of surface heterojunctions on the TiO 2 microsheet surface,enhanced visible light absorption by nitrogen-doping,and surface fluorination.展开更多
Photocatalytic carbon dioxide reduction reaction(CO_(2)RR)has been considered as one of most effective ways to solve the current energy crisis and environmental problems.However,the practical application of photocatal...Photocatalytic carbon dioxide reduction reaction(CO_(2)RR)has been considered as one of most effective ways to solve the current energy crisis and environmental problems.However,the practical application of photocatalytic CO_(2)RR is largely hindered by lock of efficient catalyst.Here,hierarchical titanium dioxide(TiO_(2))nanostructures with a highly active{001}surface were successfully synthesized by a facile approach from metal Ti powders.The obtained hierarchical TiO_(2)nanostructures were composed of TiO_(2)nanorods,which have a diameter about 5–10 nm and a length of several micrometers.It is found that these nanorods have exposed{001}facets.On the other hand,these hierarchical TiO_(2)nanostructures have a good light-harvesting efficiency with the help of TiO_(2)nanorods component and large specific surface area.Therefore,these hierarchical TiO_(2)nanostructures exhibit a much better activity for photocatalytic CO_(2)reduction than that of commercial TiO_(2)(P25).This high activity can be attributed to the synergistic effects of active surface,efficient charge transfer along nanorods and good light harvesting in the nanorod-hierarchical nanostructures.展开更多
基金Project (2005CB623701) supported by the National Basic Research Program of China Project (201011031) supported by National Department Public Benefit Research Foundation from Ministry of Land and Resources of China+1 种基金 Project (2935) supported by the Foundation for the Author of Zhengzhou Institute of Multipurpose Utilization of Mineral Resources CAGS, China Project (1212011120304) supported by the Geological Surrey Program
文摘The collecting power of tertiary amines(DRN,DEN and DPN) on kaolinite follows the order of DENDPNDRN.After reacting with DRN,DEN and DPN,the surface potentials of kaolinite increase remarkably,and the recruitments caused by collectors also follow the order of DENDPNDRN.The results of dynamics simulation show that the geometries of substituent groups bonding to N are deflected and twisted,and some of bond angles are changed when tertiary amines cations adsorb on kaolinite(001) surface.Based on the results of dynamics simulations and quantum chemistry calculations,the electrostatic forces between three tertiary amines cations and 4×4×3(001) plane of kaolinite are 1.38×10?7 N(DRN12H+),1.44×10-6 N(DEN12H+),1.383×10-6 N(DPN12H+),respectively.
文摘Ultrathin TiO_(2)nanosheets with coexposed{001}/{101}facets have attracted considerable attention because of their high photocatalytic activity.However,the charge-separated states in the TiO_(2)nanosheets must be extended to further enhance their photocatalytic activity for H_(2)evolution.Herein,we present a successful attempt to selectively dope lanthanide ions into the{101}facets of ultrathin TiO_(2)nanosheets with coexposed{001}/{101}facets through a facile one-step solvothermal method.The lanthanide doping slightly extended the light-harvesting region and markedly improved the charge-separated states of the TiO_(2)nanosheets as evidenced by UV-vis absorption and steady-state/transient photoluminescence spectra.Upon simulated sunlight irradiation,we observed a 4.2-fold enhancement in the photocatalytic H_(2)evolution activity of optimal Yb^(3+)-doped TiO_(2)nanosheets compared to that of their undoped counterparts.Furthermore,when Pt nanoparticles were used as cocatalysts to reduce the H_(2)overpotential in this system,the photocatalytic activity enhancement factor increased to 8.5.By combining these results with those of control experiments,we confirmed that the extended charge-separated states play the main role in the enhancement of the photocatalytic H_(2)evolution activity of lanthanide-doped TiO_(2)nanosheets with coexposed{001}/{101}facets.
基金supported by the National Natural Science Foundation of China(50625208,20773097,and 20877061)the National Basic Research Program of China(973Program,2007CB613302and2009CB939704)Fundamental Research Funds for the Central Universities(2010-YB-01)
文摘The fabrication of well defined hierarchical structures of anatase TiO_(2) with a high percentage of reactive facets is of great importance and challenging.Hierarchically flower-like TiO_(2) superstructures(HFTS)self-assembled from anatase TiO_(2) nanosheets with exposed{001}facets(up to 87%)were synthesized by a simple alcohothermal strategy in a HF-H_(2)O-C_(2)H_(5)OH mixed solution using titanate nanotubes as precursor.The samples were characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and N2 adsorption-desorption isotherms.The photocatalytic activity was evaluated by the photocatalytic oxidation decomposition of acetone in air and methyl orange in aqueous solution under UV illumination.The photocatalytic activity of HFTS was much higher than that of commercial Degussa P25 and tabular-shaped anatase TiO_(2) obtained using pure water as the synthesis medium.The enhancement in photocatalytic activity was related to several factors,including the hierarchically porous structure,exposed{001}facets,and increased light harvesting ability.The HFTS was also of interest for use in solar cells,photocatalytic H_(2) production,optoelectronic devices,sensors,and catalysis.
基金supported by the National Key R&D Program of China(2016YFC0204100)the Zhejiang Provincial "151" Talents Program+1 种基金the Program for Zhejiang Leading Team of S&T Innovation(2013TD07)the Changjiang Scholar Incentive Program(2009)~~
文摘A sample of sulfated anatase TiO2 with high‐energy(001)facets(TiO2‐001)was prepared by a simple one‐step hydrothermal route using SO42-as a morphology‐controlling agent.After doping ceria,Ce/TiO2‐001 was used as the catalyst for selective catalytic reduction(SCR)of NO with NH3.Compared with Ce/P25(Degussa P25 TiO2)and Ce/P25‐S(sulfated P25)catalysts,Ce/TiO2‐001 was more suitable for medium‐and high‐temperature SCR of NO due to the high surface area,sulfation,and the excellent properties of the active‐energy(001)facets.All of these facilitated the generation of abundant acidity,chemisorbed oxygen,and activated NOx‐adsorption species,which were the important factors for the SCR reaction.
文摘Anatase Ti0_(2) nanosheet-based hierarchical spheres(HSs)with nearly 100%exposed{001}facets were synthesized via a facile solvothermal process.Using these hierarchical spheres as a scattering layer on nanocrystaline TiO_(2)film,hi-layered dye-sensitized solar cells(DSSCs)have been fabricated by electrophoresis deposition method,which well preserved the fragile hierarchical structure.Owing to the superior dye adsorption and light scattering effect of HSs,an overall energy conversion efficiency of 7.38%is achieved,which is 26%higher than that of nanoparticle-based photoanode.
基金This work is supported by the National Basic Research Program of China(No.2012CB9222000).
文摘{001}facets dominated single crystalline anatase TiO_(2) nanosheet array(TNSA)was synthe-sized through an optimized organic solvothermal route on uorine-doped tin oxide substrate.The field emission scanning electron microscopy images and X-ray diffraction patterns re-vealed that the{001}synthesized facets dominated TNSA exhibited much higher orientation than that synthesized by hydrothermal route.The TNSAs were loaded with Pt nanoparti-cles in uniformly size by using a photodecomposition method,which were further con rmed by high resolution transmission electron microscopy(HRTEM).The HRTEM images also revealed that Pt nanoparticles preferred to deposit on{001}facets.With loading of Pt nanoparticles,the optical absorbance was significantly enhanced,while the photolumines-cence(PL)was inhibited.The photocatalytic activity of TNSA was signi cantly improved by Pt loading and reached the maximum with optimal amount of Pt loading.The optimal amount of Pt on{001}facets is far less than that on TiO_(2) nanoparticles,which may be attributed to the specific atom structure of reactive{001}facets.
基金supported by the National Basic Research Program of China(973 Program2013CB632402)+7 种基金the National Natural Science Foundation of China(513201050015137219051402025and 21433007)the Natural Science Foundation of Hubei Province(2015CFA001)the Fundamental Research Funds for the Central Universities(WUT:2014-VII-010)the Self-Determined and Innovative Research Funds of State Key Laboratory of Advanced Technology for Material Synthesis and ProcessingWuhan University of Technology(2013-ZD-1)~~
文摘Nitrogen-doped anatase TiO 2 microsheets with 65%(001) and 35%(101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by scanning electron microscopy,X-ray diffraction,N2 adsorption,X-ray photoelectron spectroscopy,UV-visible spectroscopy,and electrochemical impedance spectroscopy. Their photocatalytic activity was evaluated using the photocatalytic reduction of CO2. The N-doped TiO 2 sample exhibited a much higher visible light photocatalytic activity for CO2 reduction than its precursor TiN and commercial TiO 2(P25). This was due to the synergistic effect of the formation of surface heterojunctions on the TiO 2 microsheet surface,enhanced visible light absorption by nitrogen-doping,and surface fluorination.
基金Project(21872174)supported by the National Natural Science Foundation of ChinaProjects(2017CX003,20180018050001)supported by the Innovation-Driven Plan in Central South University,China+3 种基金Project supported by State Key Laboratory of Powder Metallurgy in Central South University,ChinaProject(JCYJ20180307151313532)supported by Shenzhen Science and Technology Innovation Project,ChinaProject supported by the Thousand Youth Talents Plan of ChinaProject supported by the Hundred Youth Talents Program of Hunan,China
文摘Photocatalytic carbon dioxide reduction reaction(CO_(2)RR)has been considered as one of most effective ways to solve the current energy crisis and environmental problems.However,the practical application of photocatalytic CO_(2)RR is largely hindered by lock of efficient catalyst.Here,hierarchical titanium dioxide(TiO_(2))nanostructures with a highly active{001}surface were successfully synthesized by a facile approach from metal Ti powders.The obtained hierarchical TiO_(2)nanostructures were composed of TiO_(2)nanorods,which have a diameter about 5–10 nm and a length of several micrometers.It is found that these nanorods have exposed{001}facets.On the other hand,these hierarchical TiO_(2)nanostructures have a good light-harvesting efficiency with the help of TiO_(2)nanorods component and large specific surface area.Therefore,these hierarchical TiO_(2)nanostructures exhibit a much better activity for photocatalytic CO_(2)reduction than that of commercial TiO_(2)(P25).This high activity can be attributed to the synergistic effects of active surface,efficient charge transfer along nanorods and good light harvesting in the nanorod-hierarchical nanostructures.