The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness...The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things.展开更多
Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal pr...Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal production.Aiming at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature detection of dense pole plates in electrolysis tanks,an infrared dense pole plate anomalous target detection network YOLOv5-RMF based on You Only Look Once version 5(YOLOv5)is proposed.Firstly,we modified the Real-Time Enhanced Super-Resolution Generative Adversarial Network(Real-ESRGAN)by changing the U-shaped network(U-Net)to Attention U-Net,to preprocess the images;secondly,we propose a new Focus module that introduces the Marr operator,which can provide more boundary information for the network;again,because Complete Intersection over Union(CIOU)cannot accommodate target borders that are increasing and decreasing,replace CIOU with Extended Intersection over Union(EIOU),while the loss function is changed to Focal and Efficient IOU(Focal-EIOU)due to the different difficulty of sample detection.On the homemade dataset,the precision of our method is 94%,the recall is 70.8%,and the map@.5 is 83.6%,which is an improvement of 1.3%in precision,9.7%in recall,and 7%in map@.5 over the original network.The algorithm can meet the needs of electrolysis tank pole plate abnormal temperature detection,which can lay a technical foundation for improving production efficiency and reducing production waste.展开更多
Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have ...Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have been used to solve fault detection.However,the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error.For this reason,an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection.YOLOv8 is a CNN-backed object detection model.Specifically,to reduce the parameter count,we first design an improved FasterNet module based on the Partial Convolution(PConv)operator.Then,to enhance convergence performance,we improve the loss function based on the efficient complete intersection over the union.Based on this,a flexible variable-length encoding is proposed,and the corresponding reproduction operators are designed.Related experimental results confirmthat the proposed approach can achieve better fault detection results and improve by 2.6%in mean precision at 50(mAP50)compared to the existing methods.Additionally,compared to training with the YOLOv8n model,the YOLOBFE model reduces the training parameters by 933,937 and decreases the GFLOPS(Giga Floating Point Operations Per Second)by 1.1.展开更多
Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersp...Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset.展开更多
Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ...Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.展开更多
This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV tech...This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations.展开更多
By analyzing the average percent of faults detected (APFD) metric and its variant versions, which are widely utilized as metrics to evaluate the fault detection efficiency of the test suite, this paper points out so...By analyzing the average percent of faults detected (APFD) metric and its variant versions, which are widely utilized as metrics to evaluate the fault detection efficiency of the test suite, this paper points out some limitations of the APFD series metrics. These limitations include APFD series metrics having inaccurate physical explanations and being unable to precisely describe the process of fault detection. To avoid the limitations of existing metrics, this paper proposes two improved metrics for evaluating fault detection efficiency of a test suite, including relative-APFD and relative-APFDc. The proposed metrics refer to both the speed of fault detection and the constraint of the testing source. The case study shows that the two proposed metrics can provide much more precise descriptions of the fault detection process and the fault detection efficiency of the test suite.展开更多
Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance de...Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance degradation for complicated nonlinear industrial processes. In this paper, an improved LPP method, referred to as sparse kernel locality preserving projection (SKLPP) is proposed for nonlinear process fault detection. Based on the LPP model, kernel trick is applied to construct nonlinear kernel model. Furthermore, for reducing the computational complexity of kernel model, feature samples selection technique is adopted to make the kernel LPP model sparse. Lastly, two monitoring statistics of SKLPP model are built to detect process faults. Simulations on a continuous stirred tank reactor (CSTR) system show that SKLPP is more effective than LPP in terms of fault detection performance.展开更多
Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have...Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China.展开更多
Online fault detection is one of the key technologies to improve the performance of cloud systems. The current data of cloud systems is to be monitored, collected and used to reflect their state. Its use can potential...Online fault detection is one of the key technologies to improve the performance of cloud systems. The current data of cloud systems is to be monitored, collected and used to reflect their state. Its use can potentially help cloud managers take some timely measures before fault occurrence in clouds. Because of the complex structure and dynamic change characteristics of the clouds, existing fault detection methods suffer from the problems of low efficiency and low accuracy. In order to solve them, this work proposes an online detection model based on asystematic parameter-search method called SVM-Grid, whose construction is based on a support vector machine(SVM). SVM-Grid is used to optimize parameters in SVM. Proper attributes of a cloud system's running data are selected by using Pearson correlation and principal component analysis for the model. Strategies of predicting cloud faults and updating fault sample databases are proposed to optimize the model and improve its performance.In comparison with some representative existing methods, the proposed model can achieve more efficient and accurate fault detection for cloud systems.展开更多
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d...For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.展开更多
An incipient mechanical fault detection method, combining multifractal theory and Mahalanobis-Taguchi system (MTS), which is based on statistical technology, is proposed in this paper. Multifractal features of vibra...An incipient mechanical fault detection method, combining multifractal theory and Mahalanobis-Taguchi system (MTS), which is based on statistical technology, is proposed in this paper. Multifractal features of vibration signals obtained from machine state monitoring are extracted by multifractal spectrum analysis and generalized fractal dimensions. Considering the situation of mass samples of normal mechanical running state and few fault states, the feature parameters corresponding to different mechanical running states are further optimized by a statistical method, based on which incipient faults are subsequently identified and diagnosed accurately. Experimental results proved that the method combining multifractal theory and MTS can be used for incipient fault state recognition effectively during the mechanical running process, and the accuracy of fault state identification is improved.展开更多
This paper describes a novel wavelet-based approach to the detection of abrupt fault of Rotorcrafi Unmanned Aerial Vehicle (RUAV) sensor system. By use of wavelet transforms that accurately localize the characterist...This paper describes a novel wavelet-based approach to the detection of abrupt fault of Rotorcrafi Unmanned Aerial Vehicle (RUAV) sensor system. By use of wavelet transforms that accurately localize the characteristics of a signal both in the time and frequency domains, the occurring instants of abnormal status of a sensor in the output signal can be identified by the multi-scale representation of the signal. Once the instants are detected, the distribution differences of the signal energy on all decomposed wavelet scales of the signal before and after the instants are used to claim and classify the sensor faults.展开更多
Since the efficiency of photovoltaic(PV) power is closely related to the weather,many PV enterprises install weather instruments to monitor the working state of the PV power system.With the development of the soft mea...Since the efficiency of photovoltaic(PV) power is closely related to the weather,many PV enterprises install weather instruments to monitor the working state of the PV power system.With the development of the soft measurement technology,the instrumental method seems obsolete and involves high cost.This paper proposes a novel method for predicting the types of weather based on the PV power data and partial meteorological data.By this method,the weather types are deduced by data analysis,instead of weather instrument A better fault detection is obtained by using the support vector machines(SVM) and comparing the predicted and the actual weather.The model of the weather prediction is established by a direct SVM for training multiclass predictors.Although SVM is suitable for classification,the classified results depend on the type of the kernel,the parameters of the kernel,and the soft margin coefficient,which are difficult to choose.In this paper,these parameters are optimized by particle swarm optimization(PSO) algorithm in anticipation of good prediction results can be achieved.Prediction results show that this method is feasible and effective.展开更多
In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation ...In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation underlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physically and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect.The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method.展开更多
In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential...In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems.展开更多
Process monitoring techniques are of paramount importance in the chemical industry to improve both the product quality and plant safety.Small or incipient irregularities may lead to severe degradation in complex chemi...Process monitoring techniques are of paramount importance in the chemical industry to improve both the product quality and plant safety.Small or incipient irregularities may lead to severe degradation in complex chemical processes,and the conventional process monitoring techniques cannot detect these irregularities.In this study to improve the performance of monitoring,an online multiscale fault detection approach is proposed by integrating multiscale principal component analysis(MSPCA) with cumulative sum(CUSUM) and exponentially weighted moving average(EWMA) control charts.The new Hotelling's T~2 and square prediction error(SPE) based fault detection indices are proposed to detect the incipient irregularities in the process data.The performance of the proposed fault detection methods was tested for simulated data obtained from the CSTR system and compared to that of conventional PCA and MSPCA based methods.The results demonstrate that the proposed EWMA based MSPCA fault detection method was successful in detecting the faults.Moreover,a comparative study shows that the SPEEWMA monitoring index exhibits a better performance with lower values of missed detections ranging from 0% to 0.80% and false alarms ranging from 0% to 21.20%.展开更多
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont...Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.展开更多
Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband ...Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103.展开更多
In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new...In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new statistics are established to monitor changes in the underlying model. The new modeling strategy can avoid the Gaussian distribution assumption of KPLS. Besides, advantage of the proposed method is that the kernel latent variables can be obtained directly through the eigen value decomposition instead of the iterative calculation, which can improve the computing speed. The new method is applied to fault detection in the simulation benchmark of the Tennessee Eastman process. The simulation results show superiority on detection sensitivity and accuracy in comparison to KPLS monitoring.展开更多
文摘The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things.
文摘Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal production.Aiming at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature detection of dense pole plates in electrolysis tanks,an infrared dense pole plate anomalous target detection network YOLOv5-RMF based on You Only Look Once version 5(YOLOv5)is proposed.Firstly,we modified the Real-Time Enhanced Super-Resolution Generative Adversarial Network(Real-ESRGAN)by changing the U-shaped network(U-Net)to Attention U-Net,to preprocess the images;secondly,we propose a new Focus module that introduces the Marr operator,which can provide more boundary information for the network;again,because Complete Intersection over Union(CIOU)cannot accommodate target borders that are increasing and decreasing,replace CIOU with Extended Intersection over Union(EIOU),while the loss function is changed to Focal and Efficient IOU(Focal-EIOU)due to the different difficulty of sample detection.On the homemade dataset,the precision of our method is 94%,the recall is 70.8%,and the map@.5 is 83.6%,which is an improvement of 1.3%in precision,9.7%in recall,and 7%in map@.5 over the original network.The algorithm can meet the needs of electrolysis tank pole plate abnormal temperature detection,which can lay a technical foundation for improving production efficiency and reducing production waste.
基金supported by the Liaoning Province Applied Basic Research Program Project of China(Grant:2023JH2/101300065)the Liaoning Province Science and Technology Plan Joint Fund(2023-MSLH-221).
文摘Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have been used to solve fault detection.However,the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error.For this reason,an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection.YOLOv8 is a CNN-backed object detection model.Specifically,to reduce the parameter count,we first design an improved FasterNet module based on the Partial Convolution(PConv)operator.Then,to enhance convergence performance,we improve the loss function based on the efficient complete intersection over the union.Based on this,a flexible variable-length encoding is proposed,and the corresponding reproduction operators are designed.Related experimental results confirmthat the proposed approach can achieve better fault detection results and improve by 2.6%in mean precision at 50(mAP50)compared to the existing methods.Additionally,compared to training with the YOLOv8n model,the YOLOBFE model reduces the training parameters by 933,937 and decreases the GFLOPS(Giga Floating Point Operations Per Second)by 1.1.
基金supported partially by NationalNatural Science Foundation of China(NSFC)(No.U21A20146)Collaborative Innovation Project of Anhui Universities(No.GXXT-2020-070)+8 种基金Cooperation Project of Anhui Future Technology Research Institute and Enterprise(No.2023qyhz32)Development of a New Dynamic Life Prediction Technology for Energy Storage Batteries(No.KH10003598)Opening Project of Key Laboratory of Electric Drive and Control of Anhui Province(No.DQKJ202304)Anhui Provincial Department of Education New Era Education Quality Project(No.2023dshwyx019)Special Fund for Collaborative Innovation between Anhui Polytechnic University and Jiujiang District(No.2022cyxtb10)Key Research and Development Program of Wuhu City(No.2022yf42)Open Research Fund of Anhui Key Laboratory of Detection Technology and Energy Saving Devices(No.JCKJ2021B06)Anhui Provincial Graduate Student Innovation and Entrepreneurship Practice Project(No.2022cxcysj123)Key Scientific Research Project for Anhui Universities(No.2022AH050981).
文摘Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20186 and 62372063).
文摘Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.
文摘This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations.
基金The National Natural Science Foundation of China(No.61300054)the Natural Science Foundation of Jiangsu Province(No.BK2011190,BK20130879)+1 种基金the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.13KJB520018)the Science Foundation of Nanjing University of Posts&Telecommunications(No.NY212023)
文摘By analyzing the average percent of faults detected (APFD) metric and its variant versions, which are widely utilized as metrics to evaluate the fault detection efficiency of the test suite, this paper points out some limitations of the APFD series metrics. These limitations include APFD series metrics having inaccurate physical explanations and being unable to precisely describe the process of fault detection. To avoid the limitations of existing metrics, this paper proposes two improved metrics for evaluating fault detection efficiency of a test suite, including relative-APFD and relative-APFDc. The proposed metrics refer to both the speed of fault detection and the constraint of the testing source. The case study shows that the two proposed metrics can provide much more precise descriptions of the fault detection process and the fault detection efficiency of the test suite.
基金Supported by the National Natural Science Foundation of China (61273160), the Natural Science Foundation of Shandong Province of China (ZR2011FM014) and the Fundamental Research Funds for the Central Universities (10CX04046A).
文摘Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance degradation for complicated nonlinear industrial processes. In this paper, an improved LPP method, referred to as sparse kernel locality preserving projection (SKLPP) is proposed for nonlinear process fault detection. Based on the LPP model, kernel trick is applied to construct nonlinear kernel model. Furthermore, for reducing the computational complexity of kernel model, feature samples selection technique is adopted to make the kernel LPP model sparse. Lastly, two monitoring statistics of SKLPP model are built to detect process faults. Simulations on a continuous stirred tank reactor (CSTR) system show that SKLPP is more effective than LPP in terms of fault detection performance.
基金Projects(61621062,61563015)supported by the National Natural Science Foundation of ChinaProject(2016zzts056)supported by the Central South University Graduate Independent Exploration Innovation Program,China
文摘Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China.
基金supported by the National Natural Science Foundation of China(61472005,61201252)CERNET Innovation Project(NGII20160207)
文摘Online fault detection is one of the key technologies to improve the performance of cloud systems. The current data of cloud systems is to be monitored, collected and used to reflect their state. Its use can potentially help cloud managers take some timely measures before fault occurrence in clouds. Because of the complex structure and dynamic change characteristics of the clouds, existing fault detection methods suffer from the problems of low efficiency and low accuracy. In order to solve them, this work proposes an online detection model based on asystematic parameter-search method called SVM-Grid, whose construction is based on a support vector machine(SVM). SVM-Grid is used to optimize parameters in SVM. Proper attributes of a cloud system's running data are selected by using Pearson correlation and principal component analysis for the model. Strategies of predicting cloud faults and updating fault sample databases are proposed to optimize the model and improve its performance.In comparison with some representative existing methods, the proposed model can achieve more efficient and accurate fault detection for cloud systems.
基金supported by the National Natural Science Foundation of China(61202473)the Fundamental Research Funds for Central Universities(JUSRP111A49)+1 种基金"111 Project"(B12018)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2008AA06Z209)CNPC Innovation Fund (Grant No. 2006-A)+1 种基金Special Items Fund of Beijing Municipal Commiss ion of EducationProgram for New Century Excellent Talents,Ministry of Education (Grant No. NCET-05-0110)
文摘An incipient mechanical fault detection method, combining multifractal theory and Mahalanobis-Taguchi system (MTS), which is based on statistical technology, is proposed in this paper. Multifractal features of vibration signals obtained from machine state monitoring are extracted by multifractal spectrum analysis and generalized fractal dimensions. Considering the situation of mass samples of normal mechanical running state and few fault states, the feature parameters corresponding to different mechanical running states are further optimized by a statistical method, based on which incipient faults are subsequently identified and diagnosed accurately. Experimental results proved that the method combining multifractal theory and MTS can be used for incipient fault state recognition effectively during the mechanical running process, and the accuracy of fault state identification is improved.
文摘This paper describes a novel wavelet-based approach to the detection of abrupt fault of Rotorcrafi Unmanned Aerial Vehicle (RUAV) sensor system. By use of wavelet transforms that accurately localize the characteristics of a signal both in the time and frequency domains, the occurring instants of abnormal status of a sensor in the output signal can be identified by the multi-scale representation of the signal. Once the instants are detected, the distribution differences of the signal energy on all decomposed wavelet scales of the signal before and after the instants are used to claim and classify the sensor faults.
基金supported by the National Natural Science Foundation of China(61433004,61473069)IAPI Fundamental Research Funds(2013ZCX14)+1 种基金supported by the Development Project of Key Laboratory of Liaoning Provincethe Enterprise Postdoctoral Fund Projects of Liaoning Province
文摘Since the efficiency of photovoltaic(PV) power is closely related to the weather,many PV enterprises install weather instruments to monitor the working state of the PV power system.With the development of the soft measurement technology,the instrumental method seems obsolete and involves high cost.This paper proposes a novel method for predicting the types of weather based on the PV power data and partial meteorological data.By this method,the weather types are deduced by data analysis,instead of weather instrument A better fault detection is obtained by using the support vector machines(SVM) and comparing the predicted and the actual weather.The model of the weather prediction is established by a direct SVM for training multiclass predictors.Although SVM is suitable for classification,the classified results depend on the type of the kernel,the parameters of the kernel,and the soft margin coefficient,which are difficult to choose.In this paper,these parameters are optimized by particle swarm optimization(PSO) algorithm in anticipation of good prediction results can be achieved.Prediction results show that this method is feasible and effective.
基金Support by the National Natural Science Foundation of China(61174114)the Research Fund for the Doctoral Program of Higher Education in China(20120101130016)Zhejiang Provincial Science and Technology Planning Projects of China(2014C31019)
文摘In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation underlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physically and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect.The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method.
基金supported by the National Natural Science Foundation of China(6063403060702066)+1 种基金the Aerospace Science Foundation(20090853013)Fundmental Research Foundation of NWPU(JC201015),Soaring Star of NWPU
文摘In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems.
基金Department for the technical and administrative support and the financial support from the Yayasan UTP grant(Cost centre:015LC0-132).
文摘Process monitoring techniques are of paramount importance in the chemical industry to improve both the product quality and plant safety.Small or incipient irregularities may lead to severe degradation in complex chemical processes,and the conventional process monitoring techniques cannot detect these irregularities.In this study to improve the performance of monitoring,an online multiscale fault detection approach is proposed by integrating multiscale principal component analysis(MSPCA) with cumulative sum(CUSUM) and exponentially weighted moving average(EWMA) control charts.The new Hotelling's T~2 and square prediction error(SPE) based fault detection indices are proposed to detect the incipient irregularities in the process data.The performance of the proposed fault detection methods was tested for simulated data obtained from the CSTR system and compared to that of conventional PCA and MSPCA based methods.The results demonstrate that the proposed EWMA based MSPCA fault detection method was successful in detecting the faults.Moreover,a comparative study shows that the SPEEWMA monitoring index exhibits a better performance with lower values of missed detections ranging from 0% to 0.80% and false alarms ranging from 0% to 21.20%.
文摘Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103.
基金Supported by the Special Scientific Research of Selection and Cultivation of Excellent Young Teachers in Shanghai Universities(YYY11076)
文摘In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new statistics are established to monitor changes in the underlying model. The new modeling strategy can avoid the Gaussian distribution assumption of KPLS. Besides, advantage of the proposed method is that the kernel latent variables can be obtained directly through the eigen value decomposition instead of the iterative calculation, which can improve the computing speed. The new method is applied to fault detection in the simulation benchmark of the Tennessee Eastman process. The simulation results show superiority on detection sensitivity and accuracy in comparison to KPLS monitoring.