期刊文献+
共找到334篇文章
< 1 2 17 >
每页显示 20 50 100
An Insight Survey on Sensor Errors and Fault Detection Techniques in Smart Spaces
1
作者 Sheetal Sharma Kamali Gupta +2 位作者 DeepaliGupta Shalli Rani Gaurav Dhiman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2029-2059,共31页
The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness... The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things. 展开更多
关键词 ERROR fault detection techniques sensor faults OUTLIERS Internet of Things
下载PDF
Infrared Fault Detection Method for Dense Electrolytic Bath Polar Plate Based on YOLOv5s
2
作者 Huiling Yu Yanqiu Hang +2 位作者 Shen Shi Kangning Wu Yizhuo Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4859-4874,共16页
Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal pr... Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal production.Aiming at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature detection of dense pole plates in electrolysis tanks,an infrared dense pole plate anomalous target detection network YOLOv5-RMF based on You Only Look Once version 5(YOLOv5)is proposed.Firstly,we modified the Real-Time Enhanced Super-Resolution Generative Adversarial Network(Real-ESRGAN)by changing the U-shaped network(U-Net)to Attention U-Net,to preprocess the images;secondly,we propose a new Focus module that introduces the Marr operator,which can provide more boundary information for the network;again,because Complete Intersection over Union(CIOU)cannot accommodate target borders that are increasing and decreasing,replace CIOU with Extended Intersection over Union(EIOU),while the loss function is changed to Focal and Efficient IOU(Focal-EIOU)due to the different difficulty of sample detection.On the homemade dataset,the precision of our method is 94%,the recall is 70.8%,and the map@.5 is 83.6%,which is an improvement of 1.3%in precision,9.7%in recall,and 7%in map@.5 over the original network.The algorithm can meet the needs of electrolysis tank pole plate abnormal temperature detection,which can lay a technical foundation for improving production efficiency and reducing production waste. 展开更多
关键词 Infrared polar plate fault detection YOLOv5 Real-ESRGAN Marr boundary detection operator Focal-EIoU loss
下载PDF
Evolutionary Variational YOLOv8 Network for Fault Detection in Wind Turbines
3
作者 Hongjiang Wang Qingze Shen +3 位作者 Qin Dai Yingcai Gao Jing Gao Tian Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第7期625-642,共18页
Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have ... Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have been used to solve fault detection.However,the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error.For this reason,an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection.YOLOv8 is a CNN-backed object detection model.Specifically,to reduce the parameter count,we first design an improved FasterNet module based on the Partial Convolution(PConv)operator.Then,to enhance convergence performance,we improve the loss function based on the efficient complete intersection over the union.Based on this,a flexible variable-length encoding is proposed,and the corresponding reproduction operators are designed.Related experimental results confirmthat the proposed approach can achieve better fault detection results and improve by 2.6%in mean precision at 50(mAP50)compared to the existing methods.Additionally,compared to training with the YOLOv8n model,the YOLOBFE model reduces the training parameters by 933,937 and decreases the GFLOPS(Giga Floating Point Operations Per Second)by 1.1. 展开更多
关键词 Neural architecture search YOLOv8 evolutionary computation fault detection
下载PDF
A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples
4
作者 Miao Li Fanyong Cheng +2 位作者 Jiong Yang Maxwell Mensah Duodu Hao Tu 《Energy Engineering》 EI 2024年第9期2543-2568,共26页
Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersp... Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset. 展开更多
关键词 fault detection vehicle battery system lithium batteries fault samples
下载PDF
Generalized autoencoder-based fault detection method for traction systems with performance degradation
5
作者 Chao Cheng Wenyu Liu +1 位作者 Lu Di Shenquan Wang 《High-Speed Railway》 2024年第3期180-186,共7页
Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ... Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods. 展开更多
关键词 Performance degradation Generalized autoencoder fault detection Traction control systems High-speed trains
下载PDF
Advancements in Photovoltaic Panel Fault Detection Techniques
6
作者 Junyao Zheng 《Journal of Materials Science and Chemical Engineering》 2024年第6期1-11,共11页
This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV tech... This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations. 展开更多
关键词 Photovoltaic Panels fault detection Deep Learning Image Processing
下载PDF
Improved metrics for evaluating fault detection efficiency of test suite
7
作者 王子元 陈林 +1 位作者 汪鹏 仉雪玲 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期285-288,共4页
By analyzing the average percent of faults detected (APFD) metric and its variant versions, which are widely utilized as metrics to evaluate the fault detection efficiency of the test suite, this paper points out so... By analyzing the average percent of faults detected (APFD) metric and its variant versions, which are widely utilized as metrics to evaluate the fault detection efficiency of the test suite, this paper points out some limitations of the APFD series metrics. These limitations include APFD series metrics having inaccurate physical explanations and being unable to precisely describe the process of fault detection. To avoid the limitations of existing metrics, this paper proposes two improved metrics for evaluating fault detection efficiency of a test suite, including relative-APFD and relative-APFDc. The proposed metrics refer to both the speed of fault detection and the constraint of the testing source. The case study shows that the two proposed metrics can provide much more precise descriptions of the fault detection process and the fault detection efficiency of the test suite. 展开更多
关键词 software testing test case prioritization fault detection efficiency METRIC
下载PDF
Sparse Kernel Locality Preserving Projection and Its Application in Nonlinear Process Fault Detection 被引量:28
8
作者 DENG Xiaogang TIAN Xuemin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第2期163-170,共8页
Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance de... Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance degradation for complicated nonlinear industrial processes. In this paper, an improved LPP method, referred to as sparse kernel locality preserving projection (SKLPP) is proposed for nonlinear process fault detection. Based on the LPP model, kernel trick is applied to construct nonlinear kernel model. Furthermore, for reducing the computational complexity of kernel model, feature samples selection technique is adopted to make the kernel LPP model sparse. Lastly, two monitoring statistics of SKLPP model are built to detect process faults. Simulations on a continuous stirred tank reactor (CSTR) system show that SKLPP is more effective than LPP in terms of fault detection performance. 展开更多
关键词 nonlinear locality preserving projection kernel trick sparse model fault detection
下载PDF
Fault detection in flotation processes based on deep learning and support vector machine 被引量:16
9
作者 LI Zhong-mei GUI Wei-hua ZHU Jian-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2504-2515,共12页
Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have... Effective fault detection techniques can help flotation plant reduce reagents consumption,increase mineral recovery,and reduce labor intensity.Traditional,online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation,like color,shape,size and texture,always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case.In this work,a new integrated method based on convolution neural network(CNN)combined with transfer learning approach and support vector machine(SVM)is proposed to automatically recognize the flotation condition.To be more specific,CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection.As compared with the existed recognition methods,it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy.Hence,a CNN-SVM based,real-time flotation monitoring system is proposed for application in an antimony flotation plant in China. 展开更多
关键词 flotation processes convolutional neural network support vector machine froth images fault detection
下载PDF
An Online Fault Detection Model and Strategies Based on SVM-Grid in Clouds 被引量:23
10
作者 PeiYun Zhang Sheng Shu MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期445-456,共12页
Online fault detection is one of the key technologies to improve the performance of cloud systems. The current data of cloud systems is to be monitored, collected and used to reflect their state. Its use can potential... Online fault detection is one of the key technologies to improve the performance of cloud systems. The current data of cloud systems is to be monitored, collected and used to reflect their state. Its use can potentially help cloud managers take some timely measures before fault occurrence in clouds. Because of the complex structure and dynamic change characteristics of the clouds, existing fault detection methods suffer from the problems of low efficiency and low accuracy. In order to solve them, this work proposes an online detection model based on asystematic parameter-search method called SVM-Grid, whose construction is based on a support vector machine(SVM). SVM-Grid is used to optimize parameters in SVM. Proper attributes of a cloud system's running data are selected by using Pearson correlation and principal component analysis for the model. Strategies of predicting cloud faults and updating fault sample databases are proposed to optimize the model and improve its performance.In comparison with some representative existing methods, the proposed model can achieve more efficient and accurate fault detection for cloud systems. 展开更多
关键词 Index Terms-Cloud computing fault detection support vectormachine (SVM) grid.
下载PDF
Fault detection and diagnosis for data incomplete industrial systems with new Bayesian network approach 被引量:15
11
作者 Zhengdao Zhang Jinlin Zhu Feng Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期500-511,共12页
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d... For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements. 展开更多
关键词 fault detection and diagnosis Bayesian network Gaussian mixture model data incomplete non-imputation.
下载PDF
Incipient mechanical fault detection based on multifractal and MTS methods 被引量:8
12
作者 Hu Jinqiu Zhang Laibin Liang Wei Wang Zhaohui 《Petroleum Science》 SCIE CAS CSCD 2009年第2期208-216,共9页
An incipient mechanical fault detection method, combining multifractal theory and Mahalanobis-Taguchi system (MTS), which is based on statistical technology, is proposed in this paper. Multifractal features of vibra... An incipient mechanical fault detection method, combining multifractal theory and Mahalanobis-Taguchi system (MTS), which is based on statistical technology, is proposed in this paper. Multifractal features of vibration signals obtained from machine state monitoring are extracted by multifractal spectrum analysis and generalized fractal dimensions. Considering the situation of mass samples of normal mechanical running state and few fault states, the feature parameters corresponding to different mechanical running states are further optimized by a statistical method, based on which incipient faults are subsequently identified and diagnosed accurately. Experimental results proved that the method combining multifractal theory and MTS can be used for incipient fault state recognition effectively during the mechanical running process, and the accuracy of fault state identification is improved. 展开更多
关键词 Incipient fault fault detection MULTIFRACTAL Mahalanobis-Taguchi system (MTS)
下载PDF
Application of Wavelets Transform to Fault Detection in Rotorcraft UAV Sensor Failure 被引量:8
13
作者 Jun-tong Qi Jian-da Han 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第4期265-270,共6页
This paper describes a novel wavelet-based approach to the detection of abrupt fault of Rotorcrafi Unmanned Aerial Vehicle (RUAV) sensor system. By use of wavelet transforms that accurately localize the characterist... This paper describes a novel wavelet-based approach to the detection of abrupt fault of Rotorcrafi Unmanned Aerial Vehicle (RUAV) sensor system. By use of wavelet transforms that accurately localize the characteristics of a signal both in the time and frequency domains, the occurring instants of abnormal status of a sensor in the output signal can be identified by the multi-scale representation of the signal. Once the instants are detected, the distribution differences of the signal energy on all decomposed wavelet scales of the signal before and after the instants are used to claim and classify the sensor faults. 展开更多
关键词 RUAV wavelet transform fault detection sensor failure
下载PDF
Weather Prediction With Multiclass Support Vector Machines in the Fault Detection of Photovoltaic System 被引量:7
14
作者 Wenying Zhang Huaguang Zhang +3 位作者 Jinhai Liu Kai Li Dongsheng Yang Hui Tian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期520-525,共6页
Since the efficiency of photovoltaic(PV) power is closely related to the weather,many PV enterprises install weather instruments to monitor the working state of the PV power system.With the development of the soft mea... Since the efficiency of photovoltaic(PV) power is closely related to the weather,many PV enterprises install weather instruments to monitor the working state of the PV power system.With the development of the soft measurement technology,the instrumental method seems obsolete and involves high cost.This paper proposes a novel method for predicting the types of weather based on the PV power data and partial meteorological data.By this method,the weather types are deduced by data analysis,instead of weather instrument A better fault detection is obtained by using the support vector machines(SVM) and comparing the predicted and the actual weather.The model of the weather prediction is established by a direct SVM for training multiclass predictors.Although SVM is suitable for classification,the classified results depend on the type of the kernel,the parameters of the kernel,and the soft margin coefficient,which are difficult to choose.In this paper,these parameters are optimized by particle swarm optimization(PSO) algorithm in anticipation of good prediction results can be achieved.Prediction results show that this method is feasible and effective. 展开更多
关键词 fault detection multiclass support vector machines photovoltaic power system particle swarm optimization(PSO) weather prediction
下载PDF
Adaptive partitioning PCA model for improving fault detection and isolation 被引量:6
15
作者 刘康玲 金鑫 +1 位作者 费正顺 梁军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第6期981-991,共11页
In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation ... In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation underlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physically and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect.The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method. 展开更多
关键词 Adaptive partitioning fault detection fault isolation Principal component analysis
下载PDF
Practical integrated navigation fault detection algorithm based on sequential hypothesis testing 被引量:8
16
作者 Feng Yang Cheng Cheng Quan Pan Gongyuan Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期146-149,共4页
In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential... In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems. 展开更多
关键词 residual Chi-square test integrated navigation fault detection.
下载PDF
Improved process monitoring using the CUSUM and EWMA-based multiscale PCA fault detection framework 被引量:5
17
作者 Muhammad Nawaz Abdulhalim Shah Maulud +2 位作者 Haslinda Zabiri Syed Ali Ammar Taqvi Alamin Idris 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期253-265,共13页
Process monitoring techniques are of paramount importance in the chemical industry to improve both the product quality and plant safety.Small or incipient irregularities may lead to severe degradation in complex chemi... Process monitoring techniques are of paramount importance in the chemical industry to improve both the product quality and plant safety.Small or incipient irregularities may lead to severe degradation in complex chemical processes,and the conventional process monitoring techniques cannot detect these irregularities.In this study to improve the performance of monitoring,an online multiscale fault detection approach is proposed by integrating multiscale principal component analysis(MSPCA) with cumulative sum(CUSUM) and exponentially weighted moving average(EWMA) control charts.The new Hotelling's T~2 and square prediction error(SPE) based fault detection indices are proposed to detect the incipient irregularities in the process data.The performance of the proposed fault detection methods was tested for simulated data obtained from the CSTR system and compared to that of conventional PCA and MSPCA based methods.The results demonstrate that the proposed EWMA based MSPCA fault detection method was successful in detecting the faults.Moreover,a comparative study shows that the SPEEWMA monitoring index exhibits a better performance with lower values of missed detections ranging from 0% to 0.80% and false alarms ranging from 0% to 21.20%. 展开更多
关键词 Chemical process system CSTR fault detection Multiscale Principal component analysis Process monitoring
下载PDF
Fault detection for nonlinear networked control systems based on fuzzy observer 被引量:6
18
作者 Zhangqing Zhu Xiaocheng Jiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期129-136,共8页
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont... Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective. 展开更多
关键词 nonlinear networked control system (NNCS) fault detection T-S fuzzy model state observer time-delay.
下载PDF
Fourier and wavelet transformations application to fault detection of induction motor with stator current 被引量:6
19
作者 LEE Sang-hyuk 王一奇 SONG Jung-il 《Journal of Central South University》 SCIE EI CAS 2010年第1期93-101,共9页
Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband ... Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103. 展开更多
关键词 Fourier transformation wavelet transformation induction motor fault detection
下载PDF
Improved Kernel PLS-based Fault Detection Approach for Nonlinear Chemical Processes 被引量:5
20
作者 王丽 侍洪波 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第6期657-663,共7页
In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new... In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new statistics are established to monitor changes in the underlying model. The new modeling strategy can avoid the Gaussian distribution assumption of KPLS. Besides, advantage of the proposed method is that the kernel latent variables can be obtained directly through the eigen value decomposition instead of the iterative calculation, which can improve the computing speed. The new method is applied to fault detection in the simulation benchmark of the Tennessee Eastman process. The simulation results show superiority on detection sensitivity and accuracy in comparison to KPLS monitoring. 展开更多
关键词 nonlinear process fault detection kernel partial least squares statistical local approach
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部