Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the ch...Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical incon- sistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidifica- tion, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed al- gorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.展开更多
A description of a mathematical algorithm for simulating grain structures with straight and hyperbolic interfaces is shown. The presence of straight and hyperbolic interfaces in many grain structures of metallic mater...A description of a mathematical algorithm for simulating grain structures with straight and hyperbolic interfaces is shown. The presence of straight and hyperbolic interfaces in many grain structures of metallic materials is due to different solidification conditions, in- eluding different solidification speeds, growth directions, and delaying on the nucleation times of each nucleated node. Grain growth is a complex problem to be simulated; therefore, computational methods based on the chaos theory have been developed for this purpose. Straight and hyperbolic interfaces are between columnar and equiaxed grain structures or in transition zones. The algorithm developed in this work involves random distributions of temperature to assign preferential probabilities to each node of the simulated sample for nucleation according to previously defined boundary conditions. Moreover, more than one single nucleation process can be established in order to gen- erate hyperbolic interfaces between the grains. The appearance of new nucleated nodes is declared in sequences with a particular number of nucleated nodes and a number of steps for execution. This input information influences directly on the final grain structure (grain size and dislribution). Preferential growth directions are also established to obtain equiaxed and columnar grains. The simulation is done using rou- tines for nucleation and growth nested inside the main function. Here, random numbers are generated to place the coordinates of each new nucleated node at each nucleation sequence according to a solidification probability. Nucleation and growth routines are executed as a func- tion of nodal availability in order to know if a node will be part of a grain. Finally, this information is saved in a two-dimensional computa- tional array and displayed on the computer screen placing color pixels on the corresponding position forming an image as is done in cellular automaton.展开更多
The grain size of prior austenite has a distinct influence on the microstructure and final mechanical properties of steels. Thus, it is significant to clearly reveal the grain boundaries and therefore to precisely cha...The grain size of prior austenite has a distinct influence on the microstructure and final mechanical properties of steels. Thus, it is significant to clearly reveal the grain boundaries and therefore to precisely characterize the grain size of prior austenite. For NiCrMoV rotor steels quenched and tempered at high temperature, it is really difficult to display the grain boundaries of prior austenite clearly, which limits a further study on the correlation between the properties and the corresponding microstructure. In this paper, an effective etchant was put forward and further optimized. Experimental results indicated that this agent was effective to show the details of grain boundaries, which help analyze fatigue crack details along the propagation path. The optimized corrosion agent is successful to observe the microstructure characteristics and expected to help analyze the effect of microstructure for a further study on the mechanical properties of NiCrMoV rotor steels used in the field of nuclear power.展开更多
Grain size control of tungsten powder is essential for high quality tungsten products. Based on studies on the hydrogen reduction process of tungsten oxide, a microcomputer system is described for reduction process co...Grain size control of tungsten powder is essential for high quality tungsten products. Based on studies on the hydrogen reduction process of tungsten oxide, a microcomputer system is described for reduction process control. The system, now running in Zhuzhou Tungsten and Molybdenum Materials Plant, controls the temperature of the reduction furnace and hydrogen pressure. It also controls a mechanical pusher which pushs the boats charged with blue tungsten oxide into the furnace tubes. Some of the technical problems in the process are analysed.展开更多
The optical absorption edge and ultraviolet (UV) emission energy of ZnO films deposited by direct current (DC) reactive magnetron sputtering at room temperature have been investigated. With the oxygen ratio increasing...The optical absorption edge and ultraviolet (UV) emission energy of ZnO films deposited by direct current (DC) reactive magnetron sputtering at room temperature have been investigated. With the oxygen ratio increasing, the structure of films changes from zinc and zinc oxide coexisting phase to single-phase ZnO and finally to the highly (002) orientation. Both the grain size and the stress of ZnO film vary with the oxygen partial pressure. Upon increasing the oxygen partial pressure in the growing ambient, the visible emission in the room-temperature photoluminescence spectra was suppressed without sacrificing the band- edge emission intensity in the ultraviolet region. The peaks of photoluminescence spectra were located at 3.06—3.15 eV. Prom optical transmittance spectra of ZnO films, the optical band gap edge was observed to shift towards shorter wavelength with the increase of oxygen partial pressure.展开更多
The multi-phase particle swarm optimization (MPPSO) technique is applied to retrieve the particle size distribution (PSD) under dependent model. Based on the Mie theory and the Lambert-Beer theory, three PSDs, i.e...The multi-phase particle swarm optimization (MPPSO) technique is applied to retrieve the particle size distribution (PSD) under dependent model. Based on the Mie theory and the Lambert-Beer theory, three PSDs, i.e., the Rosin-Rammer (R-R) distribution, the normal distribution, and the logarithmic normal distribution, are estimated by MPPSO algorithm. The results confirm the potential of the proposed approach and show its effectiveness. It may provide a new technique to improve the accuracy and reliability of the PSD inverse calculation.展开更多
The incipient velocity of sediment is one of the most important basic theoretical problems of hydraulic engineering. The initial motion of sediment is a random process. Based on the combination methods of classical me...The incipient velocity of sediment is one of the most important basic theoretical problems of hydraulic engineering. The initial motion of sediment is a random process. Based on the combination methods of classical mechanics with statistics theory the formula to calculate the incipient motion of sediment was established. According to the standard of incipient motion, motion status, relative degree of expose for sediment and equivalent grain were defined. The coefficient in the formula included the flow fluctuation and relative degree of exposition. The value of the coefficient was calculated by using some parameters value. The results show that the value of dimensionless shear stress coefficient is not a constant, but locating in a range from 0.022 to 0.063 for weak and middle motion status, and varying with the relative degree of sediment expose. The value of dimensionless Shields numbers that put forward in the text can explain the reason that why the coefficients in difference formulas have wide scatter. The theoretical formula has been verified with amount of data collected from both natural rivers and flumes. The results can reflect the motion characteristic of the sediment.展开更多
By citrate sol-gel auto-combustion method,the nanophase M-type planar hexagonal ferrite is prepared.The transmission electron microscopy(TEM),X-ray diffraction(XRD) and thermal analysis are used to study the grain siz...By citrate sol-gel auto-combustion method,the nanophase M-type planar hexagonal ferrite is prepared.The transmission electron microscopy(TEM),X-ray diffraction(XRD) and thermal analysis are used to study the grain size,phase composition,microstructure and crystallization process.The results show that the nanophase M-type Sr-ferrite prepared by this method is single,and its grain size is smaller than 100 nm.Moreover,most of the grains present hexagonal sheet shape.Tests are carried out for its attenuation to 1.06 mm laser.It is found that the extinction capability of the nanophase M-type Sr-ferrite smoke is good,and its mass extinction coefficient is 1.628 m2/g.展开更多
Corrosion behavior of two nanocrystalline bulk Ag–50Cu alloys and one coarse-grained counterpart prepared by liquid-phase reduction(LPR), mechanical alloying(MA) and powder metallurgy(PM) methods,respectively, were i...Corrosion behavior of two nanocrystalline bulk Ag–50Cu alloys and one coarse-grained counterpart prepared by liquid-phase reduction(LPR), mechanical alloying(MA) and powder metallurgy(PM) methods,respectively, were investigated in Na Cl solutions. They were finished by means of PARM273 A and M5210 electrochemical apparatus through potentiodynamic polarization method and electrochemical impedance spectroscopy(EIS) technique. The results show that corrosion rates of three Ag–50Cu alloys increase with the increment of Na Cl solution concentrations. Corrosion rates of LPRAg–50Cu alloy are a little higher than those of PMAg–50Cu alloy,but evidently lower than those of MAAg–50Cu alloy. The difference in corrosion rates is attributed to the large reduction in the grain size and homogeneous microstructure of nanocrystalline alloys. Passive current densities decrease and afterward increase for PMAg–50Cu alloy,decrease for MAAg–50Cu alloy, and increase for LPRAg–50Cu alloy with the increment of Na Cl solution concentrations. After the grain sizes are refined, passive current densities become lower.展开更多
We observe the morphological change and grain structure of Ni foil when it is ablated with femtosecond laser pulses. Scanning electron microscopy and field emission transmission electron microscopy are used to study t...We observe the morphological change and grain structure of Ni foil when it is ablated with femtosecond laser pulses. Scanning electron microscopy and field emission transmission electron microscopy are used to study the nature of the morphology and grain structure of nickel foil and determine the essential features. The results indicate that there are many random uanostructures in the center of the ablated region composed of nanocrystalline grains as well as some core-shell structures phase explosion and extremely high cooling rate are the for the formation of surface nanostructures. The observed morphologies seem to suggest that most probable physical mechanisms responsible展开更多
文摘Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical incon- sistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidifica- tion, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed al- gorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.
文摘A description of a mathematical algorithm for simulating grain structures with straight and hyperbolic interfaces is shown. The presence of straight and hyperbolic interfaces in many grain structures of metallic materials is due to different solidification conditions, in- eluding different solidification speeds, growth directions, and delaying on the nucleation times of each nucleated node. Grain growth is a complex problem to be simulated; therefore, computational methods based on the chaos theory have been developed for this purpose. Straight and hyperbolic interfaces are between columnar and equiaxed grain structures or in transition zones. The algorithm developed in this work involves random distributions of temperature to assign preferential probabilities to each node of the simulated sample for nucleation according to previously defined boundary conditions. Moreover, more than one single nucleation process can be established in order to gen- erate hyperbolic interfaces between the grains. The appearance of new nucleated nodes is declared in sequences with a particular number of nucleated nodes and a number of steps for execution. This input information influences directly on the final grain structure (grain size and dislribution). Preferential growth directions are also established to obtain equiaxed and columnar grains. The simulation is done using rou- tines for nucleation and growth nested inside the main function. Here, random numbers are generated to place the coordinates of each new nucleated node at each nucleation sequence according to a solidification probability. Nucleation and growth routines are executed as a func- tion of nodal availability in order to know if a node will be part of a grain. Finally, this information is saved in a two-dimensional computa- tional array and displayed on the computer screen placing color pixels on the corresponding position forming an image as is done in cellular automaton.
基金financially supported by the National Natural Science Foundation of China(No.51365014)the Industrial Support Key Project of Jiangxi Province,China(No.20161BBE50072)
文摘The grain size of prior austenite has a distinct influence on the microstructure and final mechanical properties of steels. Thus, it is significant to clearly reveal the grain boundaries and therefore to precisely characterize the grain size of prior austenite. For NiCrMoV rotor steels quenched and tempered at high temperature, it is really difficult to display the grain boundaries of prior austenite clearly, which limits a further study on the correlation between the properties and the corresponding microstructure. In this paper, an effective etchant was put forward and further optimized. Experimental results indicated that this agent was effective to show the details of grain boundaries, which help analyze fatigue crack details along the propagation path. The optimized corrosion agent is successful to observe the microstructure characteristics and expected to help analyze the effect of microstructure for a further study on the mechanical properties of NiCrMoV rotor steels used in the field of nuclear power.
文摘Grain size control of tungsten powder is essential for high quality tungsten products. Based on studies on the hydrogen reduction process of tungsten oxide, a microcomputer system is described for reduction process control. The system, now running in Zhuzhou Tungsten and Molybdenum Materials Plant, controls the temperature of the reduction furnace and hydrogen pressure. It also controls a mechanical pusher which pushs the boats charged with blue tungsten oxide into the furnace tubes. Some of the technical problems in the process are analysed.
文摘The optical absorption edge and ultraviolet (UV) emission energy of ZnO films deposited by direct current (DC) reactive magnetron sputtering at room temperature have been investigated. With the oxygen ratio increasing, the structure of films changes from zinc and zinc oxide coexisting phase to single-phase ZnO and finally to the highly (002) orientation. Both the grain size and the stress of ZnO film vary with the oxygen partial pressure. Upon increasing the oxygen partial pressure in the growing ambient, the visible emission in the room-temperature photoluminescence spectra was suppressed without sacrificing the band- edge emission intensity in the ultraviolet region. The peaks of photoluminescence spectra were located at 3.06—3.15 eV. Prom optical transmittance spectra of ZnO films, the optical band gap edge was observed to shift towards shorter wavelength with the increase of oxygen partial pressure.
基金the National Natural Sci-ence Foundation of China (No.50576019)the Pro-gram for New Century Excellent Talents in University from the Ministry of Education of China.
文摘The multi-phase particle swarm optimization (MPPSO) technique is applied to retrieve the particle size distribution (PSD) under dependent model. Based on the Mie theory and the Lambert-Beer theory, three PSDs, i.e., the Rosin-Rammer (R-R) distribution, the normal distribution, and the logarithmic normal distribution, are estimated by MPPSO algorithm. The results confirm the potential of the proposed approach and show its effectiveness. It may provide a new technique to improve the accuracy and reliability of the PSD inverse calculation.
文摘The incipient velocity of sediment is one of the most important basic theoretical problems of hydraulic engineering. The initial motion of sediment is a random process. Based on the combination methods of classical mechanics with statistics theory the formula to calculate the incipient motion of sediment was established. According to the standard of incipient motion, motion status, relative degree of expose for sediment and equivalent grain were defined. The coefficient in the formula included the flow fluctuation and relative degree of exposition. The value of the coefficient was calculated by using some parameters value. The results show that the value of dimensionless shear stress coefficient is not a constant, but locating in a range from 0.022 to 0.063 for weak and middle motion status, and varying with the relative degree of sediment expose. The value of dimensionless Shields numbers that put forward in the text can explain the reason that why the coefficients in difference formulas have wide scatter. The theoretical formula has been verified with amount of data collected from both natural rivers and flumes. The results can reflect the motion characteristic of the sediment.
文摘By citrate sol-gel auto-combustion method,the nanophase M-type planar hexagonal ferrite is prepared.The transmission electron microscopy(TEM),X-ray diffraction(XRD) and thermal analysis are used to study the grain size,phase composition,microstructure and crystallization process.The results show that the nanophase M-type Sr-ferrite prepared by this method is single,and its grain size is smaller than 100 nm.Moreover,most of the grains present hexagonal sheet shape.Tests are carried out for its attenuation to 1.06 mm laser.It is found that the extinction capability of the nanophase M-type Sr-ferrite smoke is good,and its mass extinction coefficient is 1.628 m2/g.
基金financially supported by the National Natural Science Foundation of China (Nos. 51271127 and 51501118)
文摘Corrosion behavior of two nanocrystalline bulk Ag–50Cu alloys and one coarse-grained counterpart prepared by liquid-phase reduction(LPR), mechanical alloying(MA) and powder metallurgy(PM) methods,respectively, were investigated in Na Cl solutions. They were finished by means of PARM273 A and M5210 electrochemical apparatus through potentiodynamic polarization method and electrochemical impedance spectroscopy(EIS) technique. The results show that corrosion rates of three Ag–50Cu alloys increase with the increment of Na Cl solution concentrations. Corrosion rates of LPRAg–50Cu alloy are a little higher than those of PMAg–50Cu alloy,but evidently lower than those of MAAg–50Cu alloy. The difference in corrosion rates is attributed to the large reduction in the grain size and homogeneous microstructure of nanocrystalline alloys. Passive current densities decrease and afterward increase for PMAg–50Cu alloy,decrease for MAAg–50Cu alloy, and increase for LPRAg–50Cu alloy with the increment of Na Cl solution concentrations. After the grain sizes are refined, passive current densities become lower.
基金supported by the Key Grant Project of the Ministry of Education of China(No.10410)the Tianjin Committee of Science and Technology of China (No.043103911)the State Key Laboratory of Ultraprecision Processing Technique(No.51464010205JW14)
文摘We observe the morphological change and grain structure of Ni foil when it is ablated with femtosecond laser pulses. Scanning electron microscopy and field emission transmission electron microscopy are used to study the nature of the morphology and grain structure of nickel foil and determine the essential features. The results indicate that there are many random uanostructures in the center of the ablated region composed of nanocrystalline grains as well as some core-shell structures phase explosion and extremely high cooling rate are the for the formation of surface nanostructures. The observed morphologies seem to suggest that most probable physical mechanisms responsible