Aptamers are molecular recognition elements with high specificity that are selected from deoxyribonucleic acid/ribonucleic acid (DNA/RNA) library. Compared with the traditional protein recognition elements,aptamers ha...Aptamers are molecular recognition elements with high specificity that are selected from deoxyribonucleic acid/ribonucleic acid (DNA/RNA) library. Compared with the traditional protein recognition elements,aptamers have excellent properties such as cost-effective,stable,easy for synthesis and modification. In recent years,electrochemistry plays an important role in biosensor field because of its high sensitivity,high stability, fast response and easy miniaturization. Through the combination of these two technologies and our rational design,we constructed a series of biosensors and biochips that are simple,fast,cheap and miniaturized. Firstly,we designed an adenosine triphosphate (ATP) electrochemical biosensor based on the strand displacement strategy. We can detect as low as 10 nmol/L of ATP both in pure solution and complicated cell lysates. Secondly,we creatively split the aptamers into two fragments and constructed the sandwich assay platform only based on single aptamer sequence. We successfully transferred this design on biochips with multiple micro electrodes (6×6) and accomplished multiplex detection. In the fields of biochips and biocomputers,we designed several DNA logic gates with electric (electrochemical) signal as output which paves a new way for the development of DNA computer.展开更多
Nucleic acids are natural macromolecules with the ability to store and transmit information based on the strict base-pairing principle.Beyond the natural nucleic acid double helixes,various DNA/RNA nanostructures with...Nucleic acids are natural macromolecules with the ability to store and transmit information based on the strict base-pairing principle.Beyond the natural nucleic acid double helixes,various DNA/RNA nanostructures with customized geometries and functionalities have been fabricated.Featured with programmability and sequence-dependent responsiveness,DNA/RNA nanostructures have been employed for the rational design and construction of logic devices.When stimulated by internal molecular triggers and/or external stimuli,these logic gate devices can operate at nanoscale level in complex biological environments,performing logic operations and producing corresponding outputs.In this minireview,we summarize the recent advances of nucleic acid logic devices,which are responsive to various stimuli,including DNA/RNA strands,metal ions,small molecules,peptides,proteins,photo-irradiation,pH changes,and so forth.The applications of these devices in biosensing and biofunction regulation are also included.In the last part of the present study,we discuss the remaining challenges and perspectives of nucleic acid logic devices.展开更多
With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insul...With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insulated gate bipolar transistors(IGBTs). By modulating the density and width of the pulse trains, without regulating the hardware circuit, the slope of the gate driving voltage is controlled to change the switching speed. This technique is used in the driving circuit based on complex programmable logic devices(CPLDs), and the switching voltage spike of IGBTs can be restrained through software, which is easier and more flexible to adjust. Experimental results demonstrate the effectiveness and practicability of the proposed method.展开更多
Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors...Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors and slow light devices.Besides,PIT can overcome the diffraction limit of light,which makes it possible to manipulate light on a half-wavelength scale and brings good news to the miniaturization of optical devices.In this paper,we first summarize the researches of PIT phenomenon based on metal-dielectric-metal(MDM)waveguide systems and analyze the physical mechanisms of PIT including bright-dark mode interactions and phase-coupling-induced transparency.Then,we review the applications of PIT in optical sensing,optical filtering,optical switching,slow light devices and optical logic devices.At last,we outline important challenges that need to be addressed,provide corresponding solutions and predict important directions for future research in this area.展开更多
For electronic piezo gauge used for testing gun chamber pressure, its internal miniature pulse-powered photoelectric invert switch cannot often be powered up normally. To solve this problem, a test system for invert s...For electronic piezo gauge used for testing gun chamber pressure, its internal miniature pulse-powered photoelectric invert switch cannot often be powered up normally. To solve this problem, a test system for invert switch is presented to verify the reliability of the invert switch. The test system uses complex programmable logic device (CPLD) to control data acquisition of A/D converter and data storage of external flash memory, and then transmits the acquired data to a computer for data analysis and processing. The test system can provide the required sampling frequency of the signal in high temperature, normal temperature and low temperature environments, and the reliability of the invert switch can be verified according to the signal parameters. The results show that the test system has high precision and the tested invert switch has low power consumption and high reliability.展开更多
Field Programmable Gate Array(FPGA) is an efficient reconfigurable integrated circuit platform and has become a core signal processing microchip device of digital systems over the last decade. With the rapid developme...Field Programmable Gate Array(FPGA) is an efficient reconfigurable integrated circuit platform and has become a core signal processing microchip device of digital systems over the last decade. With the rapid development of semiconductor technology, the performance and system integration of FPGA devices have been significantly progressed, and at the same time new challenges arise. The design of FPGA architecture is required to evolve to meet these challenges, while also taking advantage of ever increased microchip density. This survey reviews the recent development of advanced FPGA architectures, including improvement of the programming technologies, logic blocks, interconnects, and embedded resources. Moreover, some important emerging design issues of FPGA architectures, such as novel memory based FPGAs and 3D FPGAs, are also presented to provide an outlook for future FPGA development.展开更多
This paper analyzes the operation parameters of the time delay and integration (TDI) line scan CCD camera, such as resolution, line rate, clock frequency, etc. and their mathematical relationship is deduced. By analyz...This paper analyzes the operation parameters of the time delay and integration (TDI) line scan CCD camera, such as resolution, line rate, clock frequency, etc. and their mathematical relationship is deduced. By analyzing and calculating these parameters, the working clocks of the TDI CCD line scan camera are designed, which guarantees the synchronization of the line scan rate and the camera movement speed. The IL-E2 TDI CCD of DALSA Co. is used as the sensor of the camera in the paper. The working clock generator used for the TDI CCD sensor is realized by using the programmable logic device (PLD). The experimental results show that the working clock generator circuit satisfies the requirement of high speed TDI CCD line scan camera.展开更多
One of the problems in using grating sensors is how to measure a small Bragg wavelength shift accurately. Nowadays demodulation techniques are mainly based on the edge filter, tunable filter, or interferometric scanni...One of the problems in using grating sensors is how to measure a small Bragg wavelength shift accurately. Nowadays demodulation techniques are mainly based on the edge filter, tunable filter, or interferometric scanning methods. Interferometric demodulation is widely accepted as the technology which can provide the high sensitivity. An interrogation system using the interferometric scanning method is presented, in which an unbalanced fiber M-Z interferometer is used as the wavelength scanner for temperature measurement. A novel fiber Bragg grating sensor system based on M-Z interferometric demodulation technique is presented in this paper. The temperature sensitivity measured in the experiment is almost consistent with that obtained from the theoretic calculation.展开更多
Targeting at the high expense and inflexibility to realize VMEbus bridge controller by professional Integrated Circuit (IC), this paper presents a scheme of adopting CPLD/FPGA (Complicated Programmable Logic Device/Fi...Targeting at the high expense and inflexibility to realize VMEbus bridge controller by professional Integrated Circuit (IC), this paper presents a scheme of adopting CPLD/FPGA (Complicated Programmable Logic Device/Field Programmable Gate Array) to design bridge controller between VMEbus and local bus. SHARC DSP (Digital Signal Processor) bus is an example. It has functions of nearly entire master/slave interface of VMEbus, and can act as DMA (Direct Memory Access) controller and perform block transfer in DMA or master processor initiative way without length limit. External circuit of the design is very simple. In comparison with special ICs, it has high performance to price ratio and can be easily applied to local buses of other processors with quite a little modification.展开更多
In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP...In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.展开更多
Nanomagnet logic(NML) devices have been proposed as one of the best candidates for the next generation of integrated circuits thanks to its substantial advantages of nonvolatility, radiation hardening and potentiall...Nanomagnet logic(NML) devices have been proposed as one of the best candidates for the next generation of integrated circuits thanks to its substantial advantages of nonvolatility, radiation hardening and potentially low power. In this article, errors of nanomagnetic interconnect wire subjected to magnet edge imperfections have been evaluated for the purpose of reliable logic propagation. The missing corner defects of nanomagnet in the wire are modeled with a triangle, and the interconnect fabricated with various magnetic materials is thoroughly investigated by micromagnetic simulations under different corner defect amplitudes and device spacings. The results show that as the defect amplitude increases, the success rate of logic propagation in the interconnect decreases. More results show that from the interconnect wire fabricated with materials, iron demonstrates the best defect tolerance ability among three representative and frequently used NML materials, also logic transmission errors can be mitigated by adjusting spacing between nanomagnets. These findings can provide key technical guides for designing reliable interconnects.展开更多
The unipolar photocurrent in conventional photodiodes(PDs)based on photovoltaic effect limits the output modes and potential versatility of these devices in photodetection.Bipolar photodiodes with photocurrent switchi...The unipolar photocurrent in conventional photodiodes(PDs)based on photovoltaic effect limits the output modes and potential versatility of these devices in photodetection.Bipolar photodiodes with photocurrent switching are emerging as a promising solution for obtaining photoelectric devices with unique and attractive functions,such as optical logic operation.Here,we design an all-solid-state chip-scale ultraviolet(UV)PD based on a hybrid GaN heterojunction with engineered bipolar polarized electric field.By introducing the polarization-induced photocurrent switching effect,the photocurrent direction can be switched in response to the wavelength of incident light at 0 V bias.In particular,the photocurrent direction exhibits negative when the irradiation wavelength is less than 315 nm,but positive when the wavelength is longer than 315 nm.The device shows a responsivity of up to−6.7 mA/W at 300 nm and 5.3 mA/W at 340 nm,respectively.In particular,three special logic gates in response to different dual UV light inputs are demonstrated via a single bipolar PD,which may be beneficial for future multifunctional UV photonic integrated devices and systems.展开更多
In this Letter, new concepts of fluorescence phase-change materials and fluorescence phase-change multilevel recording are proposed. High-contrast fluorescence between the amorphous and crystalline states is achieved ...In this Letter, new concepts of fluorescence phase-change materials and fluorescence phase-change multilevel recording are proposed. High-contrast fluorescence between the amorphous and crystalline states is achieved in nickel- or bismuth-doped Ge;Sb;Te;phase-change memory thin films. Opposite phase-selective fluorescence effects are observed when different doping ions are used. The fluorescence intensity is sensitive to the crystallization degree of the films. This characteristic can be applied in reconfigurable multi-state memory and other logic devices. It also has likely applications in display and data visualization.展开更多
A tunable thermo-optic intensity-modulated switch is investigated theoretically and numerically. It is based on the infiltration of temperature-sensitive mixture liquids into index-guiding photonic crystal fibers (P...A tunable thermo-optic intensity-modulated switch is investigated theoretically and numerically. It is based on the infiltration of temperature-sensitive mixture liquids into index-guiding photonic crystal fibers (PCFs). The switching function attributes to the thermo-optic effect of the effective refractive index of the cladding. The simulation illustrates that the switch presents a tunable transition point according to the concentration of the mixture liquids, and the on-off switching functionality can be realized within a narrow temperature range of 2 ℃. The switches have wide application for innovative all-in-fiber optical communication and logic devices.展开更多
We propose an all-optical modulation formats combination scheme that merges an amplitude-shift keying (ASK) signal and a differential phase-shift keying (DPSK) signal into a single differential phase amplitude- sh...We propose an all-optical modulation formats combination scheme that merges an amplitude-shift keying (ASK) signal and a differential phase-shift keying (DPSK) signal into a single differential phase amplitude- shift keying (DPASK) signal based on parametric amplification in a highly nonlinear fiber. By optimizing the power of the ASK channel, formats combination of ASK and DPSK to DPASK signal is successfully demonstrated by computational simulation. The demodulation process of the generated DPASK pulses is investigated and the relationship between optical signal-to-noise ratio (OSNR) penalty and the input ASK power is presented. The proposed scheme may be used for increasing spectral efficiency and all-optical logic device.展开更多
A new explanation of quaternary Q gate expression in Post algebra is given in this paper by using transmission function theory proposed in [1] and the quaternary ECL Q gate circuit is de- signed.The SPICE2 simulation ...A new explanation of quaternary Q gate expression in Post algebra is given in this paper by using transmission function theory proposed in [1] and the quaternary ECL Q gate circuit is de- signed.The SPICE2 simulation to this circuit has confirmed that it has desired logical function and is totally compatible with various quaternary ECL circuits proposed before.展开更多
Magnetic single-domain islands based on in-plane anisotropy (usually, shape anisotropy) and their dipole-dipole interactions have been investigated extensively in recent years. This has been driven by potential appl...Magnetic single-domain islands based on in-plane anisotropy (usually, shape anisotropy) and their dipole-dipole interactions have been investigated extensively in recent years. This has been driven by potential applications in magnetic recording, spintronics, magneto-biology, etc. Here, we propose a concept of out- of-plane magnetic dusters with configurable domain structures (multi-flux states) via dipole-dipole interactions. Their flux stages can be switched through an external magnetic field. The concept has been successfully demonstrated by patterned [Co/Pd] islands. A [Co/Pd] multilayer exhibits a large perpendicular anisotropy, a strong physical separation, and uniform intrinsic properties after being patterned into individual islands by electron beam lithography. A three- island cluster with six stable flux states has been realized by optimizing island size, thickness, gap, anisotropy, saturation magnetization, etc. Using [Co/Pd] multilayers, we have optimized the island structure by tuning magnetic properties (saturation magnetization and perpendicular anisotropy) using Landau-Liftshitz- Gilbert (LLG) simulation/calculation. Potential applications have been proposed, including a flexi-programmable logic device with AND, OR, NAND, and NOR functionalities and a magnetic domino, which can propagate magnetic current as far as 1 μm down from the surface via vertical dipole-dipole interactions.展开更多
High performance computer is often required by model predictive control(MPC) systems due to the heavy online computation burden.To extend MPC to more application cases with low-cost computation facilities, the impleme...High performance computer is often required by model predictive control(MPC) systems due to the heavy online computation burden.To extend MPC to more application cases with low-cost computation facilities, the implementation of MPC controller on field programmable gate array(FPGA) system is studied.For the dynamic matrix control(DMC) algorithm,the main design idea and the implemental strategy of DMC controller are introduced based on a FPGA’s embedded system.The performance tests show that both the computation efficiency and the accuracy of the proposed controller can be satisfied due to the parallel computing capability of FPGA.展开更多
基金100 Talents Program of Chinese Academy of SciencesNational Key Basic Research Program of China ("973"Program) (No. 2012CB932600)
文摘Aptamers are molecular recognition elements with high specificity that are selected from deoxyribonucleic acid/ribonucleic acid (DNA/RNA) library. Compared with the traditional protein recognition elements,aptamers have excellent properties such as cost-effective,stable,easy for synthesis and modification. In recent years,electrochemistry plays an important role in biosensor field because of its high sensitivity,high stability, fast response and easy miniaturization. Through the combination of these two technologies and our rational design,we constructed a series of biosensors and biochips that are simple,fast,cheap and miniaturized. Firstly,we designed an adenosine triphosphate (ATP) electrochemical biosensor based on the strand displacement strategy. We can detect as low as 10 nmol/L of ATP both in pure solution and complicated cell lysates. Secondly,we creatively split the aptamers into two fragments and constructed the sandwich assay platform only based on single aptamer sequence. We successfully transferred this design on biochips with multiple micro electrodes (6×6) and accomplished multiplex detection. In the fields of biochips and biocomputers,we designed several DNA logic gates with electric (electrochemical) signal as output which paves a new way for the development of DNA computer.
基金National Natural Science Foundation of China,Grant/Award Numbers:22025201,21721002,32071389,21773044,51761145044K.C.Wong Education Foundation,Grant/Award Number:GJTD-2018-03+2 种基金Youth Innovation Promotion Association,CAS,Grant/Award Number:QYZDBSSW-SLH029Beijing Municipal Science&Technology Commission,Grant/Award Number:Z191100004819008National Basic Research Program of China,Grant/Award Numbers:2018YFA0208900,2016YFA0201601。
文摘Nucleic acids are natural macromolecules with the ability to store and transmit information based on the strict base-pairing principle.Beyond the natural nucleic acid double helixes,various DNA/RNA nanostructures with customized geometries and functionalities have been fabricated.Featured with programmability and sequence-dependent responsiveness,DNA/RNA nanostructures have been employed for the rational design and construction of logic devices.When stimulated by internal molecular triggers and/or external stimuli,these logic gate devices can operate at nanoscale level in complex biological environments,performing logic operations and producing corresponding outputs.In this minireview,we summarize the recent advances of nucleic acid logic devices,which are responsive to various stimuli,including DNA/RNA strands,metal ions,small molecules,peptides,proteins,photo-irradiation,pH changes,and so forth.The applications of these devices in biosensing and biofunction regulation are also included.In the last part of the present study,we discuss the remaining challenges and perspectives of nucleic acid logic devices.
基金Project supported by the National Natural Science Foundation of China(No.51177147)the Zhejiang Key Science and Technology Innovation Group Program,China(No.2010R50021)
文摘With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insulated gate bipolar transistors(IGBTs). By modulating the density and width of the pulse trains, without regulating the hardware circuit, the slope of the gate driving voltage is controlled to change the switching speed. This technique is used in the driving circuit based on complex programmable logic devices(CPLDs), and the switching voltage spike of IGBTs can be restrained through software, which is easier and more flexible to adjust. Experimental results demonstrate the effectiveness and practicability of the proposed method.
基金Project(2018JJ4086)supported by the Natural Science Foundation of Hunan Province,ChinaProject(520)supported by the Training and Innovation Base for Graduate of Education Department of Hunan Province,China+1 种基金Project(201802368048)supported by Industry-University Cooperation and Education Project of National Education Department,ChinaProject(CSUZC201925)supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China。
文摘Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors and slow light devices.Besides,PIT can overcome the diffraction limit of light,which makes it possible to manipulate light on a half-wavelength scale and brings good news to the miniaturization of optical devices.In this paper,we first summarize the researches of PIT phenomenon based on metal-dielectric-metal(MDM)waveguide systems and analyze the physical mechanisms of PIT including bright-dark mode interactions and phase-coupling-induced transparency.Then,we review the applications of PIT in optical sensing,optical filtering,optical switching,slow light devices and optical logic devices.At last,we outline important challenges that need to be addressed,provide corresponding solutions and predict important directions for future research in this area.
文摘For electronic piezo gauge used for testing gun chamber pressure, its internal miniature pulse-powered photoelectric invert switch cannot often be powered up normally. To solve this problem, a test system for invert switch is presented to verify the reliability of the invert switch. The test system uses complex programmable logic device (CPLD) to control data acquisition of A/D converter and data storage of external flash memory, and then transmits the acquired data to a computer for data analysis and processing. The test system can provide the required sampling frequency of the signal in high temperature, normal temperature and low temperature environments, and the reliability of the invert switch can be verified according to the signal parameters. The results show that the test system has high precision and the tested invert switch has low power consumption and high reliability.
基金Supported by National Natural Science Foundation of China(No.61271149)National High Technology Research and Development Program of China(No.2012AA-012301)National Science and Technology Major Project of China(No.2013ZX03006004)
文摘Field Programmable Gate Array(FPGA) is an efficient reconfigurable integrated circuit platform and has become a core signal processing microchip device of digital systems over the last decade. With the rapid development of semiconductor technology, the performance and system integration of FPGA devices have been significantly progressed, and at the same time new challenges arise. The design of FPGA architecture is required to evolve to meet these challenges, while also taking advantage of ever increased microchip density. This survey reviews the recent development of advanced FPGA architectures, including improvement of the programming technologies, logic blocks, interconnects, and embedded resources. Moreover, some important emerging design issues of FPGA architectures, such as novel memory based FPGAs and 3D FPGAs, are also presented to provide an outlook for future FPGA development.
基金Sponsored by the Research Fund of Harbin Institute of Technology (Grant No.HITMD 2001.18).
文摘This paper analyzes the operation parameters of the time delay and integration (TDI) line scan CCD camera, such as resolution, line rate, clock frequency, etc. and their mathematical relationship is deduced. By analyzing and calculating these parameters, the working clocks of the TDI CCD line scan camera are designed, which guarantees the synchronization of the line scan rate and the camera movement speed. The IL-E2 TDI CCD of DALSA Co. is used as the sensor of the camera in the paper. The working clock generator used for the TDI CCD sensor is realized by using the programmable logic device (PLD). The experimental results show that the working clock generator circuit satisfies the requirement of high speed TDI CCD line scan camera.
文摘One of the problems in using grating sensors is how to measure a small Bragg wavelength shift accurately. Nowadays demodulation techniques are mainly based on the edge filter, tunable filter, or interferometric scanning methods. Interferometric demodulation is widely accepted as the technology which can provide the high sensitivity. An interrogation system using the interferometric scanning method is presented, in which an unbalanced fiber M-Z interferometer is used as the wavelength scanner for temperature measurement. A novel fiber Bragg grating sensor system based on M-Z interferometric demodulation technique is presented in this paper. The temperature sensitivity measured in the experiment is almost consistent with that obtained from the theoretic calculation.
文摘Targeting at the high expense and inflexibility to realize VMEbus bridge controller by professional Integrated Circuit (IC), this paper presents a scheme of adopting CPLD/FPGA (Complicated Programmable Logic Device/Field Programmable Gate Array) to design bridge controller between VMEbus and local bus. SHARC DSP (Digital Signal Processor) bus is an example. It has functions of nearly entire master/slave interface of VMEbus, and can act as DMA (Direct Memory Access) controller and perform block transfer in DMA or master processor initiative way without length limit. External circuit of the design is very simple. In comparison with special ICs, it has high performance to price ratio and can be easily applied to local buses of other processors with quite a little modification.
基金Supported by the National Natural Science Foundation of China (No.60472046)
文摘In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.
基金supported by the National Natural Science Foundation of China(No.61302022)the Scientific Research Foundation for Postdoctor of Air Force Engineering University(Nos.2015BSKYQD03,2016KYMZ06)
文摘Nanomagnet logic(NML) devices have been proposed as one of the best candidates for the next generation of integrated circuits thanks to its substantial advantages of nonvolatility, radiation hardening and potentially low power. In this article, errors of nanomagnetic interconnect wire subjected to magnet edge imperfections have been evaluated for the purpose of reliable logic propagation. The missing corner defects of nanomagnet in the wire are modeled with a triangle, and the interconnect fabricated with various magnetic materials is thoroughly investigated by micromagnetic simulations under different corner defect amplitudes and device spacings. The results show that as the defect amplitude increases, the success rate of logic propagation in the interconnect decreases. More results show that from the interconnect wire fabricated with materials, iron demonstrates the best defect tolerance ability among three representative and frequently used NML materials, also logic transmission errors can be mitigated by adjusting spacing between nanomagnets. These findings can provide key technical guides for designing reliable interconnects.
基金supported by the National Natural Science Foundation of China(Nos.62027818,51861135105,61874034,and 11974320)the National Key Research and Development Program of China(No.2021YFB3202500)International Science and Technology Cooperation Program of Shanghai Science and Technology Innovation Action Plan(No.21520713300).
文摘The unipolar photocurrent in conventional photodiodes(PDs)based on photovoltaic effect limits the output modes and potential versatility of these devices in photodetection.Bipolar photodiodes with photocurrent switching are emerging as a promising solution for obtaining photoelectric devices with unique and attractive functions,such as optical logic operation.Here,we design an all-solid-state chip-scale ultraviolet(UV)PD based on a hybrid GaN heterojunction with engineered bipolar polarized electric field.By introducing the polarization-induced photocurrent switching effect,the photocurrent direction can be switched in response to the wavelength of incident light at 0 V bias.In particular,the photocurrent direction exhibits negative when the irradiation wavelength is less than 315 nm,but positive when the wavelength is longer than 315 nm.The device shows a responsivity of up to−6.7 mA/W at 300 nm and 5.3 mA/W at 340 nm,respectively.In particular,three special logic gates in response to different dual UV light inputs are demonstrated via a single bipolar PD,which may be beneficial for future multifunctional UV photonic integrated devices and systems.
基金partially supported by the National Natural Science Foundation of China(Nos.61178059,51472258,and 61137002)the National Basic Research Program of China(No.2013CBA01900)
文摘In this Letter, new concepts of fluorescence phase-change materials and fluorescence phase-change multilevel recording are proposed. High-contrast fluorescence between the amorphous and crystalline states is achieved in nickel- or bismuth-doped Ge;Sb;Te;phase-change memory thin films. Opposite phase-selective fluorescence effects are observed when different doping ions are used. The fluorescence intensity is sensitive to the crystallization degree of the films. This characteristic can be applied in reconfigurable multi-state memory and other logic devices. It also has likely applications in display and data visualization.
基金supported by the National Key Basic Research and Development Program of China(No.2010CB327801)
文摘A tunable thermo-optic intensity-modulated switch is investigated theoretically and numerically. It is based on the infiltration of temperature-sensitive mixture liquids into index-guiding photonic crystal fibers (PCFs). The switching function attributes to the thermo-optic effect of the effective refractive index of the cladding. The simulation illustrates that the switch presents a tunable transition point according to the concentration of the mixture liquids, and the on-off switching functionality can be realized within a narrow temperature range of 2 ℃. The switches have wide application for innovative all-in-fiber optical communication and logic devices.
基金supported by the National Natural Science Foundation of China (Nos. 60736003 and 60877045)the National "863" Project of China(Nos. 2006AA01Z253 and 2006AA01Z261)+1 种基金sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministrythe donation of VPI software suite from Alexander von Humboldt Foundation
文摘We propose an all-optical modulation formats combination scheme that merges an amplitude-shift keying (ASK) signal and a differential phase-shift keying (DPSK) signal into a single differential phase amplitude- shift keying (DPASK) signal based on parametric amplification in a highly nonlinear fiber. By optimizing the power of the ASK channel, formats combination of ASK and DPSK to DPASK signal is successfully demonstrated by computational simulation. The demodulation process of the generated DPASK pulses is investigated and the relationship between optical signal-to-noise ratio (OSNR) penalty and the input ASK power is presented. The proposed scheme may be used for increasing spectral efficiency and all-optical logic device.
基金The subject is supported by Zhejiang Provincial Natural Science Foundation.
文摘A new explanation of quaternary Q gate expression in Post algebra is given in this paper by using transmission function theory proposed in [1] and the quaternary ECL Q gate circuit is de- signed.The SPICE2 simulation to this circuit has confirmed that it has desired logical function and is totally compatible with various quaternary ECL circuits proposed before.
文摘Magnetic single-domain islands based on in-plane anisotropy (usually, shape anisotropy) and their dipole-dipole interactions have been investigated extensively in recent years. This has been driven by potential applications in magnetic recording, spintronics, magneto-biology, etc. Here, we propose a concept of out- of-plane magnetic dusters with configurable domain structures (multi-flux states) via dipole-dipole interactions. Their flux stages can be switched through an external magnetic field. The concept has been successfully demonstrated by patterned [Co/Pd] islands. A [Co/Pd] multilayer exhibits a large perpendicular anisotropy, a strong physical separation, and uniform intrinsic properties after being patterned into individual islands by electron beam lithography. A three- island cluster with six stable flux states has been realized by optimizing island size, thickness, gap, anisotropy, saturation magnetization, etc. Using [Co/Pd] multilayers, we have optimized the island structure by tuning magnetic properties (saturation magnetization and perpendicular anisotropy) using Landau-Liftshitz- Gilbert (LLG) simulation/calculation. Potential applications have been proposed, including a flexi-programmable logic device with AND, OR, NAND, and NOR functionalities and a magnetic domino, which can propagate magnetic current as far as 1 μm down from the surface via vertical dipole-dipole interactions.
基金the National Science Foundation of China(Nos.60934007 and 61074060)the Postdoctoral Science Foundation of China(No.20090460627)+2 种基金the Postdoctoral Scientific Program of Shanghai (No.10R21414600)the Specialized Research Fund for the Doctoral Program of Higher Education (No.20070248004)the China Postdoctoral Science Foundation Special Support(No.201003272)
文摘High performance computer is often required by model predictive control(MPC) systems due to the heavy online computation burden.To extend MPC to more application cases with low-cost computation facilities, the implementation of MPC controller on field programmable gate array(FPGA) system is studied.For the dynamic matrix control(DMC) algorithm,the main design idea and the implemental strategy of DMC controller are introduced based on a FPGA’s embedded system.The performance tests show that both the computation efficiency and the accuracy of the proposed controller can be satisfied due to the parallel computing capability of FPGA.