An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical react...An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical reaction equations was developed, validated, and used for studying the ozone concentrations, distribution and peak of the layer, ozone depletion and total ozone abundance in the stratosphere. The calculated ozone concentrations and profile at both the Equator and a 60˚N location were found to follow closely with the measured data. The calculated average ozone concentration was within 1% of the measured average, and the deviation of ozone profiles was within 14%. The monthly evolution of stratospheric ozone concentrations and distribution above the Equator was studied with results discussed in details. The influences of slow air movement in both altitudinal and radial directions on ozone concentrations and profile in the stratosphere were explored and discussed. Parametric studies of the influences of gas diffusivities of ozone D<sub>O3</sub> and active atomic oxygen D<sub>O</sub> on ozone concentrations and distributions were also studied and delineated. Having both influences through physical diffusion and chemical reactions, the diffusivity (and diffusion) of atomic oxygen D<sub>O</sub> was found to be more sensitive and important than that of ozone D<sub>O3</sub> on ozone concentrations and distribution. The 2-D ozone model present in this paper for stratospheric ozone and its layer and depletion is shown to be robust, convenient, efficient, and executable for analyzing the complex ozone phenomena in the stratosphere. .展开更多
This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and ch...This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and chlorine monoxide (ClO), and the effect of photolysis on ozone concentrations, ozone depletion, total ozone abundance, and ozone layer along the altitude in the stratosphere. The calculated ozone concentrations and profile of the layer followed a similar trend and were generally in good agreement with the measurements above the tropical area. The calculated peak of the layer was at the same mid-stratosphere at Z = 30 km with a peak concentration and total ozone abundance about 20% higher than the measured peak concentration of 8.0 ppm and total abundance of 399 DU. In the presence of Cl and ClO, the calculated ozone concentrations and total abundance were substantially reduced. Cl generally depleted more uniformly of ozone across the altitude, while ClO reduced substantially the ozone in the upper stratosphere and thus shifted the peak of the layer to a much lower elevation at Z = 14 km. Although both ClO and Cl are active ozone-depleting chemicals, ClO was found to have a more pronounced impact on ozone depletion and distribution than Cl. The possible explanations of these interesting phenomena were discussed and elaborated. The approach and calculations in this paper were shown to be useful in providing an initial insight into the structure and behavior of the complex ozone layer.展开更多
This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozon...This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.展开更多
Ozone is a green broad-spectrum bactericidal disinfectant, and a trace amount of ozone in the atmosphere makes many viruses and bacteria lose their biochemical activity and infectivity. Nature produces trace amounts o...Ozone is a green broad-spectrum bactericidal disinfectant, and a trace amount of ozone in the atmosphere makes many viruses and bacteria lose their biochemical activity and infectivity. Nature produces trace amounts of ozone in the air through lightning to purify the ecological environment. The product of ozone decomposition is oxygen, without secondary pollution. Ozone sterilizer is widely used in the epidemic prevention and control of intensive breeding farms and achieved remarkable results. If the concentration and action time of ozone can be accurately controlled, then ozone can quickly eliminate pathogens, without harming the normal cells in the human body. How to use medical ozone for epidemic prevention, treatment and health care is a subject worthy of serious study, which should arouse the attention of the experts in the field.展开更多
The depletion of the ozone layer, a vital shield protecting the Earth from harmful ultraviolet (UV) radiation, is now a worldwide environmental concern. Human activities, particularly the release of ozone depleting su...The depletion of the ozone layer, a vital shield protecting the Earth from harmful ultraviolet (UV) radiation, is now a worldwide environmental concern. Human activities, particularly the release of ozone depleting substances (ODS), have led to the thinning of this protective layer over recent decades. Simultaneously, illegal trade has emerged as a global challenge, giving rise to economic issues, losses of tax revenue, heightened criminal activities, health risks, and environmental hazards. The depletion of the ozone layer, a critical shield protecting the Earth from harmful ultraviolet (UV) radiation, has become a global environmental concern. This paper delves into the legal dimensions surrounding ozone-depleting substances (ODS), their impact on the ozone layer, and the subsequent risk of skin cancer. As countries navigate international agreements, domestic regulations, and enforcement mechanisms, the intricate interplay between legal frameworks and the health implications of ozone layer depletion comes to the forefront. The paper highlights particular instances of illegal trade in ozone depleting substances, drawing from data reported by the parties to the Montreal Protocol. Notably, China stands out as a significant source of contraband ODS, with other countries such as Bulgaria, Lithuania, Poland, and France reporting numerous cases. Analyzing these case instances offers insights into the efficacy of legal frameworks and enforcement measures. The paper offers a comprehensive set of recommendations to strengthen global control and enforcement against the illegal trade of ozone depleting substances. These recommendations span diverse aspects such as production monitoring, customs collaboration, mutual verification, cross-border agreements, public-private partnerships, international cooperation, detection equipment, global regulatory standards, resource allocation, public awareness campaigns, alternative substance development, and controlling the trade at its source. By applying these recommendations and enhancing enforcement measures, we aim to protect the ozone layer and create a healthier and safer world for future generations and achieve sustainable development goals.展开更多
Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been...Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been on a steady rise,with ozone emerging as the sole conventional pollutant to consistently increase in concentration without any decline.This study conducted a quantitative analysis of O_(3)concentrations across 367 Chinese cities in 2019,examining spatial autocorrelation and local clustering of O_(3)levels,and investigated the diverse relationships between human activity factors and O_(3)concentration.The seasonal fluctuation of O_(3)exhibited the“M-type”pattern,with peak concentrations in winter and the lowest levels in summer.The center of O_(3)pollution migrated southeastward,with the area of highest concentration progressively shifting south along the eastern coast.Moreover,O_(3)concentration showed a strong positive correlation with population density,road freight volume,and industrial emissions,suggesting that human activities,vehicle emissions,and industrial operations are significant contributors to O_(3)production.The results provide comprehensive information on the characteristics,causes,and occurrence mechanism of O_(3)in Chinese cities that can be utilized by global government departments to formulate strategies to prevent and control O_(3)pollution.展开更多
Long-term exposure to high surface ozone(O_(3))concentrations,a complex oxidative atmospheric pollutant,can adversely impact human health.Based on O_(3)monitoring data from 261 cities worldwide in 2020,generalized add...Long-term exposure to high surface ozone(O_(3))concentrations,a complex oxidative atmospheric pollutant,can adversely impact human health.Based on O_(3)monitoring data from 261 cities worldwide in 2020,generalized additive model(GAM)and spatial data analysis(SDA)methods were applied in this study to quantitatively evaluate the spatiotemporal distribution of O_(3)concentration,exposure risk,and dominant meteorological factors.Results indicated that over 40%of the cities worldwide were exposed to harmful O_(3)concentration ranges(40-60μg/m^(3)),with most cities distributed in China and India.Moreover,significant seasonal variations in global O_(3)concentrations were observed,presenting as summer(45.6μg/m^(3))>spring(47.3μg/m^(3))>autumn(38.0μg/m^(3))>winter(33.6μg/m^(3)).Exposure analysis revealed that approximately 12.2%of the population in 261 cities were exposed to an environment with high O_(3)concentrations(80-160μg/m^(3)),with about 36.32 million people in major countries.Thus,the persistent increase in high O_(3)levels worldwide is a critical factor contributing to threats to human health.Furthermore,GAM results indicated temperature,relative humidity,and wind speed as primary determinants of O_(3)variability.The synergy of meteorological factors is critical for understanding O_(3)changes.Our findings are important for enforcing robust air quality policies and mitigating public risk.展开更多
In this study, ozone gas was applied to samples of durum wheat stored in four experimental groups (durum wheat without any treatment for comparison, durum wheat treated with ozone, purified durum wheat, and purified d...In this study, ozone gas was applied to samples of durum wheat stored in four experimental groups (durum wheat without any treatment for comparison, durum wheat treated with ozone, purified durum wheat, and purified durum wheat treated with ozone). Two groups were treated with ozone gas at 3 ppm concentration for 1 hour. Groups were then placed in air-tight glass jars and stored for 6 months at variable temperatures between 24.7°C to 34.8°C. Microbiological (total count bacteria, yeast/molds and coliform) and physical properties (moisture, color and ash) evaluated. Ozone application statistically caused a significant reduction in the numbers of bacteria, yeast, molds and coliforms. Ozone application, washing process and storage temperature are the major factors affecting the microbial counts. No significant differences were determined in moisture and ash contents of samples after ozone treatment. The color measurement results showed that color values of wheat samples were affected by ozone treatment, storage and washing.展开更多
Based on the monitoring data of ozone(O 3)concentration,conventional meteorological data and reanalysis products in Yulin City from 2018 to 2019,the weather situation of O 3 pollution was classified through case analy...Based on the monitoring data of ozone(O 3)concentration,conventional meteorological data and reanalysis products in Yulin City from 2018 to 2019,the weather situation of O 3 pollution was classified through case analysis and mathematical statistics.At 500 hPa,the weather situation was divided into continental high pressure type,subtropical high type and mixed type.At 850 hPa,it was divided into southwest air flow type,east air flow type and south air flow type.The correlation between meteorological element and O 3 concentration were analyzed,and factors with good correlation such as temperature,air pressure and wind speed were selected to establish regression equations.The fitting effect was good,and O 3 concentration could be objectively predicted.展开更多
Air pollution caused by particulate matter has significantly improved in China in recent years since the implementation of a series of stringent clean-air regulations.However,surface ozone concentrations have increase...Air pollution caused by particulate matter has significantly improved in China in recent years since the implementation of a series of stringent clean-air regulations.However,surface ozone concentrations have increased,especially in developed city clusters,such as the Beijing–Tianjin–Hebei,Yangtze River Delta,Pearl River Delta,and Sichuan Basin regions.Due to the complexity and nonlinearity of the ozone formation,accurately locating major sources of ozone and its precursors is an important basis for the formulation of cost-effective pollution control strategies.In this paper,the authors systematically summarize the reported results and outcomes of the methods and main conclusions of ozone source apportionment(regions and categories)in China from the published literature,based on observation-based methods and emission-based methods,respectively.The authors aim to provide a comprehensive understanding of ozone pollution and reliable references for the formulation of air pollution prevention policies in China.展开更多
This study uses the WRF-Chem model combined with the empirical kinetic modeling method(EKMA curve)to study the compound pollution event in Beijing that happened in 13−23 May 2017.Sensitivity tests are conducted to ana...This study uses the WRF-Chem model combined with the empirical kinetic modeling method(EKMA curve)to study the compound pollution event in Beijing that happened in 13−23 May 2017.Sensitivity tests are conducted to analyze ozone sensitivity to its precursors,and to develop emission reduction measures.The results suggest that the model can accurately simulate the compound pollution process of photochemistry and haze.When VOCs and NOx were reduced by the same proportion,the effect of O_(3)reduction at peak time was more obvious,and the effect during daytime was more significant than at night.The degree of change in ozone was peak time>daytime average.When reducing or increasing the ratio of precursors by 25%at the same time,the effect of reducing 25%VOCs on the average ozone concentration reduction was most significant.The degree of change in ozone decreased with increasing altitude,the location of the ozone maximum change shifted westward,and its range narrowed.As the altitude increases,the VOCs-limited zone decreases,VOCs sensitivity decreases,NOx sensitivity increases.The controlled area changed from near-surface VOCs-limited to high-altitude NOx-limited.Upon examining the EKMA curve,we have found that suburban and urban are sensitive to VOCs.The sensitivity tests indicate that when VOCs in suburban are reduced about 60%,the O_(3)-1h concentration could reach the standard,and when VOCs of the urban decreased by about 50%,the O_(3)-1h concentration could reach the standard.Thus,these findings could provide references for the control of compound air pollution in Beijing.展开更多
This consensus was compiled by first-line clinical experts in the field of pain medicine and was organized by the Chinese Association for the Study of Pain.To reach this consensus,we consulted a wide range of opinions...This consensus was compiled by first-line clinical experts in the field of pain medicine and was organized by the Chinese Association for the Study of Pain.To reach this consensus,we consulted a wide range of opinions and conducted indepth discussions on the mechanism,indications,contraindications,operational specifications and adverse reactions of ozone iatrotechnique in the treatment of pain disorders.We also referred to related previous preclinical and clinical studies published in recent years worldwide.The purpose of this consensus is to standardize the rational application of ozone iatrotechnique in pain treatment,to improve its efficacy and safety and to reduce and prevent adverse reactions and complications in this process.展开更多
An analysis of 50 ozonesondings in Xining (36.43 o N, 101.45 o E , 2296 m, ASL), between April 1995 and August 1996 is presented. General vertical distribution characteristics and seasonal changing of ozone p...An analysis of 50 ozonesondings in Xining (36.43 o N, 101.45 o E , 2296 m, ASL), between April 1995 and August 1996 is presented. General vertical distribution characteristics and seasonal changing of ozone profile are reported. The analysis indicates that the stratospheric ozone concentrations of Autumn and Summer are lower than those of Spring and Winter; and the highest value of the tropospheric ozone concentrations is found in Summer; ozone concentration changing is bigger from the troposphere to the lower stratosphere altitude region, while it is stable in the middle and upper stratosphere region; there is a lower ozone concentration region in 10 -1 5 km altitude; the result why higher ozone concentration of the troposphere occurs in Summer is the ozone injecting from the middle and upper stratosphere.展开更多
Located in southwestern China, Jiuzhaigou National Park is one of the most popular tourism destinations in China, famous for its unique aquatic ecosystems and beautiful forests. However, plants in the park may be at h...Located in southwestern China, Jiuzhaigou National Park is one of the most popular tourism destinations in China, famous for its unique aquatic ecosystems and beautiful forests. However, plants in the park may be at high ozone risk as a result of the intensive use of diesel tour buses in the park. In addition, Jiuzhaigou is close to a region with relatively high regional anthropogenic NOn emissions. During the growing season, also the peak season of tourism, we measured ozone concentration at two sites within the Park and these were: Jiuzhaigou Bureau (JB) and Long Lake (LL). The results indicate that ozone concentrations were not high enough to cause foliar injury during the monitoring period, although the risk of ozone to plants was higher in spring than in summer and autumn. Diurnal ozone cycles at JB and LL displayed significantly higher ozone concentrations in the daytime than in the nighttime, suggesting photochemical production of ozone during the day and ozone deposition during the night as a result of the nocturnal boundary layer. In parallel with the seasonal change of background surface ozone in the Northern Hemisphere, maximum daily 8-h average ozone concentration (MDA8) and daily ozone concentration decreased from spring to autumn at the two sites. This temporal variation in Jiuzhaigou wasmost likely associated with the downward mixing of ozone-rich air from the free troposphere, because all the high-ozone events (MDA8 〉 70.0 ppb) were observed in spring and ozone-rich air from the free troposphere was the dominant cause. In summary, our data suggest that ozone concentrations in Jiuzhaigou were more affected by the regional-scale of background pattern in air quality and meteorological conditions than by local tourist activities.展开更多
The effects of E1Nifio Modoki events on global ozone concentrations are investigated from 1980 to 2010 E1 Nifio Modoki events cause a stronger Brewer-Dobson (BD) circulation which can transports more ozone-poor air ...The effects of E1Nifio Modoki events on global ozone concentrations are investigated from 1980 to 2010 E1 Nifio Modoki events cause a stronger Brewer-Dobson (BD) circulation which can transports more ozone-poor air from the troposphere to stratosphere, leading to a decrease of ozone inthe lower-middle stratosphere from 90~S to 90~N. These changes in ozone concentrations reduce stratospheric column ozone. The reduction in stratospheric column ozone during E1 Nifio Modoki events is more pronounced over the tropical eastern Pacific than over other tropical areas because transport of ozone-poor air from middle-high latitudes in both hemispheres to low latitudes is the strongest between 60°W and 120°W. Because of the decrease in stratospheric column ozone during E1 Nifio Modoki events more UV radiation reaches the tropical troposphere leading to significant increases in tropospheric column ozone An empirical orthogonal function (EOF) analysis of the time series from 1980 to 2010 of stratospheric and tropospheric ozone monthly anomalies reveals that: E1 Nifio Modoki events are associated with the primary EOF modes of both time series. We also found that E1 Nifio Modoki events can affect global ozone more significantly than canonical E1 Nifio events. These results imply that E1 Nifio Modoki is a key contributor to variations in global ozone from 1980 to 2010.展开更多
Total column ozone(TCO)over the Tibetan Plateau(TP)is lower than that over other regions at the same latitude,particularly in summer.This feature is known as the“TP ozone valley”.This study evaluates long-term chang...Total column ozone(TCO)over the Tibetan Plateau(TP)is lower than that over other regions at the same latitude,particularly in summer.This feature is known as the“TP ozone valley”.This study evaluates long-term changes in TCO and the ozone valley over the TP from 1984 to 2100 using Coupled Model Intercomparison Project Phase 6(CMIP6).The TP ozone valley consists of two low centers,one is located in the upper troposphere and lower stratosphere(UTLS),and the other is in the middle and upper stratosphere.Overall,the CMIP6 models simulate the low ozone center in the UTLS well and capture the spatial characteristics and seasonal cycle of the TP ozone valley,with spatial correlation coefficients between the modeled TCO and the Multi Sensor Reanalysis version 2(MSR2)TCO observations greater than 0.8 for all CMIP6 models.Further analysis reveals that models which use fully coupled and online stratospheric chemistry schemes simulate the anticorrelation between the 150 hPa geopotential height and zonal anomaly of TCO over the TP better than models without interactive chemistry schemes.This suggests that coupled chemical-radiative-dynamical processes play a key role in the simulation of the TP ozone valley.Most CMIP6 models underestimate the low center in the middle and upper stratosphere when compared with the Microwave Limb Sounder(MLS)observations.However,the bias in the middle and upper stratospheric ozone simulations has a marginal effect on the simulation of the TP ozone valley.Most CMIP6 models predict the TP ozone valley in summer will deepen in the future.展开更多
Total ozone observations from the Total Ozone Unit (TOU) aboard the Chinese second generation polar orbiting mete- orological satellite, Fengyun-3/A (FY-3/A), revealed that total column ozone over the Arctic decli...Total ozone observations from the Total Ozone Unit (TOU) aboard the Chinese second generation polar orbiting mete- orological satellite, Fengyun-3/A (FY-3/A), revealed that total column ozone over the Arctic declined rapidly from the beginning of March 2011. An extensive region of low column amount formed around mid March; monthly mean total column ozone in March 2011 was about 30% lower than the average observed during 1979-2010. Daily total column density of ozone near the center of low ozone area in mid March was less than 240 Dobson units, about half the total column ozone amount observed during the same period of the prior 10 years. We analyzed total column ozone data from different satellites during 1979-2011. Results show that the Arctic depletion of ozone in spring 2011 was initiated by the cold polar vortex in the lower stratosphere. The March mean total ozone over the Arctic has shown a decreasing trend over the past 32 years, and its variation is strongly correlated with the polar vortex. A similar low ozone process of spring 1997 was compared to that of 2011, but daily variations of total ozone in March over the Northern Hemisphere in 1997 and 2011 have different patterns.展开更多
Biologically meaningful and cost-effective indicators are needed for assessing and monitoring the impacts of tropospheric ozone(0_(3)) on vegetation and are required in Europe by the National Emission Ceilings Directi...Biologically meaningful and cost-effective indicators are needed for assessing and monitoring the impacts of tropospheric ozone(0_(3)) on vegetation and are required in Europe by the National Emission Ceilings Directive(2016).However,a clear understanding on the best suited indicators is missing.The MOTTLES(MOnitoring ozone injury for seTTing new critical LEvelS) project set up a new generation network for 0_(3) monitoring in forest plots in order to:1) estimate the stomatal 0_(3) fluxes(Phytotoxic Ozone Dose above a threshold Y of uptake,PODY);and 2) collect visible foliar 0_(3) injury,both within the forest plot(ITP) and along the Light Exposed Sampling Site(LESS) along the forest edge.Nine forest sites at high 0_(3) risk were selected across Italy over 2017-2019 and significant correlations(p <0.05) were found between the percentage of symptomatic plant species within the LESS,and POD1(PODY,with Y=1 nmol 0_(3) m^(-2) s^(-1)) calculated for mixed forest species(r=0.53)and with the occurrence and severity of visible foliar 0_(3) injury on the dominant species in the plots(r=0.65).A generic flux-based critical level for mixed forest species was derived within the LESS and it was recommended using11 mmol m^(-2) POD1 as the critical level for forest protection against 0_(3) injury,similar to the critical level obtained in the ITP(12 mmol m^(-2) POD1).It was concluded that the frequency of symptomatic plant species within a LESS is a suitable and effective plant-response indicator of phytotoxic 0_(3) levels in forest monitoring.LESS is a non-destructive,less complex and less time-consuming approach compared to the ITP for monitoring foliar 0_(3) injury in the long term.Assessing visible foliar 0_(3) injury in the ITP might only underestimate the 0_(3) risk assessment at individual sites.These results are biologically meaningful and useful to monitoring experts and environmental policy makers.展开更多
This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes.Three types of dielectric solid ...This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes.Three types of dielectric solid were used in the study; glass, micanite and Kapton insulating foil. The experiments were conducted for voltage ranges from 2.3 to 13 k V. A plasma reactor equipped with two 0.3×0.3 mm^2 mesh electrodes made of acid resistant AISI 304 mesh was used in the experiments. The influence of the dielectric type on the concentration and efficiency of ozone generation was described. The resulting maximum concentration of the ozone was about 2.70–9.30 g O3 m^-3, depending on the dielectrics used. The difference between the maximum and the minimum ozone concentration depends on the dielectric used,this accounts for 70% at the variance. The reactor capacity has also been described in the paper; total Ct and dielectric capacitance Cd depending on the dielectric used and its thickness.展开更多
Based on the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Halogen Occultation Ex-periment (HALOE) ozone profiles and the Total Ozone Mapping Spectrometer (TOMS) total ozone data sets,the characteristics ...Based on the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Halogen Occultation Ex-periment (HALOE) ozone profiles and the Total Ozone Mapping Spectrometer (TOMS) total ozone data sets,the characteristics and variations of the vertical distribution of stratospheric ozone covering the latitude bands of 50oN±5oN,40oN±5oN,30oN±5oN,and 20oN±5oN and the longitude range of 75-135oE are investigated.The results indicate that the ozone distribution pattern over China not only has general behaviors,but also has particular char-acteristics.In view of the situation that ozone distribu-tions have substantial deviation from zonal symmetry in northern China,the differences of the vertical ozone dis-tribution between the east and the west part of northern China are studied.The results indicate that during winter,spring,and autumn,in the latitude bands of 50oN±5oN,40oN±5oN,ozone concentrations in the eastern part (105 -135oE) are obviously higher than those of the west (75-105oE) at the altitudes of ozone density maximum and below;during summer,in the latitude band of 50oN±5oN,the east-west ozone profile difference is small,but in the latitude band of 40oN±5oN,the east-west total ozone difference becomes as large as 14.0 DU,and the east-west ozone profile difference mainly exists in the lowermost stratosphere and troposphere.展开更多
文摘An engineering system approach of 2-D cylindrical model of transient mass balance calculations of ozone and other concerned chemicals along with fourteen photolysis, ozone-generating and ozone-depleting chemical reaction equations was developed, validated, and used for studying the ozone concentrations, distribution and peak of the layer, ozone depletion and total ozone abundance in the stratosphere. The calculated ozone concentrations and profile at both the Equator and a 60˚N location were found to follow closely with the measured data. The calculated average ozone concentration was within 1% of the measured average, and the deviation of ozone profiles was within 14%. The monthly evolution of stratospheric ozone concentrations and distribution above the Equator was studied with results discussed in details. The influences of slow air movement in both altitudinal and radial directions on ozone concentrations and profile in the stratosphere were explored and discussed. Parametric studies of the influences of gas diffusivities of ozone D<sub>O3</sub> and active atomic oxygen D<sub>O</sub> on ozone concentrations and distributions were also studied and delineated. Having both influences through physical diffusion and chemical reactions, the diffusivity (and diffusion) of atomic oxygen D<sub>O</sub> was found to be more sensitive and important than that of ozone D<sub>O3</sub> on ozone concentrations and distribution. The 2-D ozone model present in this paper for stratospheric ozone and its layer and depletion is shown to be robust, convenient, efficient, and executable for analyzing the complex ozone phenomena in the stratosphere. .
文摘This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and chlorine monoxide (ClO), and the effect of photolysis on ozone concentrations, ozone depletion, total ozone abundance, and ozone layer along the altitude in the stratosphere. The calculated ozone concentrations and profile of the layer followed a similar trend and were generally in good agreement with the measurements above the tropical area. The calculated peak of the layer was at the same mid-stratosphere at Z = 30 km with a peak concentration and total ozone abundance about 20% higher than the measured peak concentration of 8.0 ppm and total abundance of 399 DU. In the presence of Cl and ClO, the calculated ozone concentrations and total abundance were substantially reduced. Cl generally depleted more uniformly of ozone across the altitude, while ClO reduced substantially the ozone in the upper stratosphere and thus shifted the peak of the layer to a much lower elevation at Z = 14 km. Although both ClO and Cl are active ozone-depleting chemicals, ClO was found to have a more pronounced impact on ozone depletion and distribution than Cl. The possible explanations of these interesting phenomena were discussed and elaborated. The approach and calculations in this paper were shown to be useful in providing an initial insight into the structure and behavior of the complex ozone layer.
文摘This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.
文摘Ozone is a green broad-spectrum bactericidal disinfectant, and a trace amount of ozone in the atmosphere makes many viruses and bacteria lose their biochemical activity and infectivity. Nature produces trace amounts of ozone in the air through lightning to purify the ecological environment. The product of ozone decomposition is oxygen, without secondary pollution. Ozone sterilizer is widely used in the epidemic prevention and control of intensive breeding farms and achieved remarkable results. If the concentration and action time of ozone can be accurately controlled, then ozone can quickly eliminate pathogens, without harming the normal cells in the human body. How to use medical ozone for epidemic prevention, treatment and health care is a subject worthy of serious study, which should arouse the attention of the experts in the field.
文摘The depletion of the ozone layer, a vital shield protecting the Earth from harmful ultraviolet (UV) radiation, is now a worldwide environmental concern. Human activities, particularly the release of ozone depleting substances (ODS), have led to the thinning of this protective layer over recent decades. Simultaneously, illegal trade has emerged as a global challenge, giving rise to economic issues, losses of tax revenue, heightened criminal activities, health risks, and environmental hazards. The depletion of the ozone layer, a critical shield protecting the Earth from harmful ultraviolet (UV) radiation, has become a global environmental concern. This paper delves into the legal dimensions surrounding ozone-depleting substances (ODS), their impact on the ozone layer, and the subsequent risk of skin cancer. As countries navigate international agreements, domestic regulations, and enforcement mechanisms, the intricate interplay between legal frameworks and the health implications of ozone layer depletion comes to the forefront. The paper highlights particular instances of illegal trade in ozone depleting substances, drawing from data reported by the parties to the Montreal Protocol. Notably, China stands out as a significant source of contraband ODS, with other countries such as Bulgaria, Lithuania, Poland, and France reporting numerous cases. Analyzing these case instances offers insights into the efficacy of legal frameworks and enforcement measures. The paper offers a comprehensive set of recommendations to strengthen global control and enforcement against the illegal trade of ozone depleting substances. These recommendations span diverse aspects such as production monitoring, customs collaboration, mutual verification, cross-border agreements, public-private partnerships, international cooperation, detection equipment, global regulatory standards, resource allocation, public awareness campaigns, alternative substance development, and controlling the trade at its source. By applying these recommendations and enhancing enforcement measures, we aim to protect the ozone layer and create a healthier and safer world for future generations and achieve sustainable development goals.
基金supported by National Natural Science Foundation of China(grant number 42101318)the National Key R&D Program of China(grant number 2018YFD1100101)。
文摘Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been on a steady rise,with ozone emerging as the sole conventional pollutant to consistently increase in concentration without any decline.This study conducted a quantitative analysis of O_(3)concentrations across 367 Chinese cities in 2019,examining spatial autocorrelation and local clustering of O_(3)levels,and investigated the diverse relationships between human activity factors and O_(3)concentration.The seasonal fluctuation of O_(3)exhibited the“M-type”pattern,with peak concentrations in winter and the lowest levels in summer.The center of O_(3)pollution migrated southeastward,with the area of highest concentration progressively shifting south along the eastern coast.Moreover,O_(3)concentration showed a strong positive correlation with population density,road freight volume,and industrial emissions,suggesting that human activities,vehicle emissions,and industrial operations are significant contributors to O_(3)production.The results provide comprehensive information on the characteristics,causes,and occurrence mechanism of O_(3)in Chinese cities that can be utilized by global government departments to formulate strategies to prevent and control O_(3)pollution.
文摘Long-term exposure to high surface ozone(O_(3))concentrations,a complex oxidative atmospheric pollutant,can adversely impact human health.Based on O_(3)monitoring data from 261 cities worldwide in 2020,generalized additive model(GAM)and spatial data analysis(SDA)methods were applied in this study to quantitatively evaluate the spatiotemporal distribution of O_(3)concentration,exposure risk,and dominant meteorological factors.Results indicated that over 40%of the cities worldwide were exposed to harmful O_(3)concentration ranges(40-60μg/m^(3)),with most cities distributed in China and India.Moreover,significant seasonal variations in global O_(3)concentrations were observed,presenting as summer(45.6μg/m^(3))>spring(47.3μg/m^(3))>autumn(38.0μg/m^(3))>winter(33.6μg/m^(3)).Exposure analysis revealed that approximately 12.2%of the population in 261 cities were exposed to an environment with high O_(3)concentrations(80-160μg/m^(3)),with about 36.32 million people in major countries.Thus,the persistent increase in high O_(3)levels worldwide is a critical factor contributing to threats to human health.Furthermore,GAM results indicated temperature,relative humidity,and wind speed as primary determinants of O_(3)variability.The synergy of meteorological factors is critical for understanding O_(3)changes.Our findings are important for enforcing robust air quality policies and mitigating public risk.
文摘In this study, ozone gas was applied to samples of durum wheat stored in four experimental groups (durum wheat without any treatment for comparison, durum wheat treated with ozone, purified durum wheat, and purified durum wheat treated with ozone). Two groups were treated with ozone gas at 3 ppm concentration for 1 hour. Groups were then placed in air-tight glass jars and stored for 6 months at variable temperatures between 24.7°C to 34.8°C. Microbiological (total count bacteria, yeast/molds and coliform) and physical properties (moisture, color and ash) evaluated. Ozone application statistically caused a significant reduction in the numbers of bacteria, yeast, molds and coliforms. Ozone application, washing process and storage temperature are the major factors affecting the microbial counts. No significant differences were determined in moisture and ash contents of samples after ozone treatment. The color measurement results showed that color values of wheat samples were affected by ozone treatment, storage and washing.
文摘Based on the monitoring data of ozone(O 3)concentration,conventional meteorological data and reanalysis products in Yulin City from 2018 to 2019,the weather situation of O 3 pollution was classified through case analysis and mathematical statistics.At 500 hPa,the weather situation was divided into continental high pressure type,subtropical high type and mixed type.At 850 hPa,it was divided into southwest air flow type,east air flow type and south air flow type.The correlation between meteorological element and O 3 concentration were analyzed,and factors with good correlation such as temperature,air pressure and wind speed were selected to establish regression equations.The fitting effect was good,and O 3 concentration could be objectively predicted.
基金supported by the National Natural Science Foundation of China grant number 41830109the National Key R&D Programs of China grant number2017YFB0503901。
文摘Air pollution caused by particulate matter has significantly improved in China in recent years since the implementation of a series of stringent clean-air regulations.However,surface ozone concentrations have increased,especially in developed city clusters,such as the Beijing–Tianjin–Hebei,Yangtze River Delta,Pearl River Delta,and Sichuan Basin regions.Due to the complexity and nonlinearity of the ozone formation,accurately locating major sources of ozone and its precursors is an important basis for the formulation of cost-effective pollution control strategies.In this paper,the authors systematically summarize the reported results and outcomes of the methods and main conclusions of ozone source apportionment(regions and categories)in China from the published literature,based on observation-based methods and emission-based methods,respectively.The authors aim to provide a comprehensive understanding of ozone pollution and reliable references for the formulation of air pollution prevention policies in China.
基金This study is funded by Air Pollution Special Project of the Ministry of Science and Technology(Grant No.2017YFCOZ10006)the National Natural Science Foundation of China(Grant No.41975173)。
文摘This study uses the WRF-Chem model combined with the empirical kinetic modeling method(EKMA curve)to study the compound pollution event in Beijing that happened in 13−23 May 2017.Sensitivity tests are conducted to analyze ozone sensitivity to its precursors,and to develop emission reduction measures.The results suggest that the model can accurately simulate the compound pollution process of photochemistry and haze.When VOCs and NOx were reduced by the same proportion,the effect of O_(3)reduction at peak time was more obvious,and the effect during daytime was more significant than at night.The degree of change in ozone was peak time>daytime average.When reducing or increasing the ratio of precursors by 25%at the same time,the effect of reducing 25%VOCs on the average ozone concentration reduction was most significant.The degree of change in ozone decreased with increasing altitude,the location of the ozone maximum change shifted westward,and its range narrowed.As the altitude increases,the VOCs-limited zone decreases,VOCs sensitivity decreases,NOx sensitivity increases.The controlled area changed from near-surface VOCs-limited to high-altitude NOx-limited.Upon examining the EKMA curve,we have found that suburban and urban are sensitive to VOCs.The sensitivity tests indicate that when VOCs in suburban are reduced about 60%,the O_(3)-1h concentration could reach the standard,and when VOCs of the urban decreased by about 50%,the O_(3)-1h concentration could reach the standard.Thus,these findings could provide references for the control of compound air pollution in Beijing.
文摘This consensus was compiled by first-line clinical experts in the field of pain medicine and was organized by the Chinese Association for the Study of Pain.To reach this consensus,we consulted a wide range of opinions and conducted indepth discussions on the mechanism,indications,contraindications,operational specifications and adverse reactions of ozone iatrotechnique in the treatment of pain disorders.We also referred to related previous preclinical and clinical studies published in recent years worldwide.The purpose of this consensus is to standardize the rational application of ozone iatrotechnique in pain treatment,to improve its efficacy and safety and to reduce and prevent adverse reactions and complications in this process.
文摘An analysis of 50 ozonesondings in Xining (36.43 o N, 101.45 o E , 2296 m, ASL), between April 1995 and August 1996 is presented. General vertical distribution characteristics and seasonal changing of ozone profile are reported. The analysis indicates that the stratospheric ozone concentrations of Autumn and Summer are lower than those of Spring and Winter; and the highest value of the tropospheric ozone concentrations is found in Summer; ozone concentration changing is bigger from the troposphere to the lower stratosphere altitude region, while it is stable in the middle and upper stratosphere region; there is a lower ozone concentration region in 10 -1 5 km altitude; the result why higher ozone concentration of the troposphere occurs in Summer is the ozone injecting from the middle and upper stratosphere.
基金funded by the International Program of the Ministry of Science and Technology of China (2010DFA91280) 111 Project(B08037)
文摘Located in southwestern China, Jiuzhaigou National Park is one of the most popular tourism destinations in China, famous for its unique aquatic ecosystems and beautiful forests. However, plants in the park may be at high ozone risk as a result of the intensive use of diesel tour buses in the park. In addition, Jiuzhaigou is close to a region with relatively high regional anthropogenic NOn emissions. During the growing season, also the peak season of tourism, we measured ozone concentration at two sites within the Park and these were: Jiuzhaigou Bureau (JB) and Long Lake (LL). The results indicate that ozone concentrations were not high enough to cause foliar injury during the monitoring period, although the risk of ozone to plants was higher in spring than in summer and autumn. Diurnal ozone cycles at JB and LL displayed significantly higher ozone concentrations in the daytime than in the nighttime, suggesting photochemical production of ozone during the day and ozone deposition during the night as a result of the nocturnal boundary layer. In parallel with the seasonal change of background surface ozone in the Northern Hemisphere, maximum daily 8-h average ozone concentration (MDA8) and daily ozone concentration decreased from spring to autumn at the two sites. This temporal variation in Jiuzhaigou wasmost likely associated with the downward mixing of ozone-rich air from the free troposphere, because all the high-ozone events (MDA8 〉 70.0 ppb) were observed in spring and ozone-rich air from the free troposphere was the dominant cause. In summary, our data suggest that ozone concentrations in Jiuzhaigou were more affected by the regional-scale of background pattern in air quality and meteorological conditions than by local tourist activities.
基金supported by the 973 Program (Grant No.2010CB950400)the National Natural Science Foundation of China (Grant Nos.41225018 and 41305036)
文摘The effects of E1Nifio Modoki events on global ozone concentrations are investigated from 1980 to 2010 E1 Nifio Modoki events cause a stronger Brewer-Dobson (BD) circulation which can transports more ozone-poor air from the troposphere to stratosphere, leading to a decrease of ozone inthe lower-middle stratosphere from 90~S to 90~N. These changes in ozone concentrations reduce stratospheric column ozone. The reduction in stratospheric column ozone during E1 Nifio Modoki events is more pronounced over the tropical eastern Pacific than over other tropical areas because transport of ozone-poor air from middle-high latitudes in both hemispheres to low latitudes is the strongest between 60°W and 120°W. Because of the decrease in stratospheric column ozone during E1 Nifio Modoki events more UV radiation reaches the tropical troposphere leading to significant increases in tropospheric column ozone An empirical orthogonal function (EOF) analysis of the time series from 1980 to 2010 of stratospheric and tropospheric ozone monthly anomalies reveals that: E1 Nifio Modoki events are associated with the primary EOF modes of both time series. We also found that E1 Nifio Modoki events can affect global ozone more significantly than canonical E1 Nifio events. These results imply that E1 Nifio Modoki is a key contributor to variations in global ozone from 1980 to 2010.
基金supported by the second Tibetan Plateau Scientific Expedition and Research Program (STEP,2019QZKK0604)the National Natural Science Foundation of China (Grant Nos.42075062 and 91837311)+1 种基金supported by the Fundamental Research Funds for the Central Universities (lzujbky-2021-ey04)NERC for financial support through NCAS
文摘Total column ozone(TCO)over the Tibetan Plateau(TP)is lower than that over other regions at the same latitude,particularly in summer.This feature is known as the“TP ozone valley”.This study evaluates long-term changes in TCO and the ozone valley over the TP from 1984 to 2100 using Coupled Model Intercomparison Project Phase 6(CMIP6).The TP ozone valley consists of two low centers,one is located in the upper troposphere and lower stratosphere(UTLS),and the other is in the middle and upper stratosphere.Overall,the CMIP6 models simulate the low ozone center in the UTLS well and capture the spatial characteristics and seasonal cycle of the TP ozone valley,with spatial correlation coefficients between the modeled TCO and the Multi Sensor Reanalysis version 2(MSR2)TCO observations greater than 0.8 for all CMIP6 models.Further analysis reveals that models which use fully coupled and online stratospheric chemistry schemes simulate the anticorrelation between the 150 hPa geopotential height and zonal anomaly of TCO over the TP better than models without interactive chemistry schemes.This suggests that coupled chemical-radiative-dynamical processes play a key role in the simulation of the TP ozone valley.Most CMIP6 models underestimate the low center in the middle and upper stratosphere when compared with the Microwave Limb Sounder(MLS)observations.However,the bias in the middle and upper stratospheric ozone simulations has a marginal effect on the simulation of the TP ozone valley.Most CMIP6 models predict the TP ozone valley in summer will deepen in the future.
文摘Total ozone observations from the Total Ozone Unit (TOU) aboard the Chinese second generation polar orbiting mete- orological satellite, Fengyun-3/A (FY-3/A), revealed that total column ozone over the Arctic declined rapidly from the beginning of March 2011. An extensive region of low column amount formed around mid March; monthly mean total column ozone in March 2011 was about 30% lower than the average observed during 1979-2010. Daily total column density of ozone near the center of low ozone area in mid March was less than 240 Dobson units, about half the total column ozone amount observed during the same period of the prior 10 years. We analyzed total column ozone data from different satellites during 1979-2011. Results show that the Arctic depletion of ozone in spring 2011 was initiated by the cold polar vortex in the lower stratosphere. The March mean total ozone over the Arctic has shown a decreasing trend over the past 32 years, and its variation is strongly correlated with the polar vortex. A similar low ozone process of spring 1997 was compared to that of 2011, but daily variations of total ozone in March over the Northern Hemisphere in 1997 and 2011 have different patterns.
基金carried out with the contribution of the LIFE financial instrument of the European Union in the framework of the MOTTLES project "Monitoring ozone injury for setting new critical levels" (LIFE15 ENV/IT/000183)。
文摘Biologically meaningful and cost-effective indicators are needed for assessing and monitoring the impacts of tropospheric ozone(0_(3)) on vegetation and are required in Europe by the National Emission Ceilings Directive(2016).However,a clear understanding on the best suited indicators is missing.The MOTTLES(MOnitoring ozone injury for seTTing new critical LEvelS) project set up a new generation network for 0_(3) monitoring in forest plots in order to:1) estimate the stomatal 0_(3) fluxes(Phytotoxic Ozone Dose above a threshold Y of uptake,PODY);and 2) collect visible foliar 0_(3) injury,both within the forest plot(ITP) and along the Light Exposed Sampling Site(LESS) along the forest edge.Nine forest sites at high 0_(3) risk were selected across Italy over 2017-2019 and significant correlations(p <0.05) were found between the percentage of symptomatic plant species within the LESS,and POD1(PODY,with Y=1 nmol 0_(3) m^(-2) s^(-1)) calculated for mixed forest species(r=0.53)and with the occurrence and severity of visible foliar 0_(3) injury on the dominant species in the plots(r=0.65).A generic flux-based critical level for mixed forest species was derived within the LESS and it was recommended using11 mmol m^(-2) POD1 as the critical level for forest protection against 0_(3) injury,similar to the critical level obtained in the ITP(12 mmol m^(-2) POD1).It was concluded that the frequency of symptomatic plant species within a LESS is a suitable and effective plant-response indicator of phytotoxic 0_(3) levels in forest monitoring.LESS is a non-destructive,less complex and less time-consuming approach compared to the ITP for monitoring foliar 0_(3) injury in the long term.Assessing visible foliar 0_(3) injury in the ITP might only underestimate the 0_(3) risk assessment at individual sites.These results are biologically meaningful and useful to monitoring experts and environmental policy makers.
文摘This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes.Three types of dielectric solid were used in the study; glass, micanite and Kapton insulating foil. The experiments were conducted for voltage ranges from 2.3 to 13 k V. A plasma reactor equipped with two 0.3×0.3 mm^2 mesh electrodes made of acid resistant AISI 304 mesh was used in the experiments. The influence of the dielectric type on the concentration and efficiency of ozone generation was described. The resulting maximum concentration of the ozone was about 2.70–9.30 g O3 m^-3, depending on the dielectrics used. The difference between the maximum and the minimum ozone concentration depends on the dielectric used,this accounts for 70% at the variance. The reactor capacity has also been described in the paper; total Ct and dielectric capacitance Cd depending on the dielectric used and its thickness.
基金supported by the National Basic Research Program of China (Grant No.2006CB403702)the National Natural Science Foundation of China (Grant No. 40475014)
文摘Based on the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Halogen Occultation Ex-periment (HALOE) ozone profiles and the Total Ozone Mapping Spectrometer (TOMS) total ozone data sets,the characteristics and variations of the vertical distribution of stratospheric ozone covering the latitude bands of 50oN±5oN,40oN±5oN,30oN±5oN,and 20oN±5oN and the longitude range of 75-135oE are investigated.The results indicate that the ozone distribution pattern over China not only has general behaviors,but also has particular char-acteristics.In view of the situation that ozone distribu-tions have substantial deviation from zonal symmetry in northern China,the differences of the vertical ozone dis-tribution between the east and the west part of northern China are studied.The results indicate that during winter,spring,and autumn,in the latitude bands of 50oN±5oN,40oN±5oN,ozone concentrations in the eastern part (105 -135oE) are obviously higher than those of the west (75-105oE) at the altitudes of ozone density maximum and below;during summer,in the latitude band of 50oN±5oN,the east-west ozone profile difference is small,but in the latitude band of 40oN±5oN,the east-west total ozone difference becomes as large as 14.0 DU,and the east-west ozone profile difference mainly exists in the lowermost stratosphere and troposphere.