Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors ...Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.展开更多
A series of tests were conducted to analyze temperature field distribution and thawing settlement of a thawing soil under static and dynamic loading at various cooling and thawing temperatures. The results demonstrate...A series of tests were conducted to analyze temperature field distribution and thawing settlement of a thawing soil under static and dynamic loading at various cooling and thawing temperatures. The results demonstrate: (1) the temperature field distribution of the thawing soil was not significantly influenced by the loading form under the tested loading conditions; similar results were obtained for samples at different dynamic loading frequencies and different dynamic loading ampli- tudes, which verified the independence of loading form and temperature field; (2) changed temperature field distributions were found in thawing soil with different cooling and thawing temperatures, and the cooling and thawing temperature of the samples were the main factors affecting their temperature distributions; (3) under the tested conditions, thawing set- tlements were little influenced by the thawing temperature and the dynamic loading frequency; and (4) a linear relation- ship existed between the thawing settlement and the cooling temperature, and a logarithmic function could be used to describe the relationship between the thawing settlement and the loading amplitude.展开更多
The study was to investigate the effects of different thawing temperatures(5,15,40,75,90 ℃) and times(1- 120 s) on properties of post-thaw cow semen by detecting frozen-thawed semen motility,acrosome integrity and ta...The study was to investigate the effects of different thawing temperatures(5,15,40,75,90 ℃) and times(1- 120 s) on properties of post-thaw cow semen by detecting frozen-thawed semen motility,acrosome integrity and tail membrane integrity,further obtaining the optimal thawing method of straw frozen semen from dairy cow. The results showed that(1) Thawing of the straw frozen semen of dairy cow at 75 ℃ for 3 s yielded the highest semen motility,followed by 40 ℃for 20 s,and the least by low temperature 5 ℃ and room temperature 15 ℃ with a semen motility of 0. 3,moreover thawing at high temperature 90 ℃ was not suitable for large scale production due to the difficult control of the temperature;(2) The acrosome intact rate and plasma membrane integrity rate of semens thawed at90 ℃ were remarkably lower than that at 40 ℃ and 75 ℃ significantly(P 【 0. 05),while its semen malformation rate was significantly higher than that at 40 ℃and 75 ℃(P 【 0. 05);(3) The Survival time of semens at 37 ℃ varied largely among different thawing temperature,in detail by 40 ℃ 】 75 ℃ 】 90 ℃. In practice,the thawing method of straw frozen semen of dairy cow should be selected according to the specific circumstance and inseminated immediately,with the recommended condition of thawing at 75 ℃ for 3 s. If the thawed semen could not be inseminated immediately,the thawing should be performed at 20 s for 40 ℃to maintain the motility for a longer term.展开更多
The aim was to discuss the optimal storage environment and proper insemination time after thawing of 0.25 mL straw frozen semen. Straw frozen semen was thawed at 40 ℃ for 20 s, and then stored at 0 -4 ℃, 14 - 16 ℃,...The aim was to discuss the optimal storage environment and proper insemination time after thawing of 0.25 mL straw frozen semen. Straw frozen semen was thawed at 40 ℃ for 20 s, and then stored at 0 -4 ℃, 14 - 16 ℃, 25 -27 ℃ for 2, 4, 6, 8 and 10 h, respectively. The sperm motility was detected. After thawing, semen was stored at 0 - 4 ℃ and 14 - 16 ℃ for 10 h. Their sperm motilities (0.434 ±0. 016 7 and 0.423 ±0.019 6) had no significant differences (P 〉 0.05) with initial thawing motility (0.441 ± 0.030). Sperm motility reduced as the storage time prolonged at 25 -27 ℃. Sperm motility after 6 h had signifi- cant differences with that of initial thawing motility (P 〈 O. 05 ), and sperm motilities after 8 and 10 h showed extremely significant differences (P 〈 0.01 ). Thus, sperm motility after thawing was still very high after stored at 0 -4 ℃ and 14 - 16 ℃ within 10 h, which met the requirements for insemination. Under this temperature and time ranges, sperm could be carried over long distances, which had small effects on sperm quality and reached the expected insemination effects. However, under the temperature of 25 - 27 ℃, semen should be used for insemination within 6 h after thawing.展开更多
Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawin...Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawing indices and their relationship with air indices is limited.Based on daily air and ground-surface temperatures collected from 11 meteorological stations in the source region of the Yellow River,the freezing and thawing indices were calculated,and their spatial distribution and trends were analyzed.The air-freezing index(AFI),air-thawing index(ATI),ground surface-freezing index(GFI),ground surface-thawing index(GTI),air thawing-freezing index ratio(Na)and surface ground thawing-freezing index ratio(Ng)were 1554.64,1153.93,1.55,2484.85,850.57℃-days and 3.44,respectively.Altitude affected the spatial distribution of the freezing and thawing indices.As the altitude increased,the freezing indices gradually increased,and the thawing indices and thawing-freezing index ratio decreased.From 1980 to 2014,the AFI and GFI decreased at rates of 8.61 and 11.06℃-days a^(-1),the ATI and GTI increased at 9.65 and 14.53℃-days a^(-1),and Na and Ng significantly increased at 0.21 and 0.79 decade^(-1).Changes in the freezing and thawing indices were associated with increases in the air and ground-surface temperatures.The rates of change of the ground surface freezing and thawing indices were faster than the air ones because the rate of increase of the groundsurface temperature was faster than that of the air and the difference between the ground surface and air increased.The change point of the time series of freezing and thawing indices occurred in 2000–2001.After 2000–2001,the AFI and GFI were lower than before the change point,and the changing trend was lower.The ATI,GTI,Na and Ng during 2001–2014 were higher,with faster rates than before.In addition,the annual thawing indices composed a greater proportion of the mean annual air temperature and mean annual ground surface temperature than the annual freezing indices.This study provides the necessary basis for research on and prediction of permafrost changes,especially changes in the depth of the active permafrost layer,climate change,and possible evolution of the ecological environment over the source region of the Yellow River on the Qinghai-Tibet Plateau.展开更多
Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bendin...Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bending tests had been applied after different freezing-thawing cycles(0,50,100,150,200 and 300 cycles,respectively).The results showed that residual flexural strength of UHTCC after 300 freezing-thawing cycles was 10.62 MPa(70% of no freezing thawing ones),while 1.58 MPa(17% of no freezing thawing ones) for SFRC.Flexural toughness of UHTCC decreased by 17%,while 70% for SFRC comparatively.It has been demonstrated experimentally that UHTCC without any air-entraining agent could resist freezing-thawing and retain its high toughness characteristic in cold environment.Consequently,UHTCC could be put into practice for new-built or retrofit of infrastructures in cold regions.展开更多
The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorol...The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data. Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999, which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitation increases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend.展开更多
A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liqui...A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liquid water content and temperature using soil model with and without the inclusion of freezing and thawing processes are evaluated against observations at the Rosemount field station. By comparing the simulated water and heat fluxes of the two cases, the role of phase change processes in the water and energy balances is analyzed. Soil freezing induces upward water flow towards the freezing front and increases soil water content in the upper soil layer. In particular, soil ice obviously prevents and delays the infiltration during rain at Rosemount. In addition, soil freezingthawing processes alter the partitioning of surface energy fluxes and lead the soil to release more sensible heat into the atmosphere during freezing periods.展开更多
The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydro...The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process.展开更多
In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness o...In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application.展开更多
Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of ...Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of SFT on aggregate stability in orchards during winter and spring is crucial to develop appropriate management strategies that can effectively alleviate the degradation of soil quality to ensure sustainable development of orchard ecosystems.To determine the mechanism of degradation in orchard soil quality,the effects of SFT on the stability of water-stable aggregates were examined in apple-pear orchards(Pyrus ussuriensis var.ovoidea)of four different ages(11,25,40,and 63 yr)on 0 to 5%slopes before freezing and after thawing from October 2015 to June 2016 in Longjing City,Yanbian Prefecture,Northeast China,involving a comparison of planted versus adjacent uncultivated lands(control).Soil samples were collected to investigate water-stable aggregate stability in three incremental soil layers(0–20,20–40 and 40–60 cm).In the same samples,iron oxide,organic matter,and clay contents of the soil were also determined.Results showed that the destructive influences of SFT on water-stable aggregates were more pronounced with the increased orchards ages,and SFT exerted severe effects on water-stable aggregates of older orchards(40 and 63 yr)than juvenile orchards.Undergoing SFT,the soil instability index and the percentage of aggregate destruction increased by mean 0.15 mm and 1.86%,the degree of aggregation decreased by mean 1.32%,and the erosion resistance weakened,which consequently led to aggregate stability decreased.In addition,soil free,amorphous,and crystalline iron oxide as well as soil organic matter and clay contents are all important factors affecting the stability of water-stable aggregates,and their changes in their contents were consistent with those in the stability of water-stable aggregates.The results of this study suggest that long-term planting fruit trees can exacerbate the damaging effects of SFT on aggregate stability and further soil erosion increases and nutrient losses in an orchard,which hider sustainable use of soil and the productivity orchards.展开更多
Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming ...Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG)has long been recognized.Still,a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future.This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5.Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones,with significant correlation coefficients of 0.60 and 0.48,respectively.Precipitation increased continually at the rate of 6.16 mm decade–1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer.However,diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG.The relationship between the ground thawing index and precipitation was significantly negatively correlated(−0.75).The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation.展开更多
It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant e...It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively.展开更多
The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of intern...The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of internal state of material were introduced into the formula presented by Desayi and Krishman and the weighted twin-shear strength theory. As a nondestructive examination method in common use, the ultrasonic technique was adopted in the study, and the ultrasonic velocity was used to establish the damage variable. After that, the failure criterion and one-dimensional stress-strain relationship for deteriorated concrete were obtained. Eventually, tests were carried out to study the evolution laws on the damage. The results show that the more freezing and thawing cycles are, the more apparently the failure surface shrinks. Meanwhile, the comparison between theoretical data and experimental data verifies tile rationality of tile damage-based one-dimensional stress-strain relationship proposed.展开更多
The practice of building and operating of railroad beds shows that the greatest attenuation of soils occurs in the spring, during their Iransifion from the frozen to thawed state. The geatest influences on the propert...The practice of building and operating of railroad beds shows that the greatest attenuation of soils occurs in the spring, during their Iransifion from the frozen to thawed state. The geatest influences on the properties of clay soils that form the railway are from hydration, fieeze-thaw cycles and vibrodynamic impact of Wains. The increase in soil moisture is due to infillration of water into the ground, as well as the rise in water level due to soil redistribution during winter freezes. This can dramatically alter the basic characteristics of the soil, such as shear resistance and bulk density, on which strength and stability of soil mass depend primarily. Therefore, the degree of railway bed stability is not constant, but varies with time.展开更多
Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water conten...Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation.展开更多
A comprehensive and systematic research on the forcible thawing temperature field formed by a single heat transfer pipe with unsteady outer surface temperature was carried out by analytic computation according to the ...A comprehensive and systematic research on the forcible thawing temperature field formed by a single heat transfer pipe with unsteady outer surface temperature was carried out by analytic computation according to the theory of similitude. The distribution law of thawing temperature field, calculation formulas of thawing radius b, heat flux density q and average thawing temperature T were obtained. It theoretically explains that the main influential factors of thawing radius b, heat flux density q and thawing average temperature T are K,f, Lx and co(l), but Lc affects little. Finally, based on the forcible thawing project of Hulusu air shaft lining, the field data indicate that the analytical formulas of this article are comparatively accurate.展开更多
The unfrozen water content of rock during freezing and thawing has an important influence on its physical and mechanical properties.This study presented a model for calculating the unfrozen water content of rock durin...The unfrozen water content of rock during freezing and thawing has an important influence on its physical and mechanical properties.This study presented a model for calculating the unfrozen water content of rock during freezing and thawing process,considering the influence of unfrozen water film and rock pore structure,which can reflect the hysteresis and super-cooling effects.The pore size distribution cu rves of red sandsto ne and its unfrozen water conte nt under different temperatures during the freezing and thawing process were measured using nuclear magnetic resonance(NMR) to validate the proposed model.Comparison between the experimental and calculated results indicated that the theoretical model accu rately reflected the water content change law of red sandstone during the freezing and thawing process.Furthermore,the influences of Hamaker constant and surface relaxation parameter on the model results were examined.The results showed that the appropriate magnitude order of Hamaker constant for the red sandstone was 10J to 10J;and when the relaxation parameter of the rock surface was within 25-30 μm/ms,the calculated unfrozen water content using the proposed model was consistent with the experimental value.展开更多
A two-dimensional model for freezing and thawing phase change heat transfer in biological tissue embedded with two cryoprobes was established.In this model,the blood vessels were considered as tree-like branched fract...A two-dimensional model for freezing and thawing phase change heat transfer in biological tissue embedded with two cryoprobes was established.In this model,the blood vessels were considered as tree-like branched fractal network,and the effective flow rate and effective thermal conductivity of blood were obtained by fractal method.The temperature distribution and ice crystal growth process in biological tissue embedded with two cryoprobes during freezing-thawing process were numerically simulated.The results show that the growth velocity of ice crystal in freezing process from 200 to 400 s is more rapid than that from 400 to 600 s. Thawing process of frozen tissue occurs in the regions around cryoprobes tips and tissue boundary simultaneously,and the phase interfaces are close to each other until ice crystal melts completely.The distance of two cryoprobes has a more profound effect on the temperature distribution in freezing process at 400 s than at 800 s.展开更多
This study highlights the influence of freezing-thawing processes on soil erosion in an alpine mine restoration area. Accordingly, a series of simulation experiments were conducted to investigate runoff, sediment, and...This study highlights the influence of freezing-thawing processes on soil erosion in an alpine mine restoration area. Accordingly, a series of simulation experiments were conducted to investigate runoff, sediment, and nutrient losses, and potential influencing factors under freeze-thaw(FT) conditions. Three FT treatments(i.e., 0, 3, and 5 FT cycles), and two soil moisture contents(SMCs;i.e., 10% and 20% SMC on a gravimetric basis) were assessed. The runoff, sediment yield, ammonia nitrogen(AN), nitrate nitrogen(NN), total phosphorus(TP), and dissolved phosphorus(DP) losses from runoff were characterized under different rainfall durations. The fitting results indicated that the runoff rate and sediment rate, AN, NN, TP, and DP concentrations in runoff could be described by exponential functions. FT action increased the total runoff volume and sediment yield by 14.6%–26.0% and 8.8%–35.2%, respectively. The runoff rate and sediment rate increased rapidly with the increment of FT cycles before stabilizing. At 20% SMC, the total runoff volume and sediment yield were significantly higher than those at 10% SMC. The loss curves of AN and NN concentrations varied due to differences in their chemical properties. FT action and high SMC promoted AN and NN losses, whereas the FT cycles had little effect. FT action increased TP and DP losses by 60.2%–220.1% and 48.4%–129.8%, respectively, compared to cases with no FT action;the highest TP and DP losses were recorded at 20% SMC. This study provides a deep understanding of freezing-thawing mechanisms in the soils of alpine mine restoration areas and the influencing factors of these mechanisms on soil erosion, thereby supporting the development of erosion prevention and control measures in alpine mine restoration areas.展开更多
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant No.42271148).
文摘Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.
基金provided by National Natural Science Foundation of China (NSFC) under Grant Nos.41001036 and 41171064
文摘A series of tests were conducted to analyze temperature field distribution and thawing settlement of a thawing soil under static and dynamic loading at various cooling and thawing temperatures. The results demonstrate: (1) the temperature field distribution of the thawing soil was not significantly influenced by the loading form under the tested loading conditions; similar results were obtained for samples at different dynamic loading frequencies and different dynamic loading ampli- tudes, which verified the independence of loading form and temperature field; (2) changed temperature field distributions were found in thawing soil with different cooling and thawing temperatures, and the cooling and thawing temperature of the samples were the main factors affecting their temperature distributions; (3) under the tested conditions, thawing set- tlements were little influenced by the thawing temperature and the dynamic loading frequency; and (4) a linear relation- ship existed between the thawing settlement and the cooling temperature, and a logarithmic function could be used to describe the relationship between the thawing settlement and the loading amplitude.
基金Supported by the Technical Development and Demonstration Program of Beijing Vocational College of Agriculture(XY-YF-14-20)Agricultural S&T Program from Beijing Municipal Agricultural Commission(20140146)Non-staple Food Project from Beijing Municipal Agricultural Commission(20140204-7)
文摘The study was to investigate the effects of different thawing temperatures(5,15,40,75,90 ℃) and times(1- 120 s) on properties of post-thaw cow semen by detecting frozen-thawed semen motility,acrosome integrity and tail membrane integrity,further obtaining the optimal thawing method of straw frozen semen from dairy cow. The results showed that(1) Thawing of the straw frozen semen of dairy cow at 75 ℃ for 3 s yielded the highest semen motility,followed by 40 ℃for 20 s,and the least by low temperature 5 ℃ and room temperature 15 ℃ with a semen motility of 0. 3,moreover thawing at high temperature 90 ℃ was not suitable for large scale production due to the difficult control of the temperature;(2) The acrosome intact rate and plasma membrane integrity rate of semens thawed at90 ℃ were remarkably lower than that at 40 ℃ and 75 ℃ significantly(P 【 0. 05),while its semen malformation rate was significantly higher than that at 40 ℃and 75 ℃(P 【 0. 05);(3) The Survival time of semens at 37 ℃ varied largely among different thawing temperature,in detail by 40 ℃ 】 75 ℃ 】 90 ℃. In practice,the thawing method of straw frozen semen of dairy cow should be selected according to the specific circumstance and inseminated immediately,with the recommended condition of thawing at 75 ℃ for 3 s. If the thawed semen could not be inseminated immediately,the thawing should be performed at 20 s for 40 ℃to maintain the motility for a longer term.
基金Supported by the Technology Research and Demonstrational Popularization Project of Beijing Vocational College of Agriculture(XY-YF-15-07)(XY-YF-14-21)
文摘The aim was to discuss the optimal storage environment and proper insemination time after thawing of 0.25 mL straw frozen semen. Straw frozen semen was thawed at 40 ℃ for 20 s, and then stored at 0 -4 ℃, 14 - 16 ℃, 25 -27 ℃ for 2, 4, 6, 8 and 10 h, respectively. The sperm motility was detected. After thawing, semen was stored at 0 - 4 ℃ and 14 - 16 ℃ for 10 h. Their sperm motilities (0.434 ±0. 016 7 and 0.423 ±0.019 6) had no significant differences (P 〉 0.05) with initial thawing motility (0.441 ± 0.030). Sperm motility reduced as the storage time prolonged at 25 -27 ℃. Sperm motility after 6 h had signifi- cant differences with that of initial thawing motility (P 〈 O. 05 ), and sperm motilities after 8 and 10 h showed extremely significant differences (P 〈 0.01 ). Thus, sperm motility after thawing was still very high after stored at 0 -4 ℃ and 14 - 16 ℃ within 10 h, which met the requirements for insemination. Under this temperature and time ranges, sperm could be carried over long distances, which had small effects on sperm quality and reached the expected insemination effects. However, under the temperature of 25 - 27 ℃, semen should be used for insemination within 6 h after thawing.
基金funded by the National Science and Technology Support Plan(2015BAD07B02)
文摘Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawing indices and their relationship with air indices is limited.Based on daily air and ground-surface temperatures collected from 11 meteorological stations in the source region of the Yellow River,the freezing and thawing indices were calculated,and their spatial distribution and trends were analyzed.The air-freezing index(AFI),air-thawing index(ATI),ground surface-freezing index(GFI),ground surface-thawing index(GTI),air thawing-freezing index ratio(Na)and surface ground thawing-freezing index ratio(Ng)were 1554.64,1153.93,1.55,2484.85,850.57℃-days and 3.44,respectively.Altitude affected the spatial distribution of the freezing and thawing indices.As the altitude increased,the freezing indices gradually increased,and the thawing indices and thawing-freezing index ratio decreased.From 1980 to 2014,the AFI and GFI decreased at rates of 8.61 and 11.06℃-days a^(-1),the ATI and GTI increased at 9.65 and 14.53℃-days a^(-1),and Na and Ng significantly increased at 0.21 and 0.79 decade^(-1).Changes in the freezing and thawing indices were associated with increases in the air and ground-surface temperatures.The rates of change of the ground surface freezing and thawing indices were faster than the air ones because the rate of increase of the groundsurface temperature was faster than that of the air and the difference between the ground surface and air increased.The change point of the time series of freezing and thawing indices occurred in 2000–2001.After 2000–2001,the AFI and GFI were lower than before the change point,and the changing trend was lower.The ATI,GTI,Na and Ng during 2001–2014 were higher,with faster rates than before.In addition,the annual thawing indices composed a greater proportion of the mean annual air temperature and mean annual ground surface temperature than the annual freezing indices.This study provides the necessary basis for research on and prediction of permafrost changes,especially changes in the depth of the active permafrost layer,climate change,and possible evolution of the ecological environment over the source region of the Yellow River on the Qinghai-Tibet Plateau.
基金Funded by the Key Program of National Natural Science Foundation of China (No.50438010)
文摘Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bending tests had been applied after different freezing-thawing cycles(0,50,100,150,200 and 300 cycles,respectively).The results showed that residual flexural strength of UHTCC after 300 freezing-thawing cycles was 10.62 MPa(70% of no freezing thawing ones),while 1.58 MPa(17% of no freezing thawing ones) for SFRC.Flexural toughness of UHTCC decreased by 17%,while 70% for SFRC comparatively.It has been demonstrated experimentally that UHTCC without any air-entraining agent could resist freezing-thawing and retain its high toughness characteristic in cold environment.Consequently,UHTCC could be put into practice for new-built or retrofit of infrastructures in cold regions.
基金This work was supported jointly by the Key Innovation Project of the Chinese Academy of Sciences(Grant No.ZKCX2-SW-210)the National Natural Science Foundation of the China(Grant Nos.40375033 and 40175020)the Key National Natural Science Foundation of China(Grant Nos.40231005).
文摘The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data. Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999, which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitation increases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend.
基金supported by the National Basic Research Program of China under Grant No 2006CB400504National Natural Science Foundation of China under Grant Nos 40605027 and 40775050
文摘A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liquid water content and temperature using soil model with and without the inclusion of freezing and thawing processes are evaluated against observations at the Rosemount field station. By comparing the simulated water and heat fluxes of the two cases, the role of phase change processes in the water and energy balances is analyzed. Soil freezing induces upward water flow towards the freezing front and increases soil water content in the upper soil layer. In particular, soil ice obviously prevents and delays the infiltration during rain at Rosemount. In addition, soil freezingthawing processes alter the partitioning of surface energy fluxes and lead the soil to release more sensible heat into the atmosphere during freezing periods.
基金This work was jointly funded by the National Natural Science Foundation of China(Grant Nos.42205168,41830967,and 42175163)the Youth Innovation Promotion Association CAS(2021073)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab).
文摘The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process.
基金Supported by the Key Technologies R&D Program of China(2016YFD0501402)
文摘In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application.
基金Under the auspices of National Natural Science Foundation of China(No.31460117,41877024)。
文摘Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of SFT on aggregate stability in orchards during winter and spring is crucial to develop appropriate management strategies that can effectively alleviate the degradation of soil quality to ensure sustainable development of orchard ecosystems.To determine the mechanism of degradation in orchard soil quality,the effects of SFT on the stability of water-stable aggregates were examined in apple-pear orchards(Pyrus ussuriensis var.ovoidea)of four different ages(11,25,40,and 63 yr)on 0 to 5%slopes before freezing and after thawing from October 2015 to June 2016 in Longjing City,Yanbian Prefecture,Northeast China,involving a comparison of planted versus adjacent uncultivated lands(control).Soil samples were collected to investigate water-stable aggregate stability in three incremental soil layers(0–20,20–40 and 40–60 cm).In the same samples,iron oxide,organic matter,and clay contents of the soil were also determined.Results showed that the destructive influences of SFT on water-stable aggregates were more pronounced with the increased orchards ages,and SFT exerted severe effects on water-stable aggregates of older orchards(40 and 63 yr)than juvenile orchards.Undergoing SFT,the soil instability index and the percentage of aggregate destruction increased by mean 0.15 mm and 1.86%,the degree of aggregation decreased by mean 1.32%,and the erosion resistance weakened,which consequently led to aggregate stability decreased.In addition,soil free,amorphous,and crystalline iron oxide as well as soil organic matter and clay contents are all important factors affecting the stability of water-stable aggregates,and their changes in their contents were consistent with those in the stability of water-stable aggregates.The results of this study suggest that long-term planting fruit trees can exacerbate the damaging effects of SFT on aggregate stability and further soil erosion increases and nutrient losses in an orchard,which hider sustainable use of soil and the productivity orchards.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41905008, 41975007, and 42075081)the Innovation and Entrepreneurship Training Program for College Students of Chengdu University of Information Technology (CUIT) (202210621003, 202210621039, 202110621015)provided by the Scientific Research Foundation of CUIT (KYTZ202126)
文摘Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG)has long been recognized.Still,a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future.This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5.Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones,with significant correlation coefficients of 0.60 and 0.48,respectively.Precipitation increased continually at the rate of 6.16 mm decade–1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer.However,diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG.The relationship between the ground thawing index and precipitation was significantly negatively correlated(−0.75).The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation.
基金supported by the National Natural Science Foundation of China (No. 41371092)the Scientific Research Foundation for Returned Overseas Students+1 种基金the Education Department of Henan Province Science and Technology Research projects (No.14B170007)the doctoral foundation of Henan Polytechnic University (No. 648349)
文摘It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively.
文摘The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of internal state of material were introduced into the formula presented by Desayi and Krishman and the weighted twin-shear strength theory. As a nondestructive examination method in common use, the ultrasonic technique was adopted in the study, and the ultrasonic velocity was used to establish the damage variable. After that, the failure criterion and one-dimensional stress-strain relationship for deteriorated concrete were obtained. Eventually, tests were carried out to study the evolution laws on the damage. The results show that the more freezing and thawing cycles are, the more apparently the failure surface shrinks. Meanwhile, the comparison between theoretical data and experimental data verifies tile rationality of tile damage-based one-dimensional stress-strain relationship proposed.
文摘The practice of building and operating of railroad beds shows that the greatest attenuation of soils occurs in the spring, during their Iransifion from the frozen to thawed state. The geatest influences on the properties of clay soils that form the railway are from hydration, fieeze-thaw cycles and vibrodynamic impact of Wains. The increase in soil moisture is due to infillration of water into the ground, as well as the rise in water level due to soil redistribution during winter freezes. This can dramatically alter the basic characteristics of the soil, such as shear resistance and bulk density, on which strength and stability of soil mass depend primarily. Therefore, the degree of railway bed stability is not constant, but varies with time.
基金supported by the CAS Knowledge Innovation Key Project (Grant No. KZCX2-YW-330)the National Science Fund FosteringTalents in Basic Research to Glaciology and Geocryology (Grant No. J0630966).
文摘Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation.
基金Supported by the Natural Science Foundation of China (40801032)
文摘A comprehensive and systematic research on the forcible thawing temperature field formed by a single heat transfer pipe with unsteady outer surface temperature was carried out by analytic computation according to the theory of similitude. The distribution law of thawing temperature field, calculation formulas of thawing radius b, heat flux density q and average thawing temperature T were obtained. It theoretically explains that the main influential factors of thawing radius b, heat flux density q and thawing average temperature T are K,f, Lx and co(l), but Lc affects little. Finally, based on the forcible thawing project of Hulusu air shaft lining, the field data indicate that the analytical formulas of this article are comparatively accurate.
基金the support of the Second Tibetan Plateau Scientific Expedition and Research Program (STEP)of China (Grant No.2019QZKK0904)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (Grant No.51922104)+1 种基金Youth Innovation Promotion Association CASOpen Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (Grant No.Z018014)。
文摘The unfrozen water content of rock during freezing and thawing has an important influence on its physical and mechanical properties.This study presented a model for calculating the unfrozen water content of rock during freezing and thawing process,considering the influence of unfrozen water film and rock pore structure,which can reflect the hysteresis and super-cooling effects.The pore size distribution cu rves of red sandsto ne and its unfrozen water conte nt under different temperatures during the freezing and thawing process were measured using nuclear magnetic resonance(NMR) to validate the proposed model.Comparison between the experimental and calculated results indicated that the theoretical model accu rately reflected the water content change law of red sandstone during the freezing and thawing process.Furthermore,the influences of Hamaker constant and surface relaxation parameter on the model results were examined.The results showed that the appropriate magnitude order of Hamaker constant for the red sandstone was 10J to 10J;and when the relaxation parameter of the rock surface was within 25-30 μm/ms,the calculated unfrozen water content using the proposed model was consistent with the experimental value.
基金Project(50436030)supported by the National Natural Science Foundation of China
文摘A two-dimensional model for freezing and thawing phase change heat transfer in biological tissue embedded with two cryoprobes was established.In this model,the blood vessels were considered as tree-like branched fractal network,and the effective flow rate and effective thermal conductivity of blood were obtained by fractal method.The temperature distribution and ice crystal growth process in biological tissue embedded with two cryoprobes during freezing-thawing process were numerically simulated.The results show that the growth velocity of ice crystal in freezing process from 200 to 400 s is more rapid than that from 400 to 600 s. Thawing process of frozen tissue occurs in the regions around cryoprobes tips and tissue boundary simultaneously,and the phase interfaces are close to each other until ice crystal melts completely.The distance of two cryoprobes has a more profound effect on the temperature distribution in freezing process at 400 s than at 800 s.
基金supported by the National Natural Science Foundation of China(U1703244)Bingtuan Science and Technology Program(2021DB019)Science and Technology project of Alar City(2018TF01)。
文摘This study highlights the influence of freezing-thawing processes on soil erosion in an alpine mine restoration area. Accordingly, a series of simulation experiments were conducted to investigate runoff, sediment, and nutrient losses, and potential influencing factors under freeze-thaw(FT) conditions. Three FT treatments(i.e., 0, 3, and 5 FT cycles), and two soil moisture contents(SMCs;i.e., 10% and 20% SMC on a gravimetric basis) were assessed. The runoff, sediment yield, ammonia nitrogen(AN), nitrate nitrogen(NN), total phosphorus(TP), and dissolved phosphorus(DP) losses from runoff were characterized under different rainfall durations. The fitting results indicated that the runoff rate and sediment rate, AN, NN, TP, and DP concentrations in runoff could be described by exponential functions. FT action increased the total runoff volume and sediment yield by 14.6%–26.0% and 8.8%–35.2%, respectively. The runoff rate and sediment rate increased rapidly with the increment of FT cycles before stabilizing. At 20% SMC, the total runoff volume and sediment yield were significantly higher than those at 10% SMC. The loss curves of AN and NN concentrations varied due to differences in their chemical properties. FT action and high SMC promoted AN and NN losses, whereas the FT cycles had little effect. FT action increased TP and DP losses by 60.2%–220.1% and 48.4%–129.8%, respectively, compared to cases with no FT action;the highest TP and DP losses were recorded at 20% SMC. This study provides a deep understanding of freezing-thawing mechanisms in the soils of alpine mine restoration areas and the influencing factors of these mechanisms on soil erosion, thereby supporting the development of erosion prevention and control measures in alpine mine restoration areas.