The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0...Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0°,15°,30°,45°,60°,75°and 90°)to explore the impact of bedding angle on the deformational mechanical response,failure mode,and damage evolution processes of rocks.It develops a damage model based on the Logistic equation derived from the modulus’s degradation considering the combined effect of the sandstone bedding dip angle and load.This model is employed to study the damage accumulation state and its evolution within the layered rock mass.This research also introduces a piecewise constitutive model that considers the initial compaction characteristics to simulate the whole deformation process of layered sandstone under uniaxial compression.The results revealed that as the bedding angle increases from 0°to 90°,the uniaxial compressive strength and elastic modulus of layered sandstone significantly decrease,slightly increase,and then decline again.The corresponding failure modes transition from splitting tensile failure to slipping shear failure and back to splitting tensile failure.As indicated by the modulus’s degradation,the damage characteristics can be categorized into four stages:initial no damage,damage initiation,damage acceleration,and damage deceleration termination.The theoretical damage model based on the Logistic equation effectively simulates and predicts the entire damage evolution process.Moreover,the theoretical constitutive model curves closely align with the actual stress−strain curves of layered sandstone under uniaxial compression.The introduced constitutive model is concise,with fewer parameters,a straightforward parameter determination process,and a clear physical interpretation.This study offers valuable insights into the theory of layered rock mechanics and holds implications for ensuring the safety of rock engineering.展开更多
This paper studies the problem of functional inequalities for analytic functions in classical geometric function theory.Using the di erential subordination principle and(p,q)-derivative operator,it introduces(p,q)-ana...This paper studies the problem of functional inequalities for analytic functions in classical geometric function theory.Using the di erential subordination principle and(p,q)-derivative operator,it introduces(p,q)-analog of a class of multivalently Bazilevic functions as-sociated with a limacon function,and obtains the corresponding coefficient estimates and the Fekete-Szego inequality,which extend and improve the related results for starlike functions,even q-starlike functions.展开更多
This paper focuses on the continuity of the truncated Hardy-Littlewood maximal function.We first show that the truncated Hardy-Littlewood maximal function is lower semi-continuous.Then by investigating the behavior of...This paper focuses on the continuity of the truncated Hardy-Littlewood maximal function.We first show that the truncated Hardy-Littlewood maximal function is lower semi-continuous.Then by investigating the behavior of the truncated Hardy-Littlewood maximal function when the truncated parameterγchanges,we obtain an equivalent condition of the continuity of the truncated Hardy-Littlewood maximal function.展开更多
Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate ...Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions.展开更多
A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for det...A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.展开更多
Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's func...Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's function method in combination with the density functionaltheory,the switching performance and spin filtering properties of dimethyldihydropyrene(DHP)/cyclophanediene(CPD)photoswitchable molecule connected by carbon atomic chains(CACs)to two zigzag graphene nanoribbon electrodes have been theoretically investigated.The results show that DHP is more conductive than CPD and therefore an evident switching effect is demonstrated,and the switching ratio(RON/OFF)can reach 4.5×103.It is further revealed that the RoON/OF of DHP/CPD closely depends on the length of CACs.More specifically,the RoN/OFF values of DHP/CPD with odd-numbered CACs are larger than those with even-numbered CACs.More interestingly,a high or even perfect spin filtering effect can be obtained in these investigated DHP/CPD single-molecule devices.Our study is helpful for future design of single-molecule switches and spin filters and provides a way to optimize their performance by means of varying the length of bridging CACs.展开更多
In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential pol...In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential polynomial,which extends the related result of Li,and Chen et al..An example is given to show that the hypothesis on the zeros of a(z)is necessary.展开更多
Road extraction based on deep learning is one of hot spots of semantic segmentation in the past decade.In this work,we proposed a framework based on codec network for automatic road extraction from remote sensing imag...Road extraction based on deep learning is one of hot spots of semantic segmentation in the past decade.In this work,we proposed a framework based on codec network for automatic road extraction from remote sensing images.Firstly,a pre-trained ResNet34 was migrated to U-Net and its encoding structure was replaced to deepen the number of network layers,which reduces the error rate of road segmentation and the loss of details.Secondly,dilated convolution was used to connect the encoder and the decoder of network to expand the receptive field and retain more low-dimensional information of the image.Afterwards,the channel attention mechanism was used to select the information of the feature image obtained by up-sampling of the encoder,the weights of target features were optimized to enhance the features of target region and suppress the features of background and noise regions,and thus the feature extraction effect of the remote sensing image with complex background was optimized.Finally,an adaptive sigmoid loss function was proposed,which optimizes the imbalance between the road and the background,and makes the model reach the optimal solution.Experimental results show that compared with several semantic segmentation networks,the proposed method can greatly reduce the error rate of road segmentation and effectively improve the accuracy of road extraction from remote sensing images.展开更多
In this paper,we consider the truncated multiplicity finite range set problem of meromorphic functions on some complex disc.By using the value distribution theory of meromorphic functions,we establish a second main th...In this paper,we consider the truncated multiplicity finite range set problem of meromorphic functions on some complex disc.By using the value distribution theory of meromorphic functions,we establish a second main theorem for meromorphic functions with finite growth index which share meromorphic functions(may not be small functions).As its application,we also extend the result of a finite range set with truncated multiplicity.展开更多
Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf lu...Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.展开更多
Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter...Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.展开更多
This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear syst...This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.展开更多
Ω results involving the coefficients of automorphic L-functions are important research object in analytic number theory.Let f be a primitive holomorphic cusp form.Denote by λ_(f×f)(n) the nth Fourier coefficien...Ω results involving the coefficients of automorphic L-functions are important research object in analytic number theory.Let f be a primitive holomorphic cusp form.Denote by λ_(f×f)(n) the nth Fourier coefficient of Rankin-Selberg L-function L(f×f,s).This paper combines Kühleitner and Nowak′s Omega theorem and the analytic properties of Rankin-Selberg L-functions to study Omega results for coefficients of Rankin-Selberg L-functions over sparse sequences,and establishes the asymptotic formula for Σ_(n≤x)λf×f(n^(m))(m=2,3).展开更多
this paper,we introduce the L_(p) Shephard problem on entropy of log-concave functions,a comparison problem:whether ∏_(p)f≤∏_(p)g implies that Ent(f)≥Ent(g),for 1≤p<n,and Ent(f)≤Ent(g),for n<p,where ∏_(p)...this paper,we introduce the L_(p) Shephard problem on entropy of log-concave functions,a comparison problem:whether ∏_(p)f≤∏_(p)g implies that Ent(f)≥Ent(g),for 1≤p<n,and Ent(f)≤Ent(g),for n<p,where ∏_(p)f is the L_(p) projection body of a log-concave function f.Our results give a partial answer to this problem.展开更多
Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NV...Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).展开更多
The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, ...The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.展开更多
Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional fil...Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional filtering methods are inadequate. We introduce a Hilbert- Huang transform (HHT) which makes full preservation of the non-linear and non-stationary characteristics and has great advantages in the acoustic signal filtering. Using the empirical mode decomposition (EMD) method, the acoustic log waveforms can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The results of applying HHT to real array acoustic logging signal filtering and de-noising are presented to illustrate the efficiency and power of this new method.展开更多
Stochastic seismic inversion is the combination of geostatistics and seismic inversion technology which integrates information from seismic records, well logs, and geostatistics into a posterior probability density fu...Stochastic seismic inversion is the combination of geostatistics and seismic inversion technology which integrates information from seismic records, well logs, and geostatistics into a posterior probability density function (PDF) of subsurface models. The Markov chain Monte Carlo (MCMC) method is used to sample the posterior PDF and the subsurface model characteristics can be inferred by analyzing a set of the posterior PDF samples. In this paper, we first introduce the stochastic seismic inversion theory, discuss and analyze the four key parameters: seismic data signal-to-noise ratio (S/N), variogram, the posterior PDF sample number, and well density, and propose the optimum selection of these parameters. The analysis results show that seismic data S/N adjusts the compromise between the influence of the seismic data and geostatistics on the inversion results, the variogram controls the smoothness of the inversion results, the posterior PDF sample number determines the reliability of the statistical characteristics derived from the samples, and well density influences the inversion uncertainty. Finally, the comparison between the stochastic seismic inversion and the deterministic model based seismic inversion indicates that the stochastic seismic inversion can provide more reliable information of the subsurface character.展开更多
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
基金Projects(52074299,41941018)supported by the National Natural Science Foundation of ChinaProject(2023JCCXSB02)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0°,15°,30°,45°,60°,75°and 90°)to explore the impact of bedding angle on the deformational mechanical response,failure mode,and damage evolution processes of rocks.It develops a damage model based on the Logistic equation derived from the modulus’s degradation considering the combined effect of the sandstone bedding dip angle and load.This model is employed to study the damage accumulation state and its evolution within the layered rock mass.This research also introduces a piecewise constitutive model that considers the initial compaction characteristics to simulate the whole deformation process of layered sandstone under uniaxial compression.The results revealed that as the bedding angle increases from 0°to 90°,the uniaxial compressive strength and elastic modulus of layered sandstone significantly decrease,slightly increase,and then decline again.The corresponding failure modes transition from splitting tensile failure to slipping shear failure and back to splitting tensile failure.As indicated by the modulus’s degradation,the damage characteristics can be categorized into four stages:initial no damage,damage initiation,damage acceleration,and damage deceleration termination.The theoretical damage model based on the Logistic equation effectively simulates and predicts the entire damage evolution process.Moreover,the theoretical constitutive model curves closely align with the actual stress−strain curves of layered sandstone under uniaxial compression.The introduced constitutive model is concise,with fewer parameters,a straightforward parameter determination process,and a clear physical interpretation.This study offers valuable insights into the theory of layered rock mechanics and holds implications for ensuring the safety of rock engineering.
基金Supported by Natural Science Foundation of Ningxia(2023AAC 03001)Natural Science Foundation of China(12261068)
文摘This paper studies the problem of functional inequalities for analytic functions in classical geometric function theory.Using the di erential subordination principle and(p,q)-derivative operator,it introduces(p,q)-analog of a class of multivalently Bazilevic functions as-sociated with a limacon function,and obtains the corresponding coefficient estimates and the Fekete-Szego inequality,which extend and improve the related results for starlike functions,even q-starlike functions.
基金Supported by NSF of Zhejiang Province of China(LQ18A010002,LQ17A010002)。
文摘This paper focuses on the continuity of the truncated Hardy-Littlewood maximal function.We first show that the truncated Hardy-Littlewood maximal function is lower semi-continuous.Then by investigating the behavior of the truncated Hardy-Littlewood maximal function when the truncated parameterγchanges,we obtain an equivalent condition of the continuity of the truncated Hardy-Littlewood maximal function.
文摘Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions.
文摘A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.
基金This work is supported by the National Natural Sci-ence Foundation China(No.22173052 of and No.11974217).
文摘Moleculardeviceswith highswitchingperformance and/or the perfect spin filtering effect have always been the pursuit with the development of molecular electronics.Hereb,yusingthe 2001.0V nonequilibrium.Green's function method in combination with the density functionaltheory,the switching performance and spin filtering properties of dimethyldihydropyrene(DHP)/cyclophanediene(CPD)photoswitchable molecule connected by carbon atomic chains(CACs)to two zigzag graphene nanoribbon electrodes have been theoretically investigated.The results show that DHP is more conductive than CPD and therefore an evident switching effect is demonstrated,and the switching ratio(RON/OFF)can reach 4.5×103.It is further revealed that the RoON/OF of DHP/CPD closely depends on the length of CACs.More specifically,the RoN/OFF values of DHP/CPD with odd-numbered CACs are larger than those with even-numbered CACs.More interestingly,a high or even perfect spin filtering effect can be obtained in these investigated DHP/CPD single-molecule devices.Our study is helpful for future design of single-molecule switches and spin filters and provides a way to optimize their performance by means of varying the length of bridging CACs.
文摘In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential polynomial,which extends the related result of Li,and Chen et al..An example is given to show that the hypothesis on the zeros of a(z)is necessary.
基金supported by National Natural Science Foundation of China(No.61864025)2021 Longyuan Youth Innovation and Entrepreneurship Talent(Team),Young Doctoral Fund of Higher Education Institutions of Gansu Province(No.2021QB-49)+4 种基金Employment and Entrepreneurship Improvement Project of University Students of Gansu Province(No.2021-C-123)Intelligent Tunnel Supervision Robot Research Project(China Railway Scientific Research Institute(Scientific Research)(No.2020-KJ016-Z016-A2)Lanzhou Jiaotong University Youth Foundation(No.2015005)Gansu Higher Education Research Project(No.2016A-018)Gansu Dunhuang Cultural Relics Protection Research Center Open Project(No.GDW2021YB15).
文摘Road extraction based on deep learning is one of hot spots of semantic segmentation in the past decade.In this work,we proposed a framework based on codec network for automatic road extraction from remote sensing images.Firstly,a pre-trained ResNet34 was migrated to U-Net and its encoding structure was replaced to deepen the number of network layers,which reduces the error rate of road segmentation and the loss of details.Secondly,dilated convolution was used to connect the encoder and the decoder of network to expand the receptive field and retain more low-dimensional information of the image.Afterwards,the channel attention mechanism was used to select the information of the feature image obtained by up-sampling of the encoder,the weights of target features were optimized to enhance the features of target region and suppress the features of background and noise regions,and thus the feature extraction effect of the remote sensing image with complex background was optimized.Finally,an adaptive sigmoid loss function was proposed,which optimizes the imbalance between the road and the background,and makes the model reach the optimal solution.Experimental results show that compared with several semantic segmentation networks,the proposed method can greatly reduce the error rate of road segmentation and effectively improve the accuracy of road extraction from remote sensing images.
基金Supported by National Natural Science Foundation of China(12061041)Jiangxi Provincial Natural Science Foundation(20232BAB201003).
文摘In this paper,we consider the truncated multiplicity finite range set problem of meromorphic functions on some complex disc.By using the value distribution theory of meromorphic functions,we establish a second main theorem for meromorphic functions with finite growth index which share meromorphic functions(may not be small functions).As its application,we also extend the result of a finite range set with truncated multiplicity.
文摘Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.
基金Research supported by the National Natural Science Foundation of China(12271220)postgraduate research and practice innovation program of Jiangsu Province(KYCX24-3010)。
文摘Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Research on model order reduction methods based on the discrete orthogonal polynomials”(2023D01C163)The Tianchi Talent Introduction Plan Project of Xinjiang Uygur Autonomous Region of China“Research on orthogonal decomposition model order reduction methods for discrete control systems”.
文摘This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.
文摘Ω results involving the coefficients of automorphic L-functions are important research object in analytic number theory.Let f be a primitive holomorphic cusp form.Denote by λ_(f×f)(n) the nth Fourier coefficient of Rankin-Selberg L-function L(f×f,s).This paper combines Kühleitner and Nowak′s Omega theorem and the analytic properties of Rankin-Selberg L-functions to study Omega results for coefficients of Rankin-Selberg L-functions over sparse sequences,and establishes the asymptotic formula for Σ_(n≤x)λf×f(n^(m))(m=2,3).
基金The National Natural Science Foundation of China(11701373)The Shanghai Sailing Program(17YF1413800)。
文摘this paper,we introduce the L_(p) Shephard problem on entropy of log-concave functions,a comparison problem:whether ∏_(p)f≤∏_(p)g implies that Ent(f)≥Ent(g),for 1≤p<n,and Ent(f)≤Ent(g),for n<p,where ∏_(p)f is the L_(p) projection body of a log-concave function f.Our results give a partial answer to this problem.
文摘Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).
基金supported by the Doctoral Fund Project of the Ministry of Education(No.20130061110060 class tutors)the Post-Doctoral Fund Project(No.2015M571366)+1 种基金the National Natural Science Foundation of China(No.41174097)US DoD ARO Project"Advanced Mathematical Algorithm"(No.W911NF-11-2-0046)
文摘The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.
基金supported by National Natural Science Foundation of China(Grant No.40874059)the National Key Science Engineering Projects of the Ninth Five Year Plan([1999]1423)
文摘Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional filtering methods are inadequate. We introduce a Hilbert- Huang transform (HHT) which makes full preservation of the non-linear and non-stationary characteristics and has great advantages in the acoustic signal filtering. Using the empirical mode decomposition (EMD) method, the acoustic log waveforms can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The results of applying HHT to real array acoustic logging signal filtering and de-noising are presented to illustrate the efficiency and power of this new method.
基金supported by the National Major Science and Technology Project of China on Development of Big Oil-Gas Fields and Coalbed Methane (No. 2008ZX05010-002)
文摘Stochastic seismic inversion is the combination of geostatistics and seismic inversion technology which integrates information from seismic records, well logs, and geostatistics into a posterior probability density function (PDF) of subsurface models. The Markov chain Monte Carlo (MCMC) method is used to sample the posterior PDF and the subsurface model characteristics can be inferred by analyzing a set of the posterior PDF samples. In this paper, we first introduce the stochastic seismic inversion theory, discuss and analyze the four key parameters: seismic data signal-to-noise ratio (S/N), variogram, the posterior PDF sample number, and well density, and propose the optimum selection of these parameters. The analysis results show that seismic data S/N adjusts the compromise between the influence of the seismic data and geostatistics on the inversion results, the variogram controls the smoothness of the inversion results, the posterior PDF sample number determines the reliability of the statistical characteristics derived from the samples, and well density influences the inversion uncertainty. Finally, the comparison between the stochastic seismic inversion and the deterministic model based seismic inversion indicates that the stochastic seismic inversion can provide more reliable information of the subsurface character.