With the blooming development of electronic technology,the use of electron conductive gel or ionic conductive gel in preparing flexible electronic devices is drawing more and more attention.Deep eutectic solvents are ...With the blooming development of electronic technology,the use of electron conductive gel or ionic conductive gel in preparing flexible electronic devices is drawing more and more attention.Deep eutectic solvents are excellent substitutes for ionic liquids because of their good biocompatibility,low cost,and easy preparation,except for good conductivity.In this work,we synthesized a reactive quaternary ammonium monomer(3-acrylamidopropyl)octadecyldimethyl ammonium bromide with a hydrophobic chain of 18 carbons via the quaternization of 1-bromooctadecane and N-dimethylaminopropyl acrylamide at first,then we mixed quaternary ammonium with choline chloride,acrylic acid and glycerol to obtain a hydrophobic deep eutectic solvent,and initialized polymerization in UV light of 365 nm to obtain the ionic conductive eutectogel based on polyacrylamide copolymer with long hydrophobic chain.The obtained eutectogel exibits good stretchability(1200%),Young's modulus(0.185 MPa),toughness(4.2 MJ/m^(3)),conductivity(0.315 S/m).The eutectogel also shows desireable moisture resistance with the maximum water absorption of 11.7 wt%after one week at 25℃and 60%humidity,while the water absorption of eutectogel without hydrophobic long chains is 24.0 wt%.The introduction of long-chain hydrophobic groups not only improves the mechanical strength of the gels,but also significantly improves moisture resistance of the eutectogel.This work provides a simpler and more effective method for the preparation of ionic conductive eutectogels,which can further provide a reference for the applications of ionic conductive eutectogels in the field of flexible electronic devices.展开更多
This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabr...This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabricating TiO_(2)nanotubes.When the relative humidity belows 70%,the TiO_(2)nanotubes can be successfully prepared.What's more,by changing the anodization voltage and time,the diameter and the length of TiO_(2)nanotubes can be adjusted.In addition,the TiO_(2)nanotubes are modified through electrochemical self-doping and loading Pt metal particles on the surface of the nanotubes,which promotes the performance of the supercapacitor.The sample anodized at 100 V for 3 h has a specific capacity of up to 2.576 mF/cm~2 at a scan rate of 100 mV/s after self-doping,and its capacity retention rate still remains at 89.55%after 5000 cycles,demonstrating excellent cycling stability.The Pt-modified sample has a specific capacity of up to 3.486 mF/cm~2 at the same scan rate,exhibiting more outstanding electrochemical performance.展开更多
Cardiovascular disease persists as the primary cause of human mortality,significantly impacting healthy life expectancy.The routine electrocardiogram(ECG)stands out as a pivotal noninvasive diagnostic tool for identif...Cardiovascular disease persists as the primary cause of human mortality,significantly impacting healthy life expectancy.The routine electrocardiogram(ECG)stands out as a pivotal noninvasive diagnostic tool for identifying arrhythmias.The evolving landscape of fabric electrodes,specifically designed for the prolonged monitoring of human ECG signals,is the focus of this research.Adhering to the preferred reporting items for systematic reviews and meta-analyses(PRISMA)statement and assimilating data from 81 pertinent studies sourced from reputable databases,the research conducts a comprehensive systematic review and meta-analysis on the materials,fabric structures and preparation methods of fabric electrodes in the existing literature.It provides a nuanced assessment of the advantages and disadvantages of diverse textile materials and structures,elucidating their impacts on the stability of biomonitoring signals.Furthermore,the study outlines current developmental constraints and future trajectories for fabric electrodes.These insights could serve as essential guidance for ECG monitoring system designers,aiding them in the selection of materials that optimize the measurement of biopotential signals.展开更多
Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe...Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.展开更多
Graphene oxide(GO)with excellent dispersion ability can assist the dispersion of single-walled carbon nanotube(SWCNT)and promote the formation of uniform and stable GO/SWCNT coating liquid.The highly conductive polyet...Graphene oxide(GO)with excellent dispersion ability can assist the dispersion of single-walled carbon nanotube(SWCNT)and promote the formation of uniform and stable GO/SWCNT coating liquid.The highly conductive polyethylene terephthalate/reduced graphene oxide/SWCNT(PET/rGO/SWCNT)electromagnetic shielding composite fabric was successfully prepared by anchoring rGO/SWCNT on PET fabric via dip-coating piror to low-temperature thermal reduction.The results showed that the carboxyl groups and hydroxyl groups formed of hydrophilic-treated PET were conducive to the formation of hydrogen bonds with that of GO,which enhanced the interaction between PET fabric and GO/SWCNT coating;the loading of GO/SWCNT increased with the number of dip-coating,the unit area loading of rGO/SWCNT in the final composite fabric was 2.7 mg/cm^(2) after 10 dip-coating cycles and thermal reduction;the PET/rGO/SWCNT composite fabric had a continuous and dense conductive network,with a conductivity of up to 41.6 S/m and the average electromagnetic interference shielding effectiveness in X-band was 22 dB;the flexible PET/rGO/SWCNT composite fabric was not only easy to process,but also exhibited excellent conductivity and shielding efficiency,showing great potential in the application of electromagnetic shielding fabrics.展开更多
Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explo...Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.展开更多
The growing concern about thermal conductivityand electromagnetic shielding inelectronic equipment has promoted the development of interfacial film materials.In this work,polyvinylidene fluoride(PVDF)/graphene composi...The growing concern about thermal conductivityand electromagnetic shielding inelectronic equipment has promoted the development of interfacial film materials.In this work,polyvinylidene fluoride(PVDF)/graphene composite films with different graphene contents were fabricated by high-energy ball milling,cold isostatic pressing,scraping and coating,successively.High-energy ball milling is beneficial to the dispersion of graphene powder,while cold isostatic pressing can greatly enhance thermal conductivity and mechanical strength by reducing the voids in the film and increasing the contact area of graphene sheets.The thermal conductivity,tensile strength and electromagnetic shielding properties of the films were carefully investigated and compared.It was demonstrated that the thermal conductivity increased from 0.19 Wm-1.K-1 for pure PVDF to 103.9 W-m-1.K-1 for the composite film with PVDF:graphene=1:3.Meanwhile the electromagnetic shielding efficiency can reach 36.55 dB.The prepared PVDF/graphene composite films exhibit outstanding overall performance and have the potential for practical applications.展开更多
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th...A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling.展开更多
A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liqu...A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liquid-phase carbonization of isotropic pitch to the emergence of carbon microbeads in the matrix and finally their growth to form a 100%anisotropic bulk meso-phase,but rather a reverse transformation.The effects of C_(60) loading and reaction temperature on the morphological transformation of mesophase were investigated by polarizing optical and scanning electron microscopies.The physical changes in the NMP induced by C_(60) were characterized by thermogravimetric analysis,Fourier transform infrared spectroscopy,X-ray diffractometry and Raman spectroscopy.The results show that the coalesced NMP can be converted to a spherical type at 300-320℃ with the addition of 5%C_(60),and the size of the mesophase microbeads increases with increasing temperature.Furthermore,a model is established to ex-plain the unique induction effect of C_(60) in the transformation process.This work makes the morphological transformation of MP con-trollable,and provides a new idea for the understanding and research of mesophase pitch.展开更多
Based on Peltier effect,Bi_(2)Te_(3)-based alloy is widely used in commercial solid-state refrigeration at room temperature.The mainstream strategies for enhancing room-temperature thermoelectric performance in Bi_(2)...Based on Peltier effect,Bi_(2)Te_(3)-based alloy is widely used in commercial solid-state refrigeration at room temperature.The mainstream strategies for enhancing room-temperature thermoelectric performance in Bi_(2)Te_(3)focus on band and microstructure engineering.However,a clear understanding of the modulation of band structure and scattering through such engineering remains still challenging,because the minority carriers compensate partially the overall transport properties for the narrow-gap Bi_(2)Te_(3)at room temperature(known as the bipolar effect).The purpose of this work is to model the transport properties near and far away from the bipolar effect region for Bi_(2)Te_(3)-based thermoelectric material by a two-band model taking contributions of both majority and minority carriers into account.This is endowed by shifting the Fermi level from the conduction band to the valence band during the modeling.A large amount of data of Bi_(2)Te_(3)-based materials is collected from various studies for the comparison between experimental and predicted properties.The fundamental parameters,such as the density of states effective masses and deformation potential coefficients,of Bi_(2)Te_(3)-based materials are quantified.The analysis can help find out the impact factors(e.g.the mobility ratio between conduction and valence bands)for the improvement of thermoelectric properties for Bi_(2)Te_(3)-based alloys.This work provides a convenient tool for analyzing and predicting the transport performance even in the presence of bipolar effect,which can facilitate the development of the narrow-gap thermoelectric semiconductors.展开更多
With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical c...With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical conversion of 5-hydroxymethylfurfural(HMF)to biofuels and value-added oxygenated commodity chemicals provides a promising and alternative pathway to convert re-newable electricity into chemicals.Although nickel-based eletrocatalysts are well-known for HMF oxidation,their relatively low intrinsic activity,poor conductivity and stability still limit the poten-tial applications.Here,we report the fabrication of a freestanding nickel-based electrode,in which Ni(OH)_(2) species were in-situ constructed on Ni foam(NF)support using a facile ac-id-corrosion-induced strategy.The Ni(OH)2/NF electrocatalyst exhibits stable and efficient electro-chemical HMF oxidation into 2,5-furandicarboxylic acid(FDCA)with HMF conversion close to 100% with high Faraday efficiency.In-situ formation strategy results in a compact interface between Ni(OH)_(2) and NF,which contributes to good conductivity and stability during electrochemical reac-tions.The superior performance benefits from dynamic cyclic evolution of Ni(OH)_(2) to NiOOH,which acts as the reactive species for HMF oxidation to FDCA.A scaled-up device based on a continu-ous-flow electrolytic cell was also established,giving stable operation with a high FDCA production rate of 27 mg h^(-1)cm^(−2).This job offers a straightforward,economical,and scalable design strategy to design efficient and durable catalysts for electrochemical conversion of valuable chemicals.展开更多
A 499.8 MHz SOLEIL-type superconducting cavity was simulated and designed for the first time in this paper.The higher-order mode(HOM)properties of the cavity were investigated.Two kinds of coaxial HOM couplers were de...A 499.8 MHz SOLEIL-type superconducting cavity was simulated and designed for the first time in this paper.The higher-order mode(HOM)properties of the cavity were investigated.Two kinds of coaxial HOM couplers were designed.Using 4 L-type and 4 T-type HOM couplers,the longitudinal impedance and the transverse impedances were suppressed to below 3 kΩand 30 kΩ/m,respectivly.The HOM damping requirements of Hefei Advanced Light Facility(HALF)were satisfied.This paper conducted an in-depth study on the radio frequency(RF)design,multipacting optimization,and thermal analysis of these coaxial couplers.Simulation results indicated that under operating acceleration voltage,the optimized couplers does not exhibit multiplicating or thermal breakdown phenomena.The cavity has the potential to reach a higher acceleration gradient.展开更多
Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice o...Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs.展开更多
To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallur...To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallurgy. The microstructure of Ag?4%SnO2 contact materials was characterized, and the relative density, hardness and electrical conductivity were measured. The arc erosion of Ag?4%SnO2 contact materials was tested, the arc duration and mass loss before and after arc erosion were determined, the surface morphologies and compositions of Ag?4%SnO2 contact materials after arc erosion were characterized, and the arc erosion mechanism of AgSnO2 contact materials was discussed. The results show that fine SnO2 particle is beneficial for the improvement of the relative density and hardness, but decreases the electrical conductivity. With the decrease of SnO2 particle size, Ag?4%SnO2contact material presents shorter arc duration, less mass loss, larger erosion area and shallower arc erosion pits.展开更多
In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced...In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.展开更多
The Cu-Cr-Zr alloys were aged at different temperatures for different time with different current densities. The results show that both the electrical conductivity and hardness are greatly improved after being aged wi...The Cu-Cr-Zr alloys were aged at different temperatures for different time with different current densities. The results show that both the electrical conductivity and hardness are greatly improved after being aged with current at a proper temperature. The electrical conductivity increases approximately linearly with increasing current density while the hardness remains constant. The microstructure observation reveals that a much higher density of dislocations and nanosized Cr precipitates appear after the imposition of current, which contributes to the higher electrical conductivity and hardness. The mechanism is related with three factors: 1) Joule heating due to the current, 2) migration of mass electrons, 3) solute atoms, vacancies, and dislocations promoted by electron wind force.展开更多
New copper alloys with high mechanical properties and high electrical conductivity were prepared, and the effects of addition of minor Mg and Y elements on microstructures and properties were studied. The high tensile...New copper alloys with high mechanical properties and high electrical conductivity were prepared, and the effects of addition of minor Mg and Y elements on microstructures and properties were studied. The high tensile strength of above 510 MPa, high elongation of 11%and high electrical conductivity of over 63%IACS can be simultaneously obtained in Cu-0.47Mg-0.20Te-0.04Y alloy after deforming and annealing treatment. Effects of purification together with the grain refining by Y and solid-solution strengthening by Mg are appropriate for enhancing mechanical properties and electrical conductivity of the copper alloys.展开更多
基金This work was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2016ZX05016 and No.2016ZX05046).
文摘With the blooming development of electronic technology,the use of electron conductive gel or ionic conductive gel in preparing flexible electronic devices is drawing more and more attention.Deep eutectic solvents are excellent substitutes for ionic liquids because of their good biocompatibility,low cost,and easy preparation,except for good conductivity.In this work,we synthesized a reactive quaternary ammonium monomer(3-acrylamidopropyl)octadecyldimethyl ammonium bromide with a hydrophobic chain of 18 carbons via the quaternization of 1-bromooctadecane and N-dimethylaminopropyl acrylamide at first,then we mixed quaternary ammonium with choline chloride,acrylic acid and glycerol to obtain a hydrophobic deep eutectic solvent,and initialized polymerization in UV light of 365 nm to obtain the ionic conductive eutectogel based on polyacrylamide copolymer with long hydrophobic chain.The obtained eutectogel exibits good stretchability(1200%),Young's modulus(0.185 MPa),toughness(4.2 MJ/m^(3)),conductivity(0.315 S/m).The eutectogel also shows desireable moisture resistance with the maximum water absorption of 11.7 wt%after one week at 25℃and 60%humidity,while the water absorption of eutectogel without hydrophobic long chains is 24.0 wt%.The introduction of long-chain hydrophobic groups not only improves the mechanical strength of the gels,but also significantly improves moisture resistance of the eutectogel.This work provides a simpler and more effective method for the preparation of ionic conductive eutectogels,which can further provide a reference for the applications of ionic conductive eutectogels in the field of flexible electronic devices.
基金National Natural Science Foundation of China(No.12004070)。
文摘This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabricating TiO_(2)nanotubes.When the relative humidity belows 70%,the TiO_(2)nanotubes can be successfully prepared.What's more,by changing the anodization voltage and time,the diameter and the length of TiO_(2)nanotubes can be adjusted.In addition,the TiO_(2)nanotubes are modified through electrochemical self-doping and loading Pt metal particles on the surface of the nanotubes,which promotes the performance of the supercapacitor.The sample anodized at 100 V for 3 h has a specific capacity of up to 2.576 mF/cm~2 at a scan rate of 100 mV/s after self-doping,and its capacity retention rate still remains at 89.55%after 5000 cycles,demonstrating excellent cycling stability.The Pt-modified sample has a specific capacity of up to 3.486 mF/cm~2 at the same scan rate,exhibiting more outstanding electrochemical performance.
文摘Cardiovascular disease persists as the primary cause of human mortality,significantly impacting healthy life expectancy.The routine electrocardiogram(ECG)stands out as a pivotal noninvasive diagnostic tool for identifying arrhythmias.The evolving landscape of fabric electrodes,specifically designed for the prolonged monitoring of human ECG signals,is the focus of this research.Adhering to the preferred reporting items for systematic reviews and meta-analyses(PRISMA)statement and assimilating data from 81 pertinent studies sourced from reputable databases,the research conducts a comprehensive systematic review and meta-analysis on the materials,fabric structures and preparation methods of fabric electrodes in the existing literature.It provides a nuanced assessment of the advantages and disadvantages of diverse textile materials and structures,elucidating their impacts on the stability of biomonitoring signals.Furthermore,the study outlines current developmental constraints and future trajectories for fabric electrodes.These insights could serve as essential guidance for ECG monitoring system designers,aiding them in the selection of materials that optimize the measurement of biopotential signals.
基金National Key R&D Program of China(2021YFA0716304)Shanghai Science and Technology Programs(22511100300,23DZ2201500)。
文摘Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.
文摘Graphene oxide(GO)with excellent dispersion ability can assist the dispersion of single-walled carbon nanotube(SWCNT)and promote the formation of uniform and stable GO/SWCNT coating liquid.The highly conductive polyethylene terephthalate/reduced graphene oxide/SWCNT(PET/rGO/SWCNT)electromagnetic shielding composite fabric was successfully prepared by anchoring rGO/SWCNT on PET fabric via dip-coating piror to low-temperature thermal reduction.The results showed that the carboxyl groups and hydroxyl groups formed of hydrophilic-treated PET were conducive to the formation of hydrogen bonds with that of GO,which enhanced the interaction between PET fabric and GO/SWCNT coating;the loading of GO/SWCNT increased with the number of dip-coating,the unit area loading of rGO/SWCNT in the final composite fabric was 2.7 mg/cm^(2) after 10 dip-coating cycles and thermal reduction;the PET/rGO/SWCNT composite fabric had a continuous and dense conductive network,with a conductivity of up to 41.6 S/m and the average electromagnetic interference shielding effectiveness in X-band was 22 dB;the flexible PET/rGO/SWCNT composite fabric was not only easy to process,but also exhibited excellent conductivity and shielding efficiency,showing great potential in the application of electromagnetic shielding fabrics.
基金funded by the National Natural Science Foundation of China(Nos.51672310,51272288,51972344)。
文摘Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.
基金This work was supported by the National Natural ScienceFoundationofChina(No.U22B2066,No.12064044)the Major Science and Technology Projects of Anhui Province(No.202103a05020016)+1 种基金the open competition project to select the best candidates to undertake major science and key research projectsofTonglingcity,AnhuiProvince(No.202101JB002)A proportion of this work was supported by the High Magnetic Field Laboratory of Anhui Province and Academician workstation of Hangzhou Xingyu Carbon Environmental Tech Co.,Ltd.,and the Hefei Institutes of Physical Science Director's Fund(No.YZJJ-GGZX-2022-01).
文摘The growing concern about thermal conductivityand electromagnetic shielding inelectronic equipment has promoted the development of interfacial film materials.In this work,polyvinylidene fluoride(PVDF)/graphene composite films with different graphene contents were fabricated by high-energy ball milling,cold isostatic pressing,scraping and coating,successively.High-energy ball milling is beneficial to the dispersion of graphene powder,while cold isostatic pressing can greatly enhance thermal conductivity and mechanical strength by reducing the voids in the film and increasing the contact area of graphene sheets.The thermal conductivity,tensile strength and electromagnetic shielding properties of the films were carefully investigated and compared.It was demonstrated that the thermal conductivity increased from 0.19 Wm-1.K-1 for pure PVDF to 103.9 W-m-1.K-1 for the composite film with PVDF:graphene=1:3.Meanwhile the electromagnetic shielding efficiency can reach 36.55 dB.The prepared PVDF/graphene composite films exhibit outstanding overall performance and have the potential for practical applications.
基金supported by the National Natural Science Foundation of China(No.21501015)the Hunan Provincial Natural Science Foundation,China(No.2022JJ30604)Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,China(No.2022CL01)。
文摘A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling.
文摘A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liquid-phase carbonization of isotropic pitch to the emergence of carbon microbeads in the matrix and finally their growth to form a 100%anisotropic bulk meso-phase,but rather a reverse transformation.The effects of C_(60) loading and reaction temperature on the morphological transformation of mesophase were investigated by polarizing optical and scanning electron microscopies.The physical changes in the NMP induced by C_(60) were characterized by thermogravimetric analysis,Fourier transform infrared spectroscopy,X-ray diffractometry and Raman spectroscopy.The results show that the coalesced NMP can be converted to a spherical type at 300-320℃ with the addition of 5%C_(60),and the size of the mesophase microbeads increases with increasing temperature.Furthermore,a model is established to ex-plain the unique induction effect of C_(60) in the transformation process.This work makes the morphological transformation of MP con-trollable,and provides a new idea for the understanding and research of mesophase pitch.
基金National Natural Science Foundation of China(T2125008,92263108,92163203,52102292,52003198)Shanghai Rising-Star Program(23QA1409300)Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-07-E00096)。
文摘Based on Peltier effect,Bi_(2)Te_(3)-based alloy is widely used in commercial solid-state refrigeration at room temperature.The mainstream strategies for enhancing room-temperature thermoelectric performance in Bi_(2)Te_(3)focus on band and microstructure engineering.However,a clear understanding of the modulation of band structure and scattering through such engineering remains still challenging,because the minority carriers compensate partially the overall transport properties for the narrow-gap Bi_(2)Te_(3)at room temperature(known as the bipolar effect).The purpose of this work is to model the transport properties near and far away from the bipolar effect region for Bi_(2)Te_(3)-based thermoelectric material by a two-band model taking contributions of both majority and minority carriers into account.This is endowed by shifting the Fermi level from the conduction band to the valence band during the modeling.A large amount of data of Bi_(2)Te_(3)-based materials is collected from various studies for the comparison between experimental and predicted properties.The fundamental parameters,such as the density of states effective masses and deformation potential coefficients,of Bi_(2)Te_(3)-based materials are quantified.The analysis can help find out the impact factors(e.g.the mobility ratio between conduction and valence bands)for the improvement of thermoelectric properties for Bi_(2)Te_(3)-based alloys.This work provides a convenient tool for analyzing and predicting the transport performance even in the presence of bipolar effect,which can facilitate the development of the narrow-gap thermoelectric semiconductors.
文摘With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical conversion of 5-hydroxymethylfurfural(HMF)to biofuels and value-added oxygenated commodity chemicals provides a promising and alternative pathway to convert re-newable electricity into chemicals.Although nickel-based eletrocatalysts are well-known for HMF oxidation,their relatively low intrinsic activity,poor conductivity and stability still limit the poten-tial applications.Here,we report the fabrication of a freestanding nickel-based electrode,in which Ni(OH)_(2) species were in-situ constructed on Ni foam(NF)support using a facile ac-id-corrosion-induced strategy.The Ni(OH)2/NF electrocatalyst exhibits stable and efficient electro-chemical HMF oxidation into 2,5-furandicarboxylic acid(FDCA)with HMF conversion close to 100% with high Faraday efficiency.In-situ formation strategy results in a compact interface between Ni(OH)_(2) and NF,which contributes to good conductivity and stability during electrochemical reac-tions.The superior performance benefits from dynamic cyclic evolution of Ni(OH)_(2) to NiOOH,which acts as the reactive species for HMF oxidation to FDCA.A scaled-up device based on a continu-ous-flow electrolytic cell was also established,giving stable operation with a high FDCA production rate of 27 mg h^(-1)cm^(−2).This job offers a straightforward,economical,and scalable design strategy to design efficient and durable catalysts for electrochemical conversion of valuable chemicals.
基金supported by the Fundamental Research Funds for the Central Universities(WK2310000098).
文摘A 499.8 MHz SOLEIL-type superconducting cavity was simulated and designed for the first time in this paper.The higher-order mode(HOM)properties of the cavity were investigated.Two kinds of coaxial HOM couplers were designed.Using 4 L-type and 4 T-type HOM couplers,the longitudinal impedance and the transverse impedances were suppressed to below 3 kΩand 30 kΩ/m,respectivly.The HOM damping requirements of Hefei Advanced Light Facility(HALF)were satisfied.This paper conducted an in-depth study on the radio frequency(RF)design,multipacting optimization,and thermal analysis of these coaxial couplers.Simulation results indicated that under operating acceleration voltage,the optimized couplers does not exhibit multiplicating or thermal breakdown phenomena.The cavity has the potential to reach a higher acceleration gradient.
基金supported by the Ensemble Grant for Early Career Researchers 2022-2023 and the 2023 Ensemble Continuation Grant of Tohoku University,the Hirose Foundation,and the AIMR Fusion Research Grantsupported by JSPS KAKENHI Nos.JP23K13599,JP23K13703,JP22H01803,JP18H05513,and JP23K13542.F.Y.and Q.W.acknowledge the China Scholarship Council(CSC)to support their studies in Japan.
文摘Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs.
基金Project(51274163)supported by the National Natural Science Foundation of ChinaProject(13JS076)supported by the Key Laboratory Research Program of Shaanxi Province,China+1 种基金Project(2012KCT-25)supported by the Pivot Innovation Team of Shaanxi Electrical Materials and Infiltration Technique,ChinaProject(2011HBSZS009)supported by the Special Foundation of Key Disciplines,China
文摘To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallurgy. The microstructure of Ag?4%SnO2 contact materials was characterized, and the relative density, hardness and electrical conductivity were measured. The arc erosion of Ag?4%SnO2 contact materials was tested, the arc duration and mass loss before and after arc erosion were determined, the surface morphologies and compositions of Ag?4%SnO2 contact materials after arc erosion were characterized, and the arc erosion mechanism of AgSnO2 contact materials was discussed. The results show that fine SnO2 particle is beneficial for the improvement of the relative density and hardness, but decreases the electrical conductivity. With the decrease of SnO2 particle size, Ag?4%SnO2contact material presents shorter arc duration, less mass loss, larger erosion area and shallower arc erosion pits.
基金Project(51222405)supported by the National Natural Science Foundation for Outstanding Young Scholars of ChinaProject(51034002)supported by the National Natural Science Foundation of ChinaProject(120502001)supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.
基金Project (2009AA03Z109) supported by the National High-tech Research and Development Program of ChinaProject (09zz98) supported by Key Research and Innovation Program from Shanghai Municipal Education Commission, ChinaProjects (09dz1206401, 09dz1206402) supported by Key Project from Science and Technology Commission of Shanghai Municipality, China
文摘The Cu-Cr-Zr alloys were aged at different temperatures for different time with different current densities. The results show that both the electrical conductivity and hardness are greatly improved after being aged with current at a proper temperature. The electrical conductivity increases approximately linearly with increasing current density while the hardness remains constant. The microstructure observation reveals that a much higher density of dislocations and nanosized Cr precipitates appear after the imposition of current, which contributes to the higher electrical conductivity and hardness. The mechanism is related with three factors: 1) Joule heating due to the current, 2) migration of mass electrons, 3) solute atoms, vacancies, and dislocations promoted by electron wind force.
基金Project (50875031) supported by the National Natural Science Foundation of ChinaProject (20095263005) supported by Aviation Science Foundation of China
文摘New copper alloys with high mechanical properties and high electrical conductivity were prepared, and the effects of addition of minor Mg and Y elements on microstructures and properties were studied. The high tensile strength of above 510 MPa, high elongation of 11%and high electrical conductivity of over 63%IACS can be simultaneously obtained in Cu-0.47Mg-0.20Te-0.04Y alloy after deforming and annealing treatment. Effects of purification together with the grain refining by Y and solid-solution strengthening by Mg are appropriate for enhancing mechanical properties and electrical conductivity of the copper alloys.