采用CCSD(T)//B3LYP/6-311+G(d,p)方法研究了Criegee中间体CH_3CHOO与OH自由基反应的微观机理.结果表明,上述反应存在抽氢、加成-分解和氧化3类反应通道,其中,syn-CH3CHOO+OH以抽β-H为优势通道,表观活化能为-4.88 k J/mol;anti-CH_3CHO...采用CCSD(T)//B3LYP/6-311+G(d,p)方法研究了Criegee中间体CH_3CHOO与OH自由基反应的微观机理.结果表明,上述反应存在抽氢、加成-分解和氧化3类反应通道,其中,syn-CH3CHOO+OH以抽β-H为优势通道,表观活化能为-4.88 k J/mol;anti-CH_3CHOO+OH则以加成-分解反应为优势通道,表观活化能为-13.25 k J/mol.在加成-分解和氧化反应通道中,anti-构象的能垒均低于syn-构象,而抽氢反应则是syn-(β-H)的能垒低于anti-构象.速率常数计算表明,anti-构象的加成-分解反应通道具有显著的负温度效应;syn-和anti-构象的氧化通道具有显著的正温度效应.3类反应具有显著不同的温度效应,说明通过改变温度可显著调节3类反应的相对速率.展开更多
The rate constant for the reaction of OH radicals and hydrogen sulfide (H2S) was studied in different bath gases (including N2, air, O2 and He) by using relative technique at 298 K. The small difference of the measure...The rate constant for the reaction of OH radicals and hydrogen sulfide (H2S) was studied in different bath gases (including N2, air, O2 and He) by using relative technique at 298 K. The small difference of the measured rate constants between N2 and those with the presence of O2 suggested possible influence of HS self reaction. Further experiments with NOx presence for scavenging HS demonstrated this assumption. The rate constant of (5.48±0.12) ×10-12 cm3 molecule-1 s-1 obtained with 4.09 ×10-4 mol m3 NO presence may be accurate for estimating the atmospheric lifetime of H2S. The results provided circumstantial evidence that the rapid reaction of HS with N2O is suspected.展开更多
The fate of 2-nitrobenzaldehyde(2-NBA)is of interest in atmospheric chemistry as it is a semi-volatile organic compound with high photosensitivity.This study presents a quantum chemical study of the gas-phase reaction...The fate of 2-nitrobenzaldehyde(2-NBA)is of interest in atmospheric chemistry as it is a semi-volatile organic compound with high photosensitivity.This study presents a quantum chemical study of the gas-phase reactions of 2-NBA photo-excitation and OH-oxidation in the absence and presence of small TiO_(2) clusters.To further understand the unknown photolysis mechanism,the photo-reaction pathways of ground singlet state and the lying excited triplet state of 2-NBA were investigated including the initial and subsequent reactions of proton transfer,direct CO,NO_(2),and HCO elimination routes in the presence of O_(2) and NO.Meanwhile,the OH-mediated degradation of 2-NBA proceeded via five H-extraction and six OH-addition channels by indirect mechanism,which follows a succession of reaction steps initiated by the formation of weakly stable intermediate complexes.The H-extraction from the-CHO group was the dominant pathway with a negative activation energy of-1.22 kcal/mol.The calculated rate coefficients at 200–600 K were close to the experimental data in literature within 308-352 K,and the kinetic negative temperature independence was found in both experimental literature and computational results.Interestingly,2-NBA was favored to be captured onto small TiO_(2) clusters via six adsorption configurations formed via various combination of three types of bonds of Ti…O,Ti…C,and O…H between the molecularly adsorbed 2-NBA and TiO_(2) clusters.Comparison indicted that the chemisorptions of aldehyde oxygen have largest energies.The results suggested adsorption conformations have a respectable impact on the catalysis barrier.This study is significant for understanding the atmospheric chemistry of 2-nitrobenzaldehyde.展开更多
Ambient volatile organic compounds (VOCs) were sampled at six sites in Beijing in the summer of 2004 and analyzed by GCMS. The chemical reactivities of 73 quantified VOCs species were evaluated by OH loss rates (LO...Ambient volatile organic compounds (VOCs) were sampled at six sites in Beijing in the summer of 2004 and analyzed by GCMS. The chemical reactivities of 73 quantified VOCs species were evaluated by OH loss rates (LOH) and ozone formation potentials (OFPs). Top 15 reactive species, mainly alkenes and aromatics, were identified by these two methods, and accounted for more than 70% of total reactivity of VOCs. In urban areas, isoprene was the most reactive species in term of OH loss rate, contributing 11.4% to the LOH of VOCs. While toluene, accounting for 9.4% of OFPs, appeared to have a long-time role in the photochemical processes. Tongzhou site is obviously influenced by local chemical industry, but the other five sites showed typical urban features influenced mainly by vehicular emissions.展开更多
文摘采用CCSD(T)//B3LYP/6-311+G(d,p)方法研究了Criegee中间体CH_3CHOO与OH自由基反应的微观机理.结果表明,上述反应存在抽氢、加成-分解和氧化3类反应通道,其中,syn-CH3CHOO+OH以抽β-H为优势通道,表观活化能为-4.88 k J/mol;anti-CH_3CHOO+OH则以加成-分解反应为优势通道,表观活化能为-13.25 k J/mol.在加成-分解和氧化反应通道中,anti-构象的能垒均低于syn-构象,而抽氢反应则是syn-(β-H)的能垒低于anti-构象.速率常数计算表明,anti-构象的加成-分解反应通道具有显著的负温度效应;syn-和anti-构象的氧化通道具有显著的正温度效应.3类反应具有显著不同的温度效应,说明通过改变温度可显著调节3类反应的相对速率.
基金National Natural Science Foundation of China(11703061),Hefei Institutes of Physical Science Present Foundation(YZJJ201607),Laboratory Innovation Foundation(CXJJ-17S002)。
文摘OH自由基是中高层大气中重要的氧化剂,决定着臭氧以及其他温室气体的浓度变化,甚至气候变化。为了实现中高层大气OH自由基的精细探测与精确反演,需要构造正演模型,模拟得到仪器接收到的大气中的A2Σ+-X2Π(0,0)309nm波段的太阳共振荧光发射信号。本文基于分子光谱能级跃迁理论计算得到OH(0,0)振动能级上的荧光发射率因子g,结合辐射传输模型SCIATRAN模拟出的太阳辐照度和观测视线路径上的OH柱量,模拟出OH荧光发射光谱,叠加上大气背景光谱并卷积仪器函数,最终模拟得到仪器接收的包含OH浓度信息的光谱。模拟结果与国外在轨仪器MAHRSI(Middle Atmosphere High-Resolution Spectrograph Investigation),SHIMMER(Spatial Heterodyne Imager for Mesospheric Radicals)的在轨实测结果一致性较好。还分析了影响模拟结果的因素,在之后的正演过程中加以修正,使正演模型更接近实际辐射传输过程。
基金supported by the National Natural Science Foundation of China (40830101,20977097 and 20677067)Chinese Academy of Sciences (KZCX2-YW-Q02-03)+2 种基金the National Water Special Project (2008ZX07421-001 and 2009ZX07210-009)the Platform Construction of Introducing Central Resources in Beijing (PXM2008-178305-06995)National Basic Research and Development Program (2010CB732304)
文摘The rate constant for the reaction of OH radicals and hydrogen sulfide (H2S) was studied in different bath gases (including N2, air, O2 and He) by using relative technique at 298 K. The small difference of the measured rate constants between N2 and those with the presence of O2 suggested possible influence of HS self reaction. Further experiments with NOx presence for scavenging HS demonstrated this assumption. The rate constant of (5.48±0.12) ×10-12 cm3 molecule-1 s-1 obtained with 4.09 ×10-4 mol m3 NO presence may be accurate for estimating the atmospheric lifetime of H2S. The results provided circumstantial evidence that the rapid reaction of HS with N2O is suspected.
基金supported by the National Natural Science Foundation of China(No.22006101)the Natural Science Foundation of Liaoning Province(No.2023-MS-250)+3 种基金the Basic Scientific Research Foundation Project of Liaoning Province(No.LJKQZ20222283)the National Natural Science Foundation of China-Liaoning Joint Fund(No.U1908204)the Doctoral Research Start-up Fund of Shenyang Normal University(No.BS202124,No.BS202016)the Basic Scientific Research Project of Universities in Liaoning Province(No.LQN202007)。
文摘The fate of 2-nitrobenzaldehyde(2-NBA)is of interest in atmospheric chemistry as it is a semi-volatile organic compound with high photosensitivity.This study presents a quantum chemical study of the gas-phase reactions of 2-NBA photo-excitation and OH-oxidation in the absence and presence of small TiO_(2) clusters.To further understand the unknown photolysis mechanism,the photo-reaction pathways of ground singlet state and the lying excited triplet state of 2-NBA were investigated including the initial and subsequent reactions of proton transfer,direct CO,NO_(2),and HCO elimination routes in the presence of O_(2) and NO.Meanwhile,the OH-mediated degradation of 2-NBA proceeded via five H-extraction and six OH-addition channels by indirect mechanism,which follows a succession of reaction steps initiated by the formation of weakly stable intermediate complexes.The H-extraction from the-CHO group was the dominant pathway with a negative activation energy of-1.22 kcal/mol.The calculated rate coefficients at 200–600 K were close to the experimental data in literature within 308-352 K,and the kinetic negative temperature independence was found in both experimental literature and computational results.Interestingly,2-NBA was favored to be captured onto small TiO_(2) clusters via six adsorption configurations formed via various combination of three types of bonds of Ti…O,Ti…C,and O…H between the molecularly adsorbed 2-NBA and TiO_(2) clusters.Comparison indicted that the chemisorptions of aldehyde oxygen have largest energies.The results suggested adsorption conformations have a respectable impact on the catalysis barrier.This study is significant for understanding the atmospheric chemistry of 2-nitrobenzaldehyde.
基金National Natural Science Foundation of China(No.40575059 and No.20637001).
文摘Ambient volatile organic compounds (VOCs) were sampled at six sites in Beijing in the summer of 2004 and analyzed by GCMS. The chemical reactivities of 73 quantified VOCs species were evaluated by OH loss rates (LOH) and ozone formation potentials (OFPs). Top 15 reactive species, mainly alkenes and aromatics, were identified by these two methods, and accounted for more than 70% of total reactivity of VOCs. In urban areas, isoprene was the most reactive species in term of OH loss rate, contributing 11.4% to the LOH of VOCs. While toluene, accounting for 9.4% of OFPs, appeared to have a long-time role in the photochemical processes. Tongzhou site is obviously influenced by local chemical industry, but the other five sites showed typical urban features influenced mainly by vehicular emissions.